Capturing the interaction of the communication, memory
and I/0 subsystems in memory-centric industrial MPSoC
platforms

Simone Medardonit, Martino Ruggierot, Davide Bertozzit, Luca Beninit,
Giovanni Strano*, Carlo Pistritto*,
t ENDIF, University of Ferrara, 44100 Ferrara, Italy.
* STMicroelectronics, On-Chip Communication System, Catania, Italy.
t DEIS, University of Bologna, 40136 Bologna, Italy.

ABSTRACT

Industrial MPSoC platforms exhibit increasing communication
needs while not yet reverting to revolutionary solutions such as
networks-on-chip. On one hand, the limited scalability of shared
busses is being overcome by means of multi-layer communication
architectures, which are stressing the role of bridges as key contrib-
utors to system performance. On the other hand, technology limi-
tations, data footprint and cost constraints lead to platform instan-
tiations with only few on-chip memory devices and with a global
performance bottleneck: the memory controller for access to the
off-chip SDRAM memory. The complex interaction among sys-
tem components and the dependency of macroscopic performance
metrics on fine-grain architectural features stress the importance of
highly accurate modelling and analysis tools. This paper takes its
steps from an extensive modelling effort of a complete industrial
MPSoC platform for consumer electronics, including the off-chip
memory sub-system. Based on this, relevant design issues con-
cerning the communication, memory and I/O architecture and their
interaction are addressed, resulting in guidelines for designers of
industry-relevant MPSoCs.

1. INTRODUCTION

Networked digital products such as set-top-boxes, high-density
DVD players or digital video recorders are increasingly relying on
Multi-processor Systems-on-Chip (MPSoCs). These platforms fea-
ture increasing levels of system integration and high-speed inter-
faces, thus posing stringent requirements on the performance of the
communication architecture.

Traditionally, shared communication resources have been de-
ployed for SoC design, however this solution incurs severe scala-
bility limitations. Therefore, bandwidth across the system has been
increased by means of multi-layer communication infrastructures,
where clusters of masters and slaves are connected via bridges.
This way, a wide variety of bus structures and multi-master systems
can be constructed, thus ensuring flexibility to system designers.

At the same time, the complexity of interconnect design in-
creases a lot. In fact, the specific layers building up the overall
system interconnect exhibit advanced features such as pipelining,
support for split transactions and for multiple outstanding trans-
actions. Therefore, building bridges for such systems is far from
trivial. Besides protocol matching, bridges are in charge of addi-
tional tasks in heterogeneous MPSoC platforms, such as frequency
adaptation and datawidth conversion.

978-3-9810801-2-4/DATEQ07 © 2007 EDAA

Even deploying highly optimized bridges, performance of the
communication architecture of an MPSoC is not guaranteed, but
is tightly related to the interaction with the memory and I/O sub-
systems. The memory architecture determines the prevailing traffic
pattern which has to be accommodated by the interconnect fabric.
For instance, in presence of many on-chip memory cores, system
performance depends on the bus ability to enable concurrent mem-
ory accesses without blocking behaviour. However, many state-of-
the-art MPSoC platforms for consumer electronics are memory-
centric, in that most of the memory is off-chip and the on-chip
memory controller becomes the performance bottleneck of the plat-
form. In this case, the interaction between specific features of the
communication protocols and the many-to-one traffic pattern has
not been analysed yet, and is certainly a function of architectural
parameters such as memory access latency or amount of buffering
implemented in the system. Moreover, the optimizations performed
by advanced memory interfaces (such as those implemented in
SDRAM memory controllers) might make this interaction unpre-
dictable.

Given the fine-grain nature of the mechanisms that determine
macroscopic MPSoC performance, high-level modelling and sim-
ulation tools are likely to fail to capture the needed level of detail
which makes global interconnect performance analysis trustworthy.
The work in this paper is centered on cycle-accurate analysis of the
communication, memory and I/O architectures of a state-of-the-
art MPSoC platform for consumer electronics. We built a multi-
abstraction and accurate virtual platform allowing an in-depth in-
vestigation of the behaviour of system components, captured in
isolation and when inter-operating with each other in a complete
MPSoC platform of industrial relevance.

We tested several architecture variants concerning both the com-
munication infrastructure (use of different communication proto-
cols and topologies) and the memory and I/O architectures (on-chip
shared memory versus off-chip SDRAM memory, memory con-
trollers with increasing complexity). As a consequence, we were
able to shed light on interaction effects between the three main MP-
SoC subsystems and come up with design guidelines.

The paper is structured as follows. Section 2 illustrates previ-
ous work. Our intensive modelling effort is described in Section 3,
while experimental results are reported in Sections 4 and 5. Dis-
cussion of results follows in Section 6.

2. RELATED WORK

Several embedded-system design houses and semiconductor
companies employ proprietary on-chip bus architectures [18, 19,
7]. More recently, independent companies and consortia have been

STBus Node[> Bridges [T [0 (1| [

128 Bit

Type 2
g W@
I =
ey L
Type3 IEB———
mE | N2 Na
N3 N8 | | 1wl
nm—t}@_}f Moy
N5 Controller
il Ts @j 64 Bit
0P1IGg———— T3
T66M R P50MHz
2481t N6 »
166 S

Figure 1: STBus reference MPSoC platform.

established to develop and license system-level communication ar-
chitectures [9, 23, 22, 8].

A number of advances in this field comes from the open liter-
ature. In the context of communication synthesis methodologies,
several co-synthesis frameworks are proposed, to couple intercon-
nect synthesis with processor architecture or memory subsystem
design [3, 14]. Other approaches exploit configurability of the com-
munication architecture to come up with adaptive systems, as dis-
cussed in [11, 15]. The level of abstraction at which interconnect
design methodologies operate range from floorplannig-awareness
[6] to formal concurrency models [16]. Automated bus topology
synthesis frameworks are presented in [2, 4, 5].

The resource sharing mechanism of the communication archi-
tecture is the focus of many works. SoC busses can implement
priority-based policies [7, 8], time-division multiplexing [9] or
token-ring mechanisms [10]. [1] and [21] propose more flexible
bus bandwidth allocation schemes. The impact of common arbitra-
tion strategies on system performance is illustrated in [13].

The impact of the communication architecture on system perfor-
mance is studied in [12]. [17] illustrates a comparative analysis
between two industry-standard communication systems under real-
istic workloads and with different system configurations. Finally,
scalability analysis of SoC interconnect protocols is performed in
[20]. Our work extends these preliminary explorations by focusing
on an industry-relevant target system, featuring a much higher level
of complexity and accounting for the behaviour of real-life system
components.

3. MPSOC PLATFORM MODELLING

Industrial MPSoC platforms often implement multi-layer com-
munication architectures, built up by composing basic intercon-
nect units through bridges. Our modelling effort targets such
complex multi-layer systems. In particular, we focus on an
internally-developed MPSoC platform for consumer applications.
Its mission-critical subset is illustrated in Fig.1.

The platform is made up of a number of IP Cores, grouped
in several functional clusters, each one implementing functional-
ities like video stream decrypting and decoding, image resizing or
more generic DMA tasks, and therefore features different combi-
nations of data width, clock frequency and STBus protocol type.
Proprietary STBus converters and adapters (named GenConv) are
in charge of bridging the heterogeneous clusters, and make use of
buffering resources to store bus requests, responses and outstanding

transactions.

The system uses the traditional unified memory architecture with
a single off-chip DDR SDRAM, which then becomes the target for
the bulk of the bus transactions. This architectural template is fre-
quently used to cut down on the cost for technology integration of
embedded memories and when data footprint forces to store pro-
cessing data in a large off-chip memory.

Message-based arbitration is set in STBus nodes, i.e. packets
are grouped in messages and arbitration rounds in the nodes oc-
cur at the message granularity. Messaging is a solution to generate
memory controller-friendly traffic, in fact it ensures that a sequence
of transactions that can be optimized by the memory controller and
turned into high performance memory accesses are kept together all
the way to the controller and are not interleaved with other transac-
tions.

The ST220 VLIW DSP core (400 MHz, 32 bit, data and instruc-
tion caches) acts as the general purpose processor. It is connected
to an upsize (from 32 to 64 bit) and frequency (from 400 to 250
MHz) converter.

The whole platform was modelled and simulated with clock-
cycle accuracy and a SystemC-based virtual platform [17] was used
as the backbone environment. The modelling effort resulted in a
platform model with multiple abstraction levels. In order to speed
up the analysis, functional traffic generated by the most critical au-
dio and video IP cores was reproduced by means of configurable
traffic generators (/PTGs). The DSP core was then modelled at the
level of its instruction set, and runs a synthetic benchmark tuned to
generate a significant amount of cache misses interfering with the
traffic patterns of the other cores. Reverse engineering was then
needed to generate a SystemC model of the memory controller. De-
riving SystemC models from the RTL description would have been
a time consuming process and would have resulted in slow simula-
tion performance. We therefore built the model by careful inspec-
tion of the RTL waveforms, thus coming up with a more abstract
representation of the controller with respect to RTL-equivalent de-
scription, while retaining timing accuracy at the memory controller
interface. Finally, the modelling effort was completed by the inte-
gration of each sub-component into the complete platform and by
setting up a statistics collection system.

A description of the main system component models follows.

3.1 STBus platform component models

The STBus Interconnect is the proprietary communication sys-
tem developed at STMicroelectronics[19]. STBus leverages two
physical channels, one for initiator requests and one for target re-
sponses, and supports split transactions. While a system initiator is
receiving data from an STBus target, another one can issue a second
request to a different target. As soon as the response channel frees
up, the second request can be immediately serviced, thus hiding
target wait states behind those of the first transfer. The amount of
saved wait states depends on the depth of the prefetch FIFO buffers
at the target side.

STBus implements three different protocols featuring increasing
complexity. Type 1 is the low cost implementation for low/medium
performance. Type 2 introduces compound operations, source la-
beling, priority labelling and posted writes. Split and pipelined
transactions are fully supported. Finally, Type 3 provides the ad-
ditional system efficiency associated with shaped request/response
packets and the ability to support out-of-order transactions.

The Generic Converter is an STBus configurable block per-
forming clock domain crossing, data with and STBus protocol type
conversion. These functions can be performed standalone or in any
combination within the same instance, according to the given con-

figuration. Combining conversions has the advantage of minimiz-
ing the latency and the area with respect to having them managed
separately.

IPTG is a SystemC block developed at STMicroelectronics
aimed at reproducing the communication behaviour of a generic IP.
In its simplest configuration, IPTG can generate bus traffic which
obeys some statistical properties, i.e in terms of burst length, trans-
action types, addressing schemes, or it can also issue a transaction
according to a specified sequence. However, IPTG is best used to
emulate the behaviour of complex real-life IPs: such IPs can be
often seen as having a number of internal sub-process (or agents),
each one with its own characteristics (buffering space, transaction
pipelining capability) but in some way dependent on each other
(e.g., when operating in pipeline). With IPTG, each agent traffic
is handled automatically according to its characteristics, and inter-
agent synchronization points can be set to emulate dependencies
between them. Once instantiated in a platform, IPTGs will gen-
erate bus transactions at different abstraction levels (transaction-
level, bus cycle-accurate) according to what is specified in a per-IP
configuration file, where all the required options and parameters
are set. IPTG turns out to be a quite powerful and handy tool to the
system integrator, as it allows to try out the SoC communication in-
frastructure in real-life conditions such as heavy-loaded transients
which are not likely to be reproduced using random packet injec-
tion.

We developed a memory controller SystemC model and vali-
dated its functional correctness and timings with RTL signal wave-
forms on a cycle-by-cycle basis. The controller follows the inter-
nal LMI specification of SDRAM memory interface. The model
includes a bus dependent and a bus independent part, thus easily
allowing porting to several bus infrastructures. In this work, an
STBus target interface is implemented. Input and output FIFOs al-
low storage of incoming packets or injection of outgoing packets
into the bus. FIFO size and bus data width are tunable parameters.

The controller implements an optimization engine. This lat-
ter performs memory access optimizations such as opcode merg-
ing and variable-depth lookahead, and generates the correspond-
ing sequence of SDRAM commands (e.g., precharge, autorefresh,
active, read, write) while meeting SDRAM timing specifications
(e.g, TRAS, TCAS), which are model parameters. Data size and
burst size are tunable as well. The controller can drive both SDR
SDRAM and DDR SDRAM memory devices.

Since the model comes out of reverse engineering from care-
ful inspection of RTL waveforms, operation latencies are back-
annotated so to keep timing accuracy at the memory controller bus
interface.

3.2 Architectural variants

We extended the modelling capability of the virtual platform
described so far in order to explore architectural variants and as-
sess the interaction between the communication architecture and
the other MPSoC subsystems.

On one hand, we ported new communication protocols (AMBA
AHB and AMBA AXI) and made them inter-operate with the traffic
generators and the off-chip memory controller, so to keep the same
platform template. Since in the real system both audio and video
IP cores and the memory controller natively come with STBus in-
terface, we developed bridges for protocol conversion purposes,
and accounted for the corresponding latencies. On the other hand,
we replaced the off-chip SDRAM memory with an on-chip shared
memory, so to test the system with a memory core featuring a
cheaper access cost. Finally, we developed several platform in-
stances (which we call the collapsed variants) where the most heav-

Target side clock Initiator side clock

ASYNCH. FIFQ

TARGET INITIATOR
Layer A Layer B
SIDE SIDE

ASYNCH. FIFO

Figure 2: Generic scheme for hybrid bridges.

ily congested cluster (node N5 in Fig.1) is removed and its com-
munication actors attached to the central N8 cluster. This way, we
intend to compare a centralized versus a distributed solution for the
communication architecture, thus spanning the bus access versus
multi-hop latency trade-off.

The design of these architectural variants required the develop-
ment of new component models, which are hereafter briefly de-
scribed.

The AMBA AHB [7] system backbone consists of a shared com-
munication channel connecting multiple system cores. The chan-
nel is composed of two split and unidirectional data links (one for
reads, one for writes), but only one of them can be active at any
time, thus preventing the multiplexing of requests and responses on
the interconnect signals. Transaction pipelining (i.e. split owner-
ship of data and address lines) is supported to provide for higher
throughput but not as a means of allowing multiple oustanding
transactions. Bursts are supported by AHB masters and arbiter as
a way to amortize arbitration time, and the non-posted paradigm
for write transactions is implicitely assumed. The SystemC model
of the AHB interconnect we developed does not implement split
transactions.

AMBA AXI [7] builds upon the concept of point-to-point con-
nection. Therefore, it can be used to connect (i) a communication
initiator to a bus, (i) a communication target to a bus, or (iii) di-
rectly an initiator to a target. In practice, the connection between
any two devices translates into the instantiation of a master inter-
face and of the symmetrical slave interface. Five different logical
monodirectional channels are provided in AXI interfaces, and ac-
tivity on them is largely asynchronous and independent (2 address
channels, a read data and a write data channel, and a channel for
write responses). This allows to support multiple outstanding trans-
actions (with out-of-order or in-order delivery selectable by means
of transaction IDs). Other advanced features include burst transac-
tions with only the first address issued and the support for register
insertion for timing closure transparent to the protocol. AMBA
AXI modelling was based upon the SystemC libraries provided
within the Synopsys CoCentric/DesignWare suites.

We modelled in SystemC a number of bridges: AHB-AHB,
AXI-AXI, AHB-STBus, AXI-STBus, AHB-AXI, STBus-AHB,
STBus-AXI. Their generic architecture is reported in Fig.2, where
we identify a target side, an initiator side and asynchronous FI-
FOs providing support for different clock domains. The developed
bridges have some common features: (i) they handle write transac-
tions in a store-and-forward fashion, (ii) they have a blocking target
side in presence of read transactions and (iii) they have tunable la-
tency. These bridges were not designed to be competitive with the
highly optimized STBus-STBus ones. They rather implement basic
bridging functionality and do not exploit some advanced features of
the communication protocols. For instance, they are always block-
ing on read transactions. This does not affect our results, since

our goal is not a crossbenchmarking of communication protocols,
but rather an analysis of how several communication protocol fea-
tures, interconnect fabric topologies and memory architecture con-
figurations combine together to determine global performance met-
rics. From this viewpoint, deploying lightweight bridges even for
advanced communication protocols saves power and area (a typi-
cal GenConv bridge performing frequency conversion between T3
nodes at 64 bits can be as large as an STBus node with 5x3 crossbar
topology at 64 bits), but penalizes across-layer communications.
Therefore, it will be our interest to find out how sensitive system
performance is with respect to bridge functionality.

4. INTERACTION BETWEEN COMMUNI-
CATION AND MEMORY SUB-SYSTEMS

Since system performance in a multi-layer architecture results
from the interaction of traffic patterns at many congestion points,
we first analyze the single layer scenario, and get indications that
pave the way for a better understanding of the multi-layer scenario.

4.1 Single-layer architecture

4.1.1 Many-to-many traffic pattern

The work in [20] analyzed single-layer shared busses with many
slave devices attached, and proved the effectiveness of STBus and
AXI in handling parallel communication flows. While memory
wait states translate into idle cycles for AMBA AHB, STBus and
AXI are able to mask them. If we set the size of AXI and STBus
buffer stages to the minimum needed for correct operation, the two
schemes perform similarly with bus utilizations up to 80% (ratio
of bus busy cycles over execution time), while above that threshold
AXI proves more robust to traffic congestion. Its fine granularity
arbitration and its high number of physical channels (5) make the
difference, however STBus was showed to bridge the performance
gap by adding more buffering resources at the target interfaces. In
general, large room for performance differentiation of communica-
tion protocols does exist when many-to-many traffic patterns have
to be accommodated. This is the case of SoCs with many embed-
ded memory cores and with communication spread evenly in the
design. Video processors are an example thereof [24].

4.1.2 Many-to-one traffic pattern

Here we still focus on single-layer shared busses, but with a sin-
gle slave device, hence accommodating a many-to-one traffic pat-
tern. This reflects the architecture of the clusters in Fig.1. In this
experiment, all IPTGs generate bursty read accesses to the shared
memory (an on-chip core with | wait state), however we proved the
independence of the results from the mix of bus transactions.

In this memory-centric scenario, the maximum bus efficiency is
posed by the memory controller, since there are no opportunities to
parallelize access patterns to different memory devices. With our
simple controller, the response data channel in each communica-
tion architecture (carrying read data) is forced to work with 50%
efficiency: 1 data transfer followed by 1 idle cycle (corresponding
to 1 memory wait state). What can degrade such efficiency is the
handover overhead incurred by the communication protocols. Let
us consider the handover between two consecutive burst read trans-
actions. While the last read data word of the first burst is injected
into the bus by the slave device, the new address associated with
the next burst should be concurrently driven by the next master ac-
tor on the bus. This way, the new memory access can be readily
initiated on the next clock cycle.

AMBA AHB can hide bus handover overhead by changing the
HGRANTYX signals when the penultimate address in a burst has

0 Colapsed AX! plator
m Colapsed STBus plattorm
o Ful STBus platlor

m Ful AHB platior

Normalized execution time

Figure 3: Performance of MPSoC platform instances.

been sampled. The new master can then readily drive the bus ad-
dress lines without any handover overhead. Interestingly, the many-
to-one traffic pattern is the best operating condition for AMBA
AHB. STBus achieves the same performance but with a different
mechanism. The target asserts a grant signal to the next initiator in
the same cycle it provides the last response data unit to the previous
initiator. Since this grant signal is propagated asynchronously from
the target to the waiting initiator through the STBus node in the
same clock cycle, the next transfer can start immediately without
handover overhead and the response channel can be driven with
50% efficiency. Finally, AXI is able to sustain the required effi-
ciency by means of the burst overlapping mechanism. A master
can drive another burst address after the slave accepts the address
of the previous burst transaction. This enables the slave to begin
processing data for the second burst in parallel with the completion
of the first burst or, at least, to have the control information for the
next transfer readily available for sampling. Therefore, even the
internal read data lane of an AXI bus can be operated with 50%
efficiency.

Given the above considerations, our simulations did not show
significant differences between performance of the communication
architectures in the single-layer, single-slave scenario, hence re-
sults are not reported here. More complex memory controllers may
implement buffering and perform optimizations on queued transac-
tions, hence at least split transaction support would be required to
the communication protocols.

4.2 Multi-layer architecture

Let us now extend our analysis to the complete MPSoC platform
described in section 3. IPTGs reproduce traffic patterns of real-life
IP cores.

As regards the memory architecture, we still consider a simple
memory controller driving an on-chip shared memory with 1 wait
state and postpone the analysis with LMI memory controller.

The first two bars in Fig.3 compare the normalized execution
time of the collapsed platform instances, since this makes the
role of the bridges and initiator interface complexity negligible.
AXIT and STBus collapsed variants exhibit almost the same perfor-
mance, thus confirming the findings of subsection 4.1.2. In fact, the
collapsed communication architectures resemble the single-layer
single-slave scenario, where all interconnects were showed to per-
form almost the same.

The third bar in Fig.3 allows to compare the single-layer STBus
with the full (multi-layer) STBus platform. Again, the two solu-
tions show negligible differences in their performance metrics. The
multi-layer approach introduces distributed buffering and relies on
multiple outstanding transaction support of its master bus inter-
faces. The longer transaction latency associated with crossing the
master-to-slave path in the multi-layer architecture is compensated
by the initiators’ capability to initiate new transactions before the

B Collapsed AXI
m Distributed STBLs

Normalized execution time

1 5 10

Shared memory initial access latency

Figure 4: Performance of distributed vs centralized communi-
cation architectures as a function of memory speed.

previous ones complete. The resulting performance is equivalent
to that of a single-layer architecture, where the multiple oustanding
transaction capability does not help much since the target inter-
face has a single-slot buffering here. Therefore, each transaction
is blocking, which compensates the benefits of a shorter master-to-
slave path.

The performance ratio between collapsed and distributed inter-
connect solutions however changes if the memory device gets pro-
gressively slower in responding to access requests. Fig.4 clearly
shows the increasing advantage of distributed solutions as the mem-
ory latency increases. Please note that the use of AXI and STBus is
interchangeable here, what really matters is the architecture topol-
ogy. A fast memory penalizes communication architectures with
large crossing latencies. In contrast, a slow memory makes dis-
tributed solutions preferrable, since the distributed buffering allows
multiple outstanding transactions capable bus interfaces to keep
pushing transactions into the bus. The master-to-slave multi-hop
path gets therefore filled, and the system is able to deliver high
throughput.

However, collapsed solutions are not always feasible. First,
physical limitations as well as layout and routability constraints
prevent from connecting tens or hundreds of actors on the same in-
terconnection layer. Moreover, communication actors with similar
interfaces (e.g., datawidth, protocol type) may have to be grouped
in the same cluster, thus cutting down on the number of required
adapters. Finally, clusters of homogeneous cores favour perfor-
mance closure. If we restrict our analysis only to distributed archi-
tectures, we can easily realize that bridges become a key compo-
nent for system performance. In fact, from Fig.3 we can compare
performance of multi-layer STBus and AHB architectures. Please
note that this is the best operating condition for AHB, since the
memory device responds with just 1 clock cycle delay. We can
observe that AHB solution is ineffective, due to the fact that AHB-
AHB bridges are blocking on each transaction. The source node
of the bridges are non-split AHB layers, and are therefore blocked
until the transaction in progress is completed.

The blocking behaviour of the bridge may depend either on in-
trinsic limitations of the protocol semantics or on low-cost imple-
mentations of the bridges. For instance, we realized lightweight
AXI-AXI bridges as illustrated in Fig.2 with blocking target side
on read transactions. In fact, while write transactions can be eas-
ily managed by means of a store-and-forward policy, implementing
non-blocking read transactions has a heavier impact on bridge com-
plexity (control information must be stored and reassociated with
response data, read requests might be serviced in a different order
than they were received, etc.). Because of this lightweight bridge
design, we found a performance for the distributed AXI platform
almost equivalent to the full AHB platform. Therefore, advanced
features of AXI, which could potentially reach the same perfor-

O Collapsed AXI
= Collapsed STBus
= Full STBus

O Full AHB

Normalized execution time

Figure 5: Performance of platform instances with LMI mem-
ory controller.

mance level of STBus, are vanished by poor bridge functionality.
For this reason, bridge engineering is becoming increasingly com-
plex as advanced features are introduced in communication pro-
tocols, and they can be viewed as true IP blocks. In our case,
the availability of proprietary STBus bridges made performance
of STBus distributed platforms hardly achievable by the other dis-
tributed schemes.

The final scenario which is left to investigate is the multi-
layer architecture with LMI memory controller and off-chip DDR
SDRAM memory in place of the on-chip shared memory. The main
differences lie in the higher response latency of the memory sub-
system (11 cycles to get the first read data word since the request
was sampled), in the multi-slot FIFO implemented in the memory
bus interface and in the optimizations performed on queued trans-
actions (opcode merging, lookahead) by the memory controller.
Since the LMI controller natively exhibits an STBus bus interface,
a bridge is required to connect it to other interconnect fabrics. This
bridge must be able to implement split transactions, i.e. not to block
the bus when a new transaction is sampled and until the associ-
ated memory access is completed. Otherwise the input FIFO of
the memory controller would never contain more than one pend-
ing transaction, and no optimizations could be performed. Fig.5
illustrates execution time of various platform instances. Since the
memory response latency is high, we expect distributed platforms
to outperform collapsed ones. However, collapsed AXI is much
worst than collapsed STBus, since (i) this latter does not require a
bridge, (ii) the multiple oustanding transaction capability of STBus
initiators can be fully exploited to fill in the FIFO of the memory
bus interface and (iii) thus memory controller optimizations can
be exploited. In contrast, collapsed AXI was using a simple pro-
tocol converter unable to perform split transactions. For these rea-
sons, collapsed STBus can approach the performance of distributed
STBus.

If we restrict our analysis to distributed solutions, we notice that
the performance gap between STBus and AHB has increased a lot
with respect to Fig.3, due to the higher latency of the memory sub-
system, which makes the penalty associated with non-split blocking
bridges even more severe.

5. FINE-GRAIN PLATFORM PERFOR-
MANCE ANALYSIS

The memory controller drains the bulk of all bus transactions
in the platform of Fig.1. Therefore, properly monitoring the be-
haviour of the bus-memory controller interface can help system de-
signers identify where bottlenecks are. For instance, should low
bandwidth communication be monitored at the I/O interface, this
might be due to the actual inefficiency of the memory controller or
to the poor performance of the system interconnect. Our modelling

Full STBus Platform - LMI statistics

0%
e t—7_] 1

4% +——
3% +——

e FFC Ful
5% +—— rgrant”
e | 0 FIFC Empy|

“5% ——
“0% +——

5% ——

0%

Phase * Phase 2

Figure 6: LMI statistics for the full STBus platform.

environment enables this kind of analysis at a fine granularity.

As an example, we report in Fig.6 the statistics taken at the bus
interface of the LMI memory controller in our full STBus-based
MPSoC platform. Two working regimes are illustrated out of the
MPSoC application lifetime. During the first execution phase, the
FIFO of the bus interface is full for 47% of the time, while it is
available to store new transactions for the remaining 53%, parti-
tioned as follows: for 29% of the time there are no incoming re-
quests (request signal is 0 while grant signal is 1), and for remain-
ing 24% the bus interface is storing new memory access requests.
The FIFO is empty only for a marginal time fraction. We conclude
that this execution phase exhibits intensive memory traffic which
the interconnect is able to handle pretty well.

During the second phase, the time percentage during which the
FIFO is full remains unaltered, while the FIFO is empty for a longer
time. Therefore, the new traffic pattern has a lower intensity than
the previous one on average, but is it more bursty. We repeated
the same test for a full AHB platform, and found that the FIFO is
never full (since our AHB implementation does not support split
transactions) and that for 98% of the time there are no incoming
requests. This clearly indicates that the system interconnect is the
performance bottleneck, and not the memory controller.

6. SUMMARY AND CONCLUSIONS

We now turn our analysis findings into guidelines for designers
of state-of-the-art industrial MPSoCs:
1) For single-layer systems, a significant performance differentia-
tion between different communication protocols can be observed
only when they have to deal with a many-to-many traffic pattern.
In this context, advanced interconnets are able to hide slave re-
sponse latency by processing parallel communication flows. This
is achieved by means of a fine granularity of arbiter decisions (e.g.,
rearbitration of data links on a cycle-by-cycle basis) and of multiple
physical resources (multiple communication channels, buffering in
the bus and/or in the bus interfaces).
2) In single-layer systems with a centralized slave, the performance
of this latter and of its control logic bounds the maximum per-
formance that communication protocols can achieve. This upper
bound depends on the slave response latency, on the amount of
buffering implemented at its bus interface and on the optimizations
which might be performed by its controller. When the required bus
efficiency is low (e.g., 50%), simple interconnect fabrics may pro-
vide the same performance of advanced and more complex com-
munication infrastructures.
3) In the absence of technology constraints, a distributed multi-
layer system interconnect results in significant performance speed-
ups with respect to centralized ones only if (i) initiator bus inter-
faces support multiple outstanding transactions (ii) the target side
of bridges is able to handle split/non-blocking transactions (iii) the

response latency of target devices is long enough with respect to
the data transport latency across a multi-hop interconnect.

4) As long as the features of the previous point are supported by
a distributed system interconnect, performance differentiation of
competing communication protocols is only marginal in presence
of a centralized target bottleneck. On one hand, this puts emphasis
on the generation of memory controller-friendly traffic at the initia-
tors rather than on the optimization of the system interconnect. On
the other hand, this calls for optimizations of the I/O architecture
to remove the system bottleneck.

5) Bridges are becoming true IP blocks. The introduction of new
features in communication protocols might be vanished by the de-
ployment of lightweight bridges with basic functionality. More re-
search is needed to understand whether it is really worth increasing
bridge complexity, instead of keeping lightweight bridges for path
segmentation and traffic routing and pushing complexity at the sys-
tem interconnect boundaries, which is known as the network-on-
chip solution.

6) The availability of complete modelling and simulation frame-
works like the one developed for this work makes it easier to ac-
curately identify system bottlenecks and to fine-grain tune the ar-
chitecture for the application domain of interest. For instance, we
have showed how to identify working conditions during application
lifetime and how to discriminate between poor performance of the
memory controller and of the communication architecture.

Acknowledgements

We would like to thank Francesco Poletti for his support in Sys-
temC model development. We also acknowledge support of STMi-
croelectronics SPG for providing the IPTG traffic generators, and
all the OCCS team for its contribution to this work.

7. REFERENCES

[1] K.Lahiri, A Raghunathan, G.Lakshminarayana, "The LOTTERYBUS on-chip communication architecture™,
Trans. on VLSI Systems, Vol.14, n0.6, pp.596-608, June 2006.
[2] S. Pasricha, Y. Park, F. Kurdahi, N. Dutt, "System-Level Power-Performance Trade-Offs in Bus Matrix
Communication Architecture Synthesis”, CODES+ISSS 2006.
[3] S. Pasricha, N. Dutt, "COSMECA: Application Specific Co-Synthesis of Memory and Communication
Architectures for MPSoC”, Design Automation and Test in Europe. pp.700-705, 2006.
[4] S.Pasricha, N.Dutt, M.B.Romdhane, “Constraint-driven bus matrix synthesis for MPSoC”, Asia South Pacific
Design Automation Conf., pp.30-35, 2006.
[5] S. Murali and G. De Micheli, ”An Application-Specific Design Methodology for STbus Crossbar Generation”,
Design Automation and Test in Europe, pp. 1176-1181, 2005.
. Pasricha, N. Dutt, E.Bozorgzadeh, M. Ben-Romdhane, "FABSYN: Floorplan-aware Bus Architecture
Synthesis” IEEE Trans. on VLSI Systems, Vol.14, no.3, pp.241-253, March 2006.
1 ARM L., Sheffield, U.K., AMBA 2.0/3.0 Specifications. Available: http://www.arm.com/armtech/AMBA
] Siemens AG, Open Microprocessor Initiative, OMI 324 PI Bus, Rev 0.3d 1994, OMI Standards Draft.
[9] Sonics Inc., Sonics Integration Archi e. Available: http://www.sonicsinc.com
)] J. Turner and N. Yamanaka, Architectural choices in large scale ATM switches, IEICE Trans. Commun., vol.
E-81B, no. 2, pp.120-137, Feb. 1998.
[11] Sekar, K.; Lahiri, K.: Raghunathan, A.; Dey, S.; "Integrated Data Relocation and Bus Reconfiguration for
Adaptive System-on-Chip Platforms”, Design Automation and Test in Europe, Vol.1, pp.1-6, march 2006.
[12] F Polloni et al., "Fast System-Level Design Space Exploration for Low Power Configurable Multimedia
System-on-Chip”, 15th IEEE Int. ASIC/SoC Conference, pp 150-154, Sep. 2002.
[13] FEPoletti, D.Bertozzi, A.Bogliolo, L.Benini, “Performance analysis of arbitration policies for SoC
communication architectures”, Journal of Design Automation for Embedded Systems, pp.189-210, 2003.
[14] A, Wieferink et al.. "System level processor/communication co-exploration methodology for multiprocessor
system-on-chip platforms”, IEE Proc. on Computers and Digital Techniques, Vol. 152, Issue 1, pp.3-11, 2005.
[15] Chulho Shin et al., “Fast exploration of parameterized bus architecture for communication-centric SoC design”,
Design Automation and Test in Europe, pp.352-357, Vol.1, 2004.
[16] Xinping Zhu; Wei Qin: Malik, S.; "Modeling operation and microarchitecture concurrency for communication
i es with ication to r i ion”, IEEE Trans. on VLSI Systems, Volume 14, Issue 7,
Pp.707 - 716, 2006.
[17] Loghi, M.; Angiolini, E; Bertozzi, D.; Benini, L.; Zafalon, R.; "Analyzing on-chip communication in a MPSoC
environment”, Design Automation and Test in Europe, pp. 752-757, Vol.2, 2004.
[18] 1BM Corporation, Armonk, NY, CoreConnect Bus Architecture. Available:
http://www.chips.ibm.con/pi o A
[19] ST Microelectronics, STBus Interconnect. Available:
http://www.st.c i i
[20] M. Ruggiero, F. Angiolini, F. Poletti, D. Bertozzi, L. Benini, R. Zafalon, "Scalability Analysis of Evolving SoC
Interconnect Protocols™, Int. Symposium on System-on-Chip, Nov 16-18, 2004, pp. 169-172.
[21] N.Wang, M.A. Bayoumi, “Dynamic fraction control bus: new SOC on-chip communication architecture
design”, IEEE Int.SoC Conference, pp.199- 202, 2005.
Open Core Protocol International Partnership (OCP-1P). Available: http://www.ocpip.org
Crossbow Technologies. Available: http://www.crossbowip.com
S.Murali, M.Coenen, A.Radulescu, K.Goossens, "A methodology for mapping multiple use-cases onto
networks-on-chips”, Design Automation and Test in Europe, pp.118-123, 2006.

/prodp htm

22
23
124

	Main
	DATE07
	Front Matter
	Table of Contents
	Author Index

