
Design methods for Security and Trust

Ingrid Verbauwhede1 and Patrick Schaumont 2
1 ESAT/COSIC, Katholieke Universiteit Leuven

2 Electrical and Computer Engineering Department, Virginia Tech

Abstract
 The design of ubiquitous and embedded computers
focuses on cost factors such as area, power-consumption,
and performance. Security and trust properties, on the
other hand, are often an afterthought. Yet the purpose of
ubiquitous electronics is to act and negotiate on their
owner’s behalf, and this makes trust a first-order concern.
We outline a methodology for the design of secure and
trusted electronic embedded systems, which builds on
identifying the secure-sensitive part of a system (the
root-of-trust) and iteratively partitioning and protecting
that root-of-trust over all levels of design abstraction.
This includes protocols, software, hardware, and circuits.
We review active research in the area of secure design
methodologies.

1 Introduction
In recent years, the mass media has repeatedly covered

horror stories that describe abuse of electronic wireless
tags (RFID). Weaknesses have been demonstrated that
break the RFID's security by observation of RF signals [1],
by clever cryptanalysis [2], or by software hacks [3]. These
hacks demonstrate that, as we delegate more tasks to
embedded electronics, we need these electronics to become
trustworthy. An electronic ID card for example has to
protect our personal information: it may release that
information only to authorized persons.

This paper discusses implementation aspects of trust and
security in embedded electronics. Trust and security are
not a physical property like power, timing and area. This
makes trust and security difficult to quantify. Indeed,
secure design involves minimizing a risk instead of
optimizing a quantity.

We will outline a methodology to support design for
trust and security. Designers are already well aware with
design for low-power, high-performance, and so forth. But
secure electronic design is still an ad-hoc process. With a
methodology for trust and security, we obtain systematic
protection against the wide array of possible hacks.

The paper is organized as follows. We will first present a
more accurate definition of trust, and explain two unique
features of secure embedded systems: the root-of-trust and
the security policy. In section 3, we review the scope of
so-called 'attacks' that a secure embedded system has to

withstand in order to remain trustworthy. As it turns out, all
levels of design abstraction (protocols, software,
micro-architecture, circuits) are susceptible to attacks. This
leads to the methodology presented in section 4, called the
Tree of Trust. By recursively partitioning the system into
trusted and non-trusted parts over different abstraction
levels, we can apply systematic countermeasures at each
asbtraction level. In section 5, we will review some of the
available countermeasure techniques and conclude the
paper.

2 Secure and ubiquitous embedded systems
A system S is said to trust a second system T when S

makes the assumption that T will behave exactly as S
expects [4]. A trusted system is one whose failure can
make or break a security policy [5]. A security policy is a
brief and clear description of the protection properties that
a system must have, such as for example how secret keys
must be managed.

Anderson points out two important aspects to a trusted
system. First, trust is different from trustworthy. In a
trustworthy system, the security policy does not fail, while
the same is not always true for a trusted system. Secondly,
trust is linked to the second systems’ behavior and is thus
also limited to the area of that behavior. It would not be the
first time that a device is used (and trusted) for behaviors
outside the originally defined security policy.

In the context of secure embedded devices, a system or a
component (in hardware or software) is trusted if it
provides a predictable and reliable behavior. This is
achieved by means of a secure implementation. As shown
in Figure 1, a secure implementation is one that protects a
root-of-trust with a security policy. The security policy
defines how the root of trust may be accessed. The policy

root-of-trust

distrusted
environment

interface
security policy

secure
embedded

system

authentication
integrity

confidentiality
non-repudiation

Figure 1: A secure embedded system implements a
security policy to protect a root-of-trust.

978-3-9810801-2-4/DATE07 © 2007 EDAA

relies on cryptographic techniques to provide
authentication, confidentiality, integrity, and non-
repudiation.

The root-of-trust is the core component upon which the
trust and the security policy are based. The notion of a
root-of-trust exists at multiple abstraction levels in a
system, and can be software as well as hardware.

Consider the support of security of wireless cell phone
conversations [6]. The root-of-trust is implemented in the
cell phone’s SIM card. The security policy requires
conversation-confidentiality, as well as caller
authentication to avoid impostors from taking on the
identity of someone else and charging calls. The complete
cell phone security policy is very elaborated and captured
in standards, such as the 3GPP standards from ETSI [7].

Even tiny secure embedded systems use a root-of-trust
and a security policy. RFID tags for example can be used to
support anti-counterfeiting [8]. They use a security
protocol based on public key cryptography, and their
root-of-trust is based on a Physically Unclonable Device
(PUF). It is a challenge to provide these security features in
an area- and power-limited environment such as RFID.

These examples illustrate the challenge facing the
embedded system designer. While optimizations for time,
memory, power or energy are well known to the designer,
security adds an extra dimension. A skilled attacker will try
to find the weakest link, and will probe the security policy
of the embedded system for weaknesses at all levels of
abstraction, until he finds one that provides access to the
root of trust. The next section describes some of the
possibilities that the attacker has available.

3 Side-channel attacks

This section briefly reviews the security risks for
embedded systems, emphasizing the risks resulting from
side-channel information leaks, which are relatively easy
to exploit. In general, the embedded-system-designer could
consider different security levels (e.g. FIPS 140) and
different protection levels for a particular implementation.

Cryptographic algorithms by themselves are only
subject to cryptanalysis. The implementation of
cryptographic algorithms on the other hand may result in

side-channel information leaks. A side-channel is a bypass
around the security policy that provides direct access to the
root-of-trust. Side-channels information leaks can be
accidentally introduced during the design process. Indeed,
crypto-implementations consume time and energy, and
these consumption patterns may reveal the actual secrets
that are processed. Consider the following simple example
of a modular exponentiation algorithm by Kocher [9]. This
algorithm evaluates R = yk mod n, with k being the
equivalent of a private key.

 modexp(in k, in y, out Rw-1) {
 s0 = 1
 for j = 0 to w – 1
 if (bit j of k) is 1 then
 Rj = (sj . y) mod n
 else
 Rj = sj
 Sj+1 = (Rj)

2 mod n
 end for

When this algorithm executes in software, the value of k
decides, bit by bit, which branches of the if-then-else
statement execute. These branches are easy to distinguish
since the multiplication (sj.y) mod n requires more
computations on the processor than the simple assignment
of sj. An attacker could use the execution timing or the
power profile of the processor to obtain the secret value k.

There is no shortage of attack ideas and proposals for
countermeasures of each type of attack. Zhou counts no
less than 200 papers on power analysis attacks and relevant
countermeasures [10]. Interestingly, there are next to no
efforts that investigate the role of all these countermeasures
in the design flow of a complete embedded system. Yet this
is crucial, as a secure embedded system is only as good as
the weakest side-channel link contained within it.

Table 1 presents a classification of side-channel attacks
based on the particular abstraction level chosen by the
attacker. At the most abstract level, the attacker is only able
to access the underlying machine (also called the
interpreter) that implements a cryptographic algorithm. At
the next level, the attacker takes the execution time of
crypto-operations into account. This can be done be
measuring the execution time between externally
observable events such as input-output, program start and

Table 1: A hierarchy of attacks on secure embedded systems.
Abstraction
Level

Attacker
Proximity

Countermeasure Example Attack

Abstract Off-line Algorithm Cryptanalysis
Interpreter Connected Protected Partition Software Tampering [11], Scan-Chain readout, Fault Attack
Time Connected Constant-Time Design [12] Software timing, Cache Misses [13], Branch predictions [14]
Power Close-range Constant-Power Design Differential and Higher -order Differential Analysis [15]
Radiation Close-range Electromagnetic Shielding Remote Power Analysis
Implementation Physical Physical Shielding Circuit Tampering, Semi-Invasive attacks [16]

completion, and so forth. One level further the attacker also
takes into account the energy consumption. This can be
either electrical energy obtained through power
measurements, or electromagnetic energy obtained
through radiation measurements.

Researchers have demonstrated attacks at each of these
levels, and they can be far more efficient than cryptanalytic
attacks. For example, a brute-force attack on the 128-bit
key of an Advanced Encryption Standard (AES) is
infeasible with current technologies. However, a
side-channel attack may still work when a brute-force
attack fails. The cache-timing attack presented by Osvik in
[13] extracts the 128-bit key out of a software AES cipher
in 3 seconds. Similarly, the branch-prediction attack
presented by Aciicmez reveals an RSA key in fractions of a
second [14]. The only good response to these risks is a
side-channel-aware integration of cryptography with
embedded system design.

4 The Tree of Trust
Side-channel attacks may jeopardize a system's

security policy at multiple levels of abstraction. It is
impossible to protect a system against all these
side-channel attacks with a single countermeasure. Instead,
we need a systematic deployment of countermeasures that
will protect the root-of-trust at different levels of
abstraction. Indeed, the root-of-trust can have multiple
embodiments, depending on the system under
consideration. For example, the hardware registers used to
store a private key are roots-of-trust. A key agreement
protocol that manipulates this private key will also contain
a root-of-trust. Figure 2 illustrates the steps taken by a
designer to implement (or refine the implementation of) a
root-of-trust. These steps are required for each abstraction
level under consideration.

• Secure partitioning is based on analysis of the
side-channels in the design. For example, an encryption
algorithm in software may be sensitive to timing
analysis attacks. A designer can isolate the part of the
program that is a potential timing-analysis target, and
partition the software program into a secure and a
non-secure process. This allows the designer to
concentrate on the timing-analysis-sensitive part and
further harden that part, for example by translating part
of that program into hardware with constant- execution-
time.

• Secure integration combines the non-secure part and the
secure part of a design together in a manner that is
consistent with the security policy and that guards the
root-of-trust within the security-critical part. A secure
interface resides in between the two parts and ensures
that the root-of-trust remains confined within the secure
part. This way, only the secure part of a design is
sensitive to further side-channel attacks.
The Tree-of-Trust is a recursive application of secure

partitioning and secure integration over multiple levels of
abstraction. The abstraction levels of interest are the
protocol level, the software-intensive architecture level,
the hardware-intensive micro-architecture level and finally
the circuit level. Each level roughly corresponds to a
particular class of side-channel attacks, starting with
interpreter-level attacks and working down to power
attacks.

We provide an example of security partitioning for a
software implementation of the AES (Advanced
Encryption Standard) cipher. Osvik [13] and several other
authors have pointed out that the lookup tables used in AES
(S-boxes) are a timing side-channel into the roundkey as
illustrated in Figure 3a. Depending on the presence of an
S-box entry into the processor's cache, the execution time
of the AES algorithm shows small variations. From the
dataflow in Figure 3a, it follows that the index of an S-box
is directly correlated to the AES roundkey. As a result, the
execution time variations of an AES algorithm are

Server Client

Noncritical
Software

Critical
Software

Interpreter-level
side-channels

HardwareSoftware
Driver

Timing
side-channels

Power
side-channels

Crypto
HW

Non-critical
circuit

Figure 2: The tree-of-trust supports systematic
implementation of the root-of-trust.

add roundkey

mix columns

shift rows

sbox

CACHE
(1 cycle/acces)

MEMORY
(20 cycle/acces)

data out

round
keys

data in

(last
round) register

file

SBOX
(4x parallel)

load/
store

3232

RAM

CACHE

SBOX
Custom Instruction

CPU

(b)

(a)

Figure 3: (a) AES data flow illustrating the
timing leak (b) A security-partitioned

implementation on ASIP.

correlated to the key, and this is used as the basis for
so-called cache-attacks. Bernstein argues that
high-performance, constant-time software is a challenge to
write [17]. We therefore suggest a solution as in Figure 3b:
the S-box is implemented with dedicated hardware,
attached to the processor through a dedicated interface.
This can be implemented by means of a
custom-instruction-set processor. Table 2 shows the result
of S-box custom instructions on a 32-bit ASIP. Because a
hardware S-box eliminates all data-cache misses during
execution of AES, the AES algorithm achieves a constant
execution time. Moreover, since the custom S-box
instruction implements 4 S-box accesses in parallel, the
performance of AES encryption improves with a factor of
2.31. With this transformation, the root-of-trust is
protected against timing attacks. Based on the Tree of
Trust, the design can now be further partitioned. The next
step would be to consider power-based side-channels in the
CPU and in the hardware S-boxes. This can result in
further partitioning and the introduction of constant-power
digital logic.

Simple and effective side-channel countermeasures are
essential to support the partitioning process in the tree of
trust. The next section will review several
side-channel-attack countermeasures at different levels of
abstraction.

5 Side-channel resistant design and design
methods

Systematic deployment of countermeasures will protect
the root-of-trust at different levels of abstraction. This is
not an easy task, as designers and engineers are trained to
work towards an optimization goal, with the help of design
methods. Design for security on the other hand attempts to
minimize risk (i.e. prevent something to happen). In this
section we will focus on countermeasures which should be
of interest to the digital designer and which could be
supported by EDA tools.

5.1. Physical level tamper resistance
At the physical level, manufacturers have developed

tamper proof techniques such as putting the security parts
into special casings with light, temperature, tampering
and/or motion sensors depending the application. A top

layer sensor meshes is an extra layer of metal on top of the
integrated circuit which is continuously monitored for
interruptions and shorts [18]. It prevents laser cutting or
selective etching to access the internals of the circuit.

Extremely important is the link to test and testability:
scan chains and JTAG ports give are an effective side entry
into the internals of the integrated circuit. Secure circuits
therefore have limited testability, such as certain forms of
BIST.

5.2. Circuit level techniques to resist side channel leakage
Countermeasures against tampering don’t work against
the side channel leakage through power, timing or
electromagnetic radiation of the devices. The fundamental
reason is that integrated circuits are made of CMOS
technology. Standard cell based design is very successful
because the standard CMOS circuit style is very robust
against clock variations or fluctuations in the power
supply. And it is really low power, because it only
consumes power when the circuits operate at least to a
first degree when neglecting the subthreshold leakage
issues associated with deep submicron technologies.
On top, it is supported by a very successful design flow: a
design is written at register transfer level in VHDL or
Verilog and an ‘automatic’ tool flow (optimistically)
translates this to a GDS file ready for tape-out.

Figure 4: Standard CMOS charge and discharge
event.
As shown in Figure 4, a CMOS circuit really tells what it
is doing by looking at the current supplied to the circuit.
An attacker can detect a charging, discharging action or
no action. A solution at the circuit level is to use logic
styles that have a power consumption pattern that is
independent from the data being processed. When logic
values are measured by charging and discharging
capacitances, we need to use a fixed amount of energy for
every transition. This can be obtained by full-custom
dynamic, differential logic styles with balanced load
capacitances. But more practical from a design
perspective is an approach that can be integrated with a
regular design flow. It has been the focus of European
projects such as ASYNC and SCARD [19]. It is illustrated
with the wave dynamic differential logic style WDDL and
its associated design flow. A WDDL gate will show
exactly one transition every clock cycle. And a WDDL
design can be integrated in a regular standard CMOS
design flow as shown in Figure 5. A few scripts are added
to the flow.

VDD

Gnd Gnd

VDD

Gnd Gnd

(a) charge (b) discharge

VDD

Gnd Gnd

VDD

Gnd Gnd

(a) charge (b) discharge

Table 2: Comparison of original design and
security-partitioned ASIP design.

 Base processor + HW S-box
Avg Cycles / Round 3,515 cycles 1,520 cycles
D-cache misses 162 (variable) 2 (constant)
Stall cycles 602 342
Constant-time No Yes
Relative performance 100% 231%

A first script translates a regular VHDL net list to a
so-called fat net list. This net list contains differential
WDDL type gates. In this library each cell has differential
inputs and differential outputs. To the place and route tool,
these inputs and outputs are presented as single ‘fat’ (i.e.
double width) inputs and outputs. A regular place & route
tool is used to route the fat wires. Afterwards a second
script is run that decomposes the fat wires into two
differential wires with an identical wiring pattern.
A WDDL based circuit has an area that is 3 times larger
and the power consumption is 4 times higher. The benefit
is that a differential power analysis attack on an AES
implementation is not successful even after 1.5M
encryptions. A functionally identical AES discloses the
key after an average of 2000 encryptions [20].
In literature, other approaches and circuit styles are
proposed: e.g. based on asynchronous logic or masked
dual-rail precharge logic (MDPL) [21]. The area and
power consumption of MDPL is even higher: a factor 10
compared to regular standard cells, but it has the
advantage that it does not depend on differential routing.

5.3. Simulation for side channel attacks

Accurate simulation is a crucial tool in the development
of effective countermeasures. We briefly describe the
issues for logic-level simulation, but the remarks are also
valid at other abstraction levels [22].

The efficiency of logic simulators is obtained by
abstracting lower-level technology effects during
simulation. For example, cycle-based design ignores races,
glitches, and other sub-cycle timing effects. It also
abstracts electrical signals into discrete logic values,
thereby loosing the ability to evaluate the power
consumption. Circuits that have perfect resistance at the
simulated logic level are prone to side-channel attacks
when implemented afterwards due to glitches, imbalances
in capacitive loads or other lower level effects.

The ideal simulator to evaluate power-based
side-channels at logic level has the following
characteristics. First, it should provide a power-trace over
time, rather then a single overall power value. Second, the
power-trace should be calibrated. Calibrated simulation is
very hard to obtain if only approximate circuit loading

capacitances are known. Yet the calibration is required to
evaluate the magnitude of the side-channel signal, and
derive the amount of real measurements required for a
successful side-channel attack. Third, the simulator should
cover not only a single instance of the circuit, but should
also take technology-dependent variations into account. A
simulator that covers all these features remains an open
research problem.

5.4. Secure micro-architectures
Figure 3 shows one example of a side channel secure
SBOX implementation. It is a data path example. But the
control sequences need also to be balanced. The
if-then-else operation in the modular exponentiation
algorithm given in section 3 should be balanced. Section 3
shows a traditional right-to-left binary
multiply-and-square algorithm. Similarly a left-to-right
square-and-multiply exists. The Montgomery ladder
balances this as follows: the if-branch and the else-branch
both execute a square and a multiply. The difference is in
the assignments to registers.

 exp(in k, in y, out R0) {
 R0 = 1; R1 = y;
 for j = w-1 to 0
 if (bit j of k is 0) then
 R1 = R0.R1; R0 = R0.R0;
 else [bit j = 0]
 R0 = R0.R1; R1 = R1.R1;
 end for
 return R0;

For ease of notation, the mod n operation is not added to
the equations. At first sight, the Montgomery ladder
seems inferior because it requires w multiplications
instead of ½ w on average. But it does provide side
channel resistance to simple attacks and it has other
benefits [23].

5.5. Secure micro-processors

High-end embedded systems contain large amounts of
software. In a secure embedded system, a microprocessor
needs to provide multilevel security (different software
processes have different privileges) as well as multilateral
security (different software processes are kept apart) [5].
Typical modern processors provide privileged-user modes
to support multi-level security. However, this is a coarse

rtl.v cell
substitution

diff_lib.lef

place
&

route
fat.v fat.def interconnect

decomposition
diff.def layoutstream

out

fat_lib.lef

Figure 5: Design flow for side-channel resistant circuits based on power.

approach, unsuited for most applications. New intiatives
like ARM Trustzone [25] take a fine-granular approach.

The processor’s micro-architecture is a rich source of
side-channels. They can be found in the cache [13], in the
branch prediction [14], and the memory organization [12].
They can be addressed by improving (modifying) the
microprocessor architecture, such as for example is done in
the SecureCore project [24].

Finally, the programmable nature of processors
introduces yet challenge: how to ensure the integrity of the
link between application software and the processor that
executes that software? This is one of the concerns of
trusted computing [26]. AEGIS is an example of a trusted
micro-architecture that implements software integrity by
means of platform-unique functions [27].

5.6. Secure algorithm techniques
There is also plenty of research at the algorithm level to
protect implementations from side channel leakage. A
very typical example is “key blinding” also called
“exponent blinding” [28]. Advanced side channel attacks
(differential and higher) require the measurements of
multiple encryptions to attack a device. These multiple
encryptions are needed to filter the signal out of the very
noisy signals e.g. by correlation. However, if for every
exponentiation (in RSA) or for every point multiplication
(in Elliptic Curve Cryptography) a different exponent (for
RSA) or different secret scalar (for ECC) is used, then it is
not possible to collect sufficient measurements. This is in
essence the goal of key blinding. Instead of calculating

Q = k. P
the ECC system will calculate:

Q = k’. P with k’ = k + r.N
with N =the number of points on the elliptic curve and r a
random number. If for every calculation a new random
number is chosen, then multiple measurements with the
same secret key are not possible.

6 Conclusions and Outlook
If we want trustworthy ubiquitous embedded devices, we
need to take security into account during the design of
these devices. In this paper we advocate a root-of-trust
model together with a security policy. This model is
hierarchically refined over all design abstraction layers. It
is illustrated with several practical examples. Optimizing
for security and trust is different from optimizing for
power, area or speed. And there remain many challenges
for a more secure digital design supported by secure
design methodologies.

Acknowledgement
This work was partially supported by NSF awards

0644070 and 0541472, FWO projects G.0475.05 and
G.0300.07 and funds from the K.U.Leuven.

References
[1] R,. Merritt, "Cellphone could crack RFID tags, says cryptographer,"

Electronic Engineering Times, 14/2/06.
[2] J. Schwartz, "Graduate Cryptographers Unlock Code of 'Thiefproof'

Car Key," New York Times, Section A, p. 14, 1/29/05.
[3] J. Markoff, "Study Says Chips in ID Tags Are Vulnerable to

Viruses," New York Times, Section C, p. 3, 3/15/06.
[4] H. van Tilborg, “Encyclopedia of Cryptography and Security,”

Springer, 2005.
[5] R. Anderson, “Security Engineering: A guide to building

dependable and distributed systems,” Wiley Computer Publishing,
2001.

[6] K. Vedder, "GSM: Security, Services and the SIM," LNCS 1528,
Springer, 1998.

[7] 3G Security: Security Architecture, Universal Mobile Telecomm.
System (UMTS), tech. specification 3GPP TS 33.102, 1999.

[8] P. Tuyls, L. Batina, “RFID-Tags for Anti-counterfeiting,” RSA
2006 Cryptographers’ Track, LNCS 3680, p. 115-131.

[9] P. Kocher, “Timing attacks on implementations of Diffie-Hellman,
RSA, DSS and other systems,” Proc. CRYPTO ’96, Lecture Notes
on Computer Science, 1109:104:113, Springer-Verlag, 1996.

[10] Y. Zhou, D. Feng, “Side-Channel Attacks: Ten Years After Its
Publication and the Impacts on Cryptographic Module Security
Testing,” Cryptology ePrint Archive, Report 2005/388.

[11] P. vanOorschot, et al., “Hardware-Assisted Circumvention of
Self-Hashing Software Tamper Resistance,” IEEE Transactions on
Secure and Dependable Systems, 2(2):82—92, April-June 2005.

[12] B. Chevallier-Mames, et al., “Side-channel atomicity,” IEEE Trans.
on Computers, 53(6):760—68, June 2004.

[13] D. Osvik, A. Shamir, E. Tromer, “Cache Attacks and
Countermeasures: the Case of AES,” Proc CT-RSA, LNCS 3860,
1—20, Springer, 2006.

[14] O. Aciicmez, C. Koc, JP. Seifert, "On the Power of Simple Branch
Prediction Analysis," Cryptology ePrint Archive, Report 2006/351.

[15] S. Mangard, E. Oswald, T. Popp, "Power Analysis Attacks:
Revealing the secrets of smart cards," Springer, March 2007.

[16] S. P. Skorobogatov, “Semi-invasive attacks: a new approach to
hardware security analysis,” University of Cambridge, Technical
Report UCAM-CL-TR-630, April 2005.

[17] D.J. Bernstein, "Cache-timing attacks on AES," preprint, 2005,
online at http://cr.yp.to/papers.html

[18] O. Kömmerling, M. Kuhn, “Design principles for Tamper-Resistant
Smartcard Processors,” Proc. of the USENIX workshop on
Smartcard technology, pp. 9- 20, May 1999.

[19] Aigner M., et al., "Side Channel Analysis Resistant Design Flow",
Proc. ISCAS 2006, pp. 2909-2912, May 2006.

[20] D. Hwang et al., "AES-Based Security Coprocessor IC in 0.18-um
CMOS with Resistance to Differential Power Analysis
Side-Channel Attacks," IEEE JSSC 41(4), pp. 781-792, 2006.

[21] T. Popp, and S. Mangard, "Masked Dual-Rail Pre-Charge Logic:
DPA-Resistance without Routing Constraints", Proc CHES 2005,
LNCS , Springer Verlag, 2005.

[22] K. Tiri, I. Verbauwhede, "Simulation Models for Side-Channel
Information Leaks," Proc. 2005 Design Automation Conference
(DAC 2005), pp.228-233, June 2005.

[23] M. Joye, S.-M. Yen, “The Montgomery powering ladder,” Proc.
CHES 2002, LNCS 2523, pp. 291-302, 2002.

[24] Z. Wang and R. B. Lee, “Covert and Side Channels due to Processor
Architecture,” Proc. ACSAC'06, pp.473-482, December 2006.

[25] T. Alves, D. Felton, “Trustzone: Integrated Hardware and Software
Security,” ARM white paper, July 2004.

[26] E. Gallery, “An overview of trusted computing technology,” in
Trusted Computing, eds. C. Mitchell, IEE press, 2005.

[27] E. Suh, C. O’Donnell, I. Sachdev, S. Devadas, “Design and
Implementation of the AEGIS single-chip secure processor using
physical random functions,” Proc. ISCA 05, p. 25-36, June 2005.

[28] J.-S. Coron, "Resistance against Differential Power Analysis for
Elliptic Curve Cryptosystems", CHES 99, LNCS 1717, pp. 292-302.

	Main
	DATE07
	Front Matter
	Table of Contents
	Author Index

