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Abstract 
 The design of ubiquitous and embedded computers 
focuses on cost factors such as area, power-consumption, 
and performance. Security and trust properties, on the 
other hand, are often an afterthought. Yet the purpose of 
ubiquitous electronics is to act and negotiate on their 
owner’s behalf, and this makes trust a first-order concern. 
We outline a methodology for the design of secure and 
trusted electronic embedded systems, which builds on 
identifying the secure-sensitive part of a system (the 
root-of-trust) and iteratively partitioning and protecting 
that root-of-trust over all levels of design abstraction. 
This includes protocols, software, hardware, and circuits. 
We review active research in the area of secure design 
methodologies. 

1  Introduction 
In recent years, the mass media has repeatedly covered  

horror stories that describe abuse of electronic wireless 
tags (RFID). Weaknesses have been demonstrated that 
break the RFID's security by observation of RF signals [1], 
by clever cryptanalysis [2], or by software hacks [3]. These 
hacks demonstrate that, as we delegate more tasks to 
embedded electronics, we need these electronics to become 
trustworthy. An electronic ID card for example has to 
protect our personal information: it may release that 
information only to authorized persons. 

This paper discusses implementation aspects of trust and 
security in embedded electronics. Trust and security are 
not a physical property like power, timing and area. This 
makes trust and security difficult to quantify. Indeed,  
secure design involves minimizing a risk instead of 
optimizing a quantity. 

We will outline a methodology to support design for 
trust and security. Designers are already well aware with 
design for low-power, high-performance, and so forth. But 
secure electronic design is still an ad-hoc process. With a 
methodology for trust and security, we obtain systematic 
protection against the wide array of possible hacks.  

The paper is organized as follows. We will first present a 
more accurate definition of trust, and explain two unique 
features of secure embedded systems: the root-of-trust and 
the security policy. In section 3, we review the scope of 
so-called 'attacks' that a secure embedded system has to 

withstand in order to remain trustworthy. As it turns out, all 
levels of design abstraction (protocols, software, 
micro-architecture, circuits) are susceptible to attacks. This 
leads to the methodology presented in section 4, called the 
Tree of Trust. By recursively partitioning the system into 
trusted and non-trusted parts over different abstraction 
levels, we can apply systematic countermeasures at each 
asbtraction level. In section 5, we will review some of the 
available countermeasure techniques and conclude the 
paper. 

2  Secure and ubiquitous embedded systems 
A system S is said to trust a second system T when S 

makes the assumption that T will behave exactly as S 
expects [4]. A trusted system is one whose failure can 
make or break a security policy [5]. A security policy is a 
brief and clear description of the protection properties that 
a system must have, such as for example how secret keys 
must be managed. 

Anderson points out two important aspects to a trusted 
system. First, trust is different from trustworthy. In a 
trustworthy system, the security policy does not fail, while 
the same is not always true for a trusted system. Secondly, 
trust is linked to the second systems’ behavior and is thus 
also limited to the area of that behavior. It would not be the 
first time that a device is used (and trusted) for behaviors 
outside the originally defined security policy. 

In the context of secure embedded devices, a system or a 
component (in hardware or software) is trusted if it 
provides a predictable and reliable behavior. This is 
achieved by means of a secure implementation. As shown 
in Figure 1, a secure implementation is one that protects a 
root-of-trust with a security policy. The security policy 
defines how the root of trust may be accessed. The policy 
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Figure 1: A secure embedded system implements a 
security policy to protect a root-of-trust. 
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relies on cryptographic techniques to provide 
authentication, confidentiality, integrity, and non- 
repudiation. 

The root-of-trust is the core component upon which the 
trust and the security policy are based. The notion of a 
root-of-trust exists at multiple abstraction levels in a 
system, and can be software as well as hardware. 

Consider the support of security of wireless cell phone 
conversations [6]. The root-of-trust is implemented in the 
cell phone’s SIM card. The security policy requires 
conversation-confidentiality, as well as caller 
authentication to avoid impostors from taking on the 
identity of someone else and charging calls. The complete 
cell phone security policy is very elaborated and captured 
in standards, such as the 3GPP standards from ETSI [7]. 

Even tiny secure embedded systems use a root-of-trust 
and a security policy. RFID tags for example can be used to 
support anti-counterfeiting [8]. They use a security 
protocol based on public key cryptography, and their 
root-of-trust is based on a Physically Unclonable Device 
(PUF). It is a challenge to provide these security features in 
an area- and power-limited environment such as RFID. 

These examples illustrate the challenge facing the 
embedded system designer. While optimizations for time, 
memory, power or energy are well known to the designer, 
security adds an extra dimension. A skilled attacker will try 
to find the weakest link, and will probe the security policy 
of the embedded system for weaknesses at all levels of 
abstraction, until he finds one that provides access to the 
root of trust. The next section describes some of the 
possibilities that the attacker has available. 

3   Side-channel attacks 

This section briefly reviews the security risks for 
embedded systems, emphasizing the risks resulting from 
side-channel information leaks, which are relatively easy 
to exploit. In general, the embedded-system-designer could 
consider different security levels (e.g. FIPS 140) and 
different protection levels for a particular implementation. 

Cryptographic algorithms by themselves are only 
subject to cryptanalysis. The implementation of 
cryptographic algorithms on the other hand may result in 

side-channel information leaks. A side-channel is a bypass 
around the security policy that provides direct access to the 
root-of-trust. Side-channels information leaks can be 
accidentally introduced during the design process. Indeed, 
crypto-implementations consume time and energy, and 
these consumption patterns may reveal the actual secrets 
that are processed. Consider the following simple example 
of a modular exponentiation algorithm by Kocher [9]. This 
algorithm evaluates R = yk mod n, with k being the 
equivalent of a private key. 

  modexp(in k, in y, out Rw-1) { 
   s0 = 1 
   for j = 0 to w – 1 
    if (bit j of k) is 1 then 
     Rj = (sj . y) mod n 
    else 
     Rj = sj 
    Sj+1 = (Rj)

2 mod n 
   end for 

When this algorithm executes in software, the value of k 
decides, bit by bit, which branches of the if-then-else 
statement execute. These branches are easy to distinguish 
since the multiplication (sj.y) mod n requires more 
computations on the processor than the simple assignment 
of sj. An attacker could use the execution timing or the 
power profile of the processor to obtain the secret value k.  

There is no shortage of attack ideas and proposals for 
countermeasures of each type of attack. Zhou counts no 
less than 200 papers on power analysis attacks and relevant 
countermeasures [10]. Interestingly, there are next to no 
efforts that investigate the role of all these countermeasures 
in the design flow of a complete embedded system. Yet this 
is crucial, as a secure embedded system is only as good as 
the weakest side-channel link contained within it. 

Table 1 presents a classification of side-channel attacks 
based on the particular abstraction level chosen by the 
attacker. At the most abstract level, the attacker is only able 
to access the underlying machine (also called the 
interpreter) that implements a cryptographic algorithm. At 
the next level, the attacker takes the execution time of 
crypto-operations into account. This can be done be 
measuring the execution time between externally 
observable events such as input-output, program start and 

Table 1: A hierarchy of attacks on secure embedded systems. 
Abstraction 
Level 

Attacker 
Proximity 

Countermeasure Example Attack 

Abstract Off-line Algorithm Cryptanalysis 
Interpreter Connected Protected Partition Software Tampering [11], Scan-Chain readout, Fault Attack 
Time Connected Constant-Time Design [12] Software timing, Cache Misses [13], Branch predictions [14] 
Power Close-range Constant-Power Design Differential and Higher -order Differential Analysis [15] 
Radiation Close-range Electromagnetic Shielding Remote Power Analysis  
Implementation Physical Physical Shielding Circuit Tampering, Semi-Invasive attacks [16] 



completion, and so forth. One level further the attacker also 
takes into account the energy consumption. This can be 
either electrical energy obtained through power 
measurements, or electromagnetic energy obtained 
through radiation measurements. 

Researchers have demonstrated attacks at each of these 
levels, and they can be far more efficient than cryptanalytic 
attacks. For example, a brute-force attack on the 128-bit 
key of an Advanced Encryption Standard (AES) is 
infeasible with current technologies. However, a 
side-channel attack may still work when a brute-force 
attack fails. The cache-timing attack presented by Osvik in 
[13] extracts the 128-bit key out of a software AES cipher 
in 3 seconds. Similarly, the branch-prediction attack 
presented by Aciicmez reveals an RSA key in fractions of a 
second [14]. The only good response to these risks is a 
side-channel-aware integration of cryptography with 
embedded system design. 

4  The Tree of Trust 
Side-channel attacks may  jeopardize a system's 

security policy at multiple levels of abstraction. It is 
impossible to protect a system against all these 
side-channel attacks with a single countermeasure. Instead, 
we need a systematic deployment of countermeasures that 
will protect the root-of-trust at different levels of 
abstraction. Indeed, the root-of-trust can have multiple 
embodiments, depending on the system under 
consideration. For example, the hardware registers used to 
store a private key are roots-of-trust. A key agreement 
protocol that manipulates this private key will also contain 
a root-of-trust. Figure 2 illustrates the steps taken by a 
designer to implement (or refine the implementation of) a 
root-of-trust. These steps are required for each abstraction 
level under consideration. 

• Secure partitioning is based on analysis of the 
side-channels in the design. For example, an encryption 
algorithm in software may be sensitive to timing 
analysis attacks. A designer can isolate the part of the 
program that is a potential timing-analysis target, and 
partition the software program into a secure and a 
non-secure process. This allows the designer to 
concentrate on the timing-analysis-sensitive part and 
further harden that part, for example by translating part 
of that program into hardware with constant- execution- 
time. 

• Secure integration combines the non-secure part and the 
secure part of a design together in a manner that is 
consistent with the security policy and that guards the 
root-of-trust within the security-critical part. A secure 
interface resides in between the two parts and ensures 
that the root-of-trust remains confined within the secure 
part. This way, only the secure part of a design is 
sensitive to further side-channel attacks. 
The Tree-of-Trust is a recursive application of secure 

partitioning and secure integration over multiple levels of 
abstraction. The abstraction levels of interest are the 
protocol level, the software-intensive architecture level, 
the hardware-intensive micro-architecture level and finally 
the circuit level. Each level roughly corresponds to a 
particular class of side-channel attacks, starting with 
interpreter-level attacks and working down to power 
attacks. 

We provide an example of security partitioning for a 
software implementation of the AES (Advanced 
Encryption Standard) cipher. Osvik [13] and several other 
authors have pointed out that the lookup tables used in AES 
(S-boxes) are a timing side-channel into the roundkey as 
illustrated in Figure 3a. Depending on the presence of an 
S-box entry into the processor's cache, the execution time 
of the AES algorithm shows small variations. From the 
dataflow in Figure 3a, it follows that the index of an S-box 
is directly correlated to the AES roundkey. As a result, the 
execution time variations of an AES algorithm are 
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Figure 2: The tree-of-trust supports systematic
implementation of the root-of-trust. 
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correlated to the key, and this is used as the basis for 
so-called cache-attacks. Bernstein argues that 
high-performance, constant-time software is a challenge to 
write [17]. We therefore suggest a solution as in Figure 3b: 
the S-box is implemented with dedicated hardware,  
attached to the processor through a dedicated interface. 
This can be implemented by means of a 
custom-instruction-set processor. Table 2 shows the result 
of S-box custom instructions on a 32-bit ASIP. Because a 
hardware S-box eliminates all data-cache misses during 
execution of AES, the AES algorithm achieves a constant 
execution time. Moreover, since the custom S-box 
instruction implements 4 S-box accesses in parallel, the 
performance of AES encryption improves with a factor of 
2.31. With this transformation, the root-of-trust is 
protected against timing attacks. Based on the Tree of 
Trust, the design can now be further partitioned. The next 
step would be to consider power-based side-channels in the 
CPU and in the hardware S-boxes. This can result in 
further partitioning and the introduction of constant-power 
digital logic. 

Simple and effective side-channel countermeasures are 
essential to support the partitioning process in the tree of 
trust. The next section will review several 
side-channel-attack countermeasures at different levels of 
abstraction. 

5 Side-channel resistant design and design 
methods 

Systematic deployment of countermeasures will protect 
the root-of-trust at different levels of abstraction. This is 
not an easy task, as designers and engineers are trained to 
work towards an optimization goal, with the help of design 
methods. Design for security on the other hand attempts to 
minimize risk (i.e. prevent something to happen). In this 
section we will focus on countermeasures which should be 
of interest to the digital designer and which could be 
supported by EDA tools.  

5.1. Physical level tamper resistance 
At the physical level, manufacturers have developed 

tamper proof techniques such as putting the security parts 
into special casings with light, temperature, tampering 
and/or motion sensors depending the application. A top 

layer sensor meshes is an extra layer of metal on top of the 
integrated circuit which is continuously monitored for 
interruptions and shorts [18]. It prevents laser cutting or 
selective etching to access the internals of the circuit.  

Extremely important is the link to test and testability: 
scan chains and JTAG ports give are an effective side entry 
into the internals of the integrated circuit. Secure circuits 
therefore have limited testability, such as certain forms of 
BIST. 

5.2. Circuit level techniques to resist side channel leakage 
Countermeasures against tampering don’t work against 
the side channel leakage through power, timing or 
electromagnetic radiation of the devices. The fundamental 
reason is that integrated circuits are made of CMOS 
technology. Standard cell based design is very successful 
because the standard CMOS circuit style is very robust 
against clock variations or fluctuations in the power 
supply. And it is really low power, because it only 
consumes power when the circuits operate at least to a 
first degree when neglecting the subthreshold leakage 
issues associated with deep submicron technologies. 
On top, it is supported by a very successful design flow: a 
design is written at register transfer level in VHDL or 
Verilog and an ‘automatic’ tool flow (optimistically) 
translates this to a GDS file ready for tape-out. 

 
Figure 4: Standard CMOS charge and discharge 
event. 
As shown in Figure 4, a CMOS circuit really tells what it 
is doing by looking at the current supplied to the circuit. 
An attacker can detect a charging, discharging action or 
no action. A solution at the circuit level is to use logic 
styles that have a power consumption pattern that is 
independent from the data being processed. When logic 
values are measured by charging and discharging 
capacitances, we need to use a fixed amount of energy for 
every transition. This can be obtained by full-custom 
dynamic, differential logic styles with balanced load 
capacitances. But more practical from a design 
perspective is an approach that can be integrated with a 
regular design flow. It has been the focus of European 
projects such as ASYNC and SCARD [19]. It is illustrated 
with the wave dynamic differential logic style WDDL and 
its associated design flow. A WDDL gate will show 
exactly one transition every clock cycle. And a WDDL 
design can be integrated in a regular standard CMOS 
design flow as shown in Figure 5. A few scripts are added 
to the flow. 
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Table 2: Comparison of original design and 
security-partitioned ASIP design. 

 Base processor + HW S-box 
Avg Cycles / Round 3,515 cycles 1,520 cycles 
D-cache misses 162 (variable) 2 (constant) 
Stall cycles 602 342 
Constant-time No Yes 
Relative performance 100% 231% 



A first script translates a regular VHDL net list to a 
so-called fat net list. This net list contains differential 
WDDL type gates. In this library each cell has differential 
inputs and differential outputs. To the place and route tool, 
these inputs and outputs are presented as single ‘fat’ (i.e. 
double width) inputs and outputs. A regular place & route 
tool is used to route the fat wires. Afterwards a second 
script is run that decomposes the fat wires into two 
differential wires with an identical wiring pattern.   
A WDDL based circuit has an area that is 3 times larger 
and the power consumption is 4 times higher. The benefit 
is that a differential power analysis attack on an AES 
implementation is not successful even after 1.5M 
encryptions. A functionally identical AES discloses the 
key after an average of 2000 encryptions [20]. 
In literature, other approaches and circuit styles are 
proposed: e.g. based on asynchronous logic or masked 
dual-rail precharge logic (MDPL) [21]. The area and 
power consumption of MDPL is even higher: a factor 10 
compared to regular standard cells, but it has the 
advantage that it does not depend on differential routing.  
 
5.3. Simulation for side channel attacks 

Accurate simulation is a crucial tool in the development 
of effective countermeasures. We briefly describe the 
issues for logic-level simulation, but the remarks are also 
valid at other abstraction levels [22]. 

The efficiency of logic simulators is obtained by 
abstracting lower-level technology effects during 
simulation. For example, cycle-based design ignores races, 
glitches, and other sub-cycle timing effects. It also 
abstracts electrical signals into discrete logic values, 
thereby loosing the ability to evaluate the power 
consumption. Circuits that have perfect resistance at the 
simulated logic level are prone to side-channel attacks 
when implemented afterwards due to glitches, imbalances 
in capacitive loads or other lower level effects.  

The ideal simulator to evaluate power-based 
side-channels at logic level has the following 
characteristics. First, it should provide a power-trace over 
time, rather then a single overall power value. Second, the 
power-trace should be calibrated. Calibrated simulation is 
very hard to obtain if only approximate circuit loading 

capacitances are known. Yet the calibration is required to 
evaluate the magnitude of the side-channel signal, and 
derive the amount of real measurements required for a 
successful side-channel attack. Third, the simulator should 
cover not only a single instance of the circuit, but should 
also take technology-dependent variations into account. A 
simulator that covers all these features remains an open 
research problem. 

5.4. Secure micro-architectures 
Figure 3 shows one example of a side channel secure 
SBOX implementation. It is a data path example. But the 
control sequences need also to be balanced. The 
if-then-else operation in the modular exponentiation 
algorithm given in section 3 should be balanced. Section 3 
shows a traditional right-to-left binary 
multiply-and-square algorithm. Similarly a left-to-right 
square-and-multiply exists. The Montgomery ladder 
balances this as follows: the if-branch and the else-branch 
both execute a square and a multiply. The difference is in 
the assignments to registers.  

  exp(in k, in y, out R0) { 
   R0 = 1; R1 = y; 
   for j = w-1 to 0 
    if (bit j of k is 0) then 
     R1 = R0.R1; R0 = R0.R0;  
    else [bit j = 0] 
     R0 = R0.R1; R1 = R1.R1; 
   end for 
         return R0;  

For ease of notation, the mod n operation is not added to 
the equations. At first sight, the Montgomery ladder 
seems inferior because it requires w multiplications 
instead of ½ w on average. But it does provide side 
channel resistance to simple attacks and it has other 
benefits [23].  
 
5.5. Secure micro-processors 

High-end embedded systems contain large amounts of 
software. In a secure embedded system, a microprocessor 
needs to provide multilevel security (different software 
processes have different privileges) as well as multilateral 
security (different software processes are kept apart) [5]. 
Typical modern processors provide privileged-user modes 
to support multi-level security. However, this is a coarse 
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Figure 5: Design flow for side-channel resistant circuits based on power. 



approach, unsuited for most applications. New intiatives 
like ARM Trustzone [25] take a fine-granular approach. 

The processor’s micro-architecture is a rich source of 
side-channels. They can be found in the cache [13], in the 
branch prediction [14], and the memory organization [12]. 
They can be addressed by improving (modifying) the 
microprocessor architecture, such as for example is done in 
the SecureCore project [24]. 

Finally, the programmable nature of processors 
introduces yet challenge: how to ensure the integrity of the 
link between application software and the processor that 
executes that software? This is one of the concerns of 
trusted computing [26]. AEGIS is an example of a trusted 
micro-architecture that implements software integrity by 
means of platform-unique functions [27]. 
 
5.6. Secure algorithm techniques 
There is also plenty of research at the algorithm level to 
protect implementations from side channel leakage. A 
very typical example is “key blinding” also called 
“exponent blinding” [28]. Advanced side channel attacks 
(differential and higher) require the measurements of 
multiple encryptions to attack a device. These multiple 
encryptions are needed to filter the signal out of the very 
noisy signals e.g. by correlation. However, if for every 
exponentiation (in RSA) or for every point multiplication 
(in Elliptic Curve Cryptography) a different exponent (for 
RSA) or different secret scalar (for ECC) is used, then it is 
not possible to collect sufficient measurements. This is in 
essence the goal of key blinding. Instead of calculating 

Q = k. P 
the ECC system will calculate: 

Q = k’. P with k’ = k + r.N  
with N =the number of points on the elliptic curve and r a 
random number. If for every calculation a new random 
number is chosen, then multiple measurements with the 
same secret key are not possible.  

6   Conclusions and Outlook 
If we want trustworthy ubiquitous embedded devices, we 
need to take security into account during the design of 
these devices. In this paper we advocate a root-of-trust 
model together with a security policy. This model is 
hierarchically refined over all design abstraction layers. It 
is illustrated with several practical examples. Optimizing 
for security and trust is different from optimizing for 
power, area or speed. And there remain many challenges 
for a more secure digital design supported by secure 
design methodologies.  
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