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Abstract

In this paper we propose a hardware real time operat-
ing system (HW-RTOS) that implements the OS layer in a
dual-processor SMP architecture. Intertask communication
is specified by means of dedicated APIs and the HW-RTOS
takes care of the communication requirements of the appli-
cation and also implements the task scheduling algorithm.
The HW-RTOS allows to have smaller footprints, since it
avoids the need to link to the final executables traditional
software RTOS libraries. Moreover, the HW-RTOS is able
to exploit the easy task migration feature provided by an
SMP architecture much more efficiently than a traditional
software RTOS, due to its faster execution and we show
how this significantly overcomes the performance achiev-
able with optimal static task partitioning among two pro-
cessors. Preliminary results show that the hardware over-
head in a dual processor architecture is less than 20K gates.

1 Introduction

Commonly, embedded applications are inherently paral-
lel, and typically benefit from a multitasking programming
environment and a matching hardware and software sup-
port. Multitasking simplifies coding, allowing a modular-
ized solution and increasing code reuse. Support for mul-
titasking can come from two sources: a software layer that
multiplexes the hardware among the concurrent tasks, and
direct hardware support for the execution of multiple tasks.
Both solutions can be combined in a platform, with a soft-
ware layer multiplexing a multitasking-capable hardware.
With the increase in silicon space, it is possible to use the

extra transistors to improve the performance of the hard-
ware platform. An appealing use of the extra space is to
design a multiprocessor on a chip [5] [14]. Multiprocessor
architectures have been present for some time in high-end
server applications, more recently in consumer processors,
and now are appearing in the embedded scenario as well.

Designers can use the extra silicon space to accommodate
multiprocessors and hardware resources that allow the exe-
cution of multiple tasks in parallel. The additional hardware
support, either built in the processor or as a separate set of
modules, can be used to accelerate multitasking manage-
ment, increasing efficiency and freeing the processor from
performing multitasking control.
Multiprocessor architectures are becoming fairly popu-

lar, with major processor industries announcing support for
multiprocessors on a single chip, such as the processors
from ARM (the MPCore family), MIPS (the 34k proces-
sor), and Analog Devices (the Blackfin family), and the cor-
responding software support from major embedded RTOS
and tools providers, such as Express Logic’s ThreadX,Win-
dRiver’s VxWorks, and Green Hills’ development tools.
When implementing a multiprocessor architecture, dif-

ferent design decisions come to play, from high-level pro-
gramming abstractions and compiler support to the number
of processors, task scheduling and mobility and intercon-
nection architecture. In this work, we experiment with an
SMP architecture, with multiple processors combined, and
sharing the memory architecture. We consider the effect
that direct hardware support for task scheduling has on the
performance of such architecture, as well as the impact of
task mobility on the overall system performance. We also
propose a hardware locking mechanism for implementing
shared memory communication.
The remainder of this paper is organized as follows. Sec-

tion 2 discusses some related work. Our proposed SMP ar-
chitecture with hardware-assisted scheduling and commu-
nication is introduced in Section 3. Experimental results
are described in Section 4. We present our final remarks
and conclusions in Section 5.

2 Related Work

Recently, the interest in multiprocessor support on a sin-
gle chip (MPSoC – MultiProcessor System-on-Chip) has
peaked in the embedded community. The advantages pro-
vided by multiprocessor support are numerous, such as an
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increase in performance without a more complex base pro-
cessor [14] [9], lower power consumption [10] [2], the pos-
sibility of locking processors to specific tasks [11], adding
higher predictability to the system, among others.
Magarshack and Paulin [5] discuss the modifications

necessary in tools and in the workflow support to address
the rising complexity in the design of embedded devices.
Wolf [14] looks into the mix of technologies related to mul-
tiprocessor support in embedded systems, and presents a list
of related challenges. Among them, particular attention is
given to the issues concerning the operating system and its
communication primitives.
An interesting approach to the OS issues in multipro-

cessor systems explores hardware for implementing some
key features of the RTOS. Previous works addressed the
idea of moving to hardware the functionalities that consume
more CPU power to take advantage of the acceleration.
Mooney and Blough [6] present the δ framework. Their
framework is targeted at speeding up locking and message
passing mechanisms, but no scheduling is performed by the
hardware. Lai et al. [3] propose hardware support in the
multiprocessor context. However, they only provide queue
management in hardware, while support for scheduling and
task communication is in software.
Operating systems completely implemented in hard-

ware have also been proposed, such as Silicon OS[8] and
FASTCHART[4]. The former implements most of the
µITRON functionality on a coprocessor, while the latter is a
real time kernel fully implemented on a hardware Real Time
Unit, currently commercialized as the Sierra kernel [12].
Walder and Platzner [13] went further and developed an

operating system based on reconfigurable hardware. They
analyze multiple aspects in their work, ranging from design
concepts, that are device independent, to the implementa-
tion of the proposed system on an FPGA.
In this work, we leverage hardware acceleration for

speeding up the scheduling and the data handling of the
RTOS.We focus on the homogeneous, shared memorymul-
tiprocessor architecture, using a shared bus as its intercon-
nect structure, that is usually referred to as a Symmetric
MultiProcessor (SMP). In SMP, all processors are equal,
and access a single shared memory, where data and instruc-
tions are stored. Therefore, all processors execute the exact
same code. Such symmetric approach also facilitates soft-
ware development, as well as task allocation.

3 Proposed Architecture

The architecture proposed in this work is based on a tra-
ditional SMP system, and is shown in Figure 1. The SMP
has two ARM926EJ-S processors, with their correspond-
ing caches, a shared memory and a shared bus. We intro-
duced a hardware locking module (Lock Unit) to control
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Figure 1. SMP architecture: dual ARM926EJ–
S and HW-RTOS

access to the shared memory, so that a test-and-set opera-
tion on the shared memory can be performed by either pro-
cessor. Additionally, task scheduling and communication
is implemented by a hardware real time operating system
(HW-RTOS).
For the few private processor data, such as the processor

ID, we make use of the Tightly Coupled Memory available
on the ARM processor. Specifically, each processor can ac-
cess 2k of Data TCM, which is kept private for each proces-
sor. The TCM is directly connected to the dedicated TCM
interface of each processor, and not to the shared bus. The
processor ID is initialized as each processor boots into the
operating system code by the Pid unit in Figure 1.
In our environment, a system is described as a set of

concurrent, interacting tasks. Tasks are specified in a C-
based system design language, and make use of dedicated
APIs, based on POSIX, for task management and com-
munication [7]. Two different communication models are
supported: message passing and shared memory. Message
passing is abstracted out by the concept of ports, and pro-
vides primitives port send and port receive to implement
the communication. Blocking and non-blocking styles are
supported for port receive.
The final implementation of the APIs for communication

and task management is transparent to the tasks. The same
application can run in a system with traditional software li-
braries, as well as in an architecture with hardware acceler-
ators in order to speed up execution. In our case, we have
used the HW-RTOS to improve the efficiency of the OS and
API support, transparently to the application. Furthermore,
the same set of APIs can be used to specify tasks that can
later be executed in a single or multi processed system, once
again transparently to the user.



In this section, we detail the hardware support that was
developed in order to implement the communication APIs
in an SMP architecture.

3.1 The SMP HW-RTOS

The implementation of the HW-RTOS for the SMP ar-
chitecture was based on our previous implementation in a
single processor system [1]. The SMP hardware RTOS is
composed of two independent scheduling modules, one for
each processor in the architecture. Additionally, the SMP
HW-RTOS contains a data handling module, with double
buffering to store the data communication between tasks.
Figure 1 details the organization of the SMP HW-RTOS.
Communication Interface. Each scheduling module

of the SMP HW-RTOS communicates with the controlled
ARM processor via dedicated ports. Three ports are used
to connect each processor with the hardware scheduler,
namely call rtos, wait port, and next task.
Scheduling Granularity. Task scheduling and context

switch can occur in two cases. First, a task can block when
invoking a blocking port receive call from the communica-
tion API. Alternatively, tasks can be preempted if they reach
a pre-determined time slice.
Context Switching. When invoking a blocking

port receive, the blocked task will send the port on which
it blocked, waiting for a communication, via the wait port
signal. The hardware scheduler maintains information re-
garding the port each task is blocked on in thewait port list.
Immediately after, the task will trigger the hardware sched-
uler execution via the call rtos signal. At this time, the
hardware will compute the next task to be scheduled in the
processor. In order to determine which tasks are schedula-
ble, the hardware reads wait port list, as shown in Figure 1.
When the scheduling module has computed the next task to
be scheduled in the processor, it generates an interrupt to
the processor, updates wait port list, and indicates the next
task to be executed in the next task port.
When a task is preempted for expiring the time slice, an

interrupt is generated from the hardware scheduler, along
with the next task indication in next task port. The sched-
uler will not modify wait port list, because the task is not
effectively blocked pending any communication. Instead,
the preempted task is schedulable, and is considered by the
scheduler in the next scheduling cycle. Note that when ex-
piring the time slice, the task does not send any signal to the
HW-RTOS (neither call rtos, nor wait port).
Task Context Management. Although the scheduling

decision is performed efficiently in hardware, the proper
context save and restore has to be handled by software. The
software part of the task switching mechanism services the
interrupt request generated by the HW-RTOS, saves the pro-
cessor state for the current task to the shared memory and

restores the processor state of the next task from the shared
memory. This step of task scheduling has to be performed
in the processor, because it involves reading and writing of
the register file and status words, which is not accessible to
the HW-RTOS without software intervention.
The context of a task is always saved to the shared mem-

ory space. Therefore, it is accessible by any processor,
effectively enabling task migration. Specifically for the
ARM9 architecture, we have reserved 1Kb of space per task
in the shared memory to store a task stack with the context
of each task. The values of general purpose registers (R0-
R10), followed by FP, IP, LR, PC and SPSR registers, are
stored in the task’s stack before it is preempted from the pro-
cessor. Additionally, the task’s stack pointer SP is stored in
a dedicated array, which has one entry per system task, also
in the shared memory.
Task Communication. Task communication is man-

aged by the data handling module of the SMP HW-RTOS.
Port communication between tasks is controlled by a double
buffered scheme. Tasks will always write to the send buffer,
while they read from the receive buffer. Similarly, every
write will result in an event to be stored in active event
buffer. Whenever a task T1 blocks in a port receive, all of
T1’s communications will be copied from the send buffer
to the receive buffer, and immediately become available to
all other tasks. Additionally, the corresponding active event
entries are copied to frozen event, indicating the presence of
a new communication event. If any task T2 is waiting on a
port that was written by task T1, then T2 will be eligible to
be scheduled in the next scheduling cycle. Currently, the
scheduling module performs round robin scheduling. Other
policies can be supported, without changes to the interface
between the HW-RTOS and the processor.
Note that, while there are multiple hardware scheduling

modules, one for each processor, there is only one data com-
munication module managing communication from and to
every processor. Therefore, there is exactly one copy of
send buffer, receive buffer, active event, and frozen event.
Shared Memory Lock Unit. A dedicated hardware

module is included in the proposed architecture to allow
a test-and-set instruction to be implemented. This is an
important operation to support shared memory communi-
cation in multiprocessor systems, as it allows a task to
read and subsequently write to a shared memory location
without concurrency from other tasks. In our implementa-
tion, the lock unit is used to provide test-and-set support in
wait port list for the SMP HW-RTOS.
For each scheduling module in the SMP HW-RTOS, the

Lock Unit contains one request and one grant bits. The par-
ticular address to be locked is specified in the address field.
The Lock Unit is a memory-mappeddevice, so modules can
access the bits by reading and writing memory addresses.
The implementation of the Lock Unit can be extremely effi-



cient. The Lock Unit takes a single cycle to assert grant bits
after the request bit and address are set.
Locking API Primitives. As with communica-

tion primitives, tasks use our dedicated API primitives
to request locks in the shared memory, specifically
shared memory lock and shared memory unlock. Note that
it is the job of the programmer to ensure locking and un-
locking requests are properly present in the code. Our ar-
chitecture will not automatically detect shared memory ac-
cess conflicts. Additionally, the lock unit is designed to al-
low the implementation of a test-and-set instruction, and is
not an explicit mutex primitive. Instead, mutexes can be
built on top of test-and-set. Therefore, it is guaranteed that
no context switch happens while performing a test-and-set.
For this reason, the lock unit has one entry per processor in
the architecture, instead of one request/grant line per task.
Conflict Resolution. The Lock Unit implements a pri-

ority mechanism to resolve conflicts in shared memory ac-
cess. If both modules request exclusive access to the same
shared memory address, the module with the lowest ID will
be granted access to the detriment of the other. In our im-
plementation, the scheduler module connected to processor
with ID 0 has higher priority than the module connected to
processor with ID 1.
Task Migration. The shared memory in the SMP archi-

tecture facilitates task migration, or dynamic task schedul-
ing. All task context information is saved in the shared
memory. Therefore, it can be retrieved by any other pro-
cessor when a task is resumed. It is the scheduler’s job to
decide whether a task can migrate to another processor, or
should resume execution in the same processor it was last
executed. Alternatively, the scheduling of tasks to proces-
sors can be static, i.e., each task can run only in a single,
and pre-determined processor.
Each approach has its trade-offs. When tasks migrate,

processor resources are better utilized, since any task can
be scheduled in any processor. Consequently, all tasks can
run, as long as there is a processor available. On the other
hand, there is a penalty on cache misses. While in the static
scheduling case, there is a chance that task data will still
be present in the processor’s cache, when tasks migrate, the
cache on the new processor will have to be filled with the
task’s data from the main memory. Our experiments evalu-
ate this trade-off. Results are presented in Section 4.

4 Experimental Results

We provide implementations of the SMP HW-RTOS
with and without support for task migration. When there
is no task migration, each of the hardware scheduling mod-
ules will be provided with a static set of tasks from which to
choose when scheduling. With task migration enabled, all
tasks are available to be scheduled by all scheduling mod-

ules. In this case, tasks are scheduled in a first-come, first-
served fashion, i.e., when a task is available to be scheduled,
it will be scheduled in the first processor that becomes avail-
able, regardless of the processor in which it executed last.
The experimental environment is comprised of in-house

behavioral hardware synthesis tool (Cyber) and cycle accu-
rate simulator (ClassMate). Hardware synthesis produces
synthesizable RTL for each hardware module. Software
modules are compiled by a gcc cross-compiler.
ClassMate platforms are built as compositional blocks,

each of which models a specific part of the hard-
ware/software architecture, including processors, memo-
ries, caches, buses, interfaces, and arbiters. Additionally,
it is possible for the designer to provide application specific
modules to be integrated in the simulation environment. We
used this resource to implement simulation versions of the
SMP HW-RTOS and the Lock Unit. The simulator provides
cycle accurate results about the execution of the processor,
as well as dedicated hardware modules modeled by the de-
signer. Additionally, it also gives information about soft-
ware execution and communication interfaces.
Platforms. To evaluate the performance of the proposed

architecture, we modeled the SMP system, with andwithout
task migration enabled. Additionally, we also simulated a
traditional single processor, using eCos as a complete soft-
ware RTOS, and a single processor with HW-RTOS.
Benchmarks. We used two applications as benchmarks

to perform our tests. The first is a graphic filtering applica-
tion, representing typical operations performed in the kernel
of multimedia applications. The task graph shown in Fig-
ure 2(a) has three tasks, namely a Control to coordinate
the execution of the tasks, the Image Decoder, which
fetches image data from memory and decodes it, and the
proper Filter task, which executes the filtering algorithm
and produces the filtered image.
The second application used in the experiments is a

network packet processing engine, which receives packets
from a wireless media, processes and classifies each packet,
routing it to its destination. Its task graph is shown in Fig-
ure 2(b). The first task, the Packetizer, will receive the
data from the medium and organize it in packets. Decoding
and CRC checking is performed in each packet by two sepa-
rate tasks, Decoder and CRC. To allow higher parallelism,
there are two Decoder and CRC checker task instances. Fol-
lowing is the Packet Enqueue task, the Classifier
and the final output tasks, which can Forward the packet
to another destination, Store it in the main memory, or
Discard the packet under special conditions.
Results. We simulated the architectures for one million

cycles after processor initialization was complete. Table 1
shows the total number of pixels processed in the image
filtering benchmark for each architecture, as well as the total
number of packets processed in each architecture.
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Table 1. Experimental Results
SW-only HW-RTOS
eCos single SMP static SMP dynamic

Image Filtering
Pixels 6 278 340 330

Packet Processing
Packets 3 30 40 43
Idle Cycles 0 0 238555 22688

Note that task migration increases the throughput of the
packet processing benchmark by 7.5%. However, there is
a negative impact on the performance of the image filter,
which executes 1.2% slower. This is due to cache effects.
Since the image filter has a small number of tasks, migrating
from one processor to the other affects the cache hit ratio,
and reduces the performance. The effect does not happen in
the packet processing because of the larger number of tasks,
which will cause cache misses in both cases. In fact, the
performance increases due to the more efficient use of the
processor cycles (i.e., a reduction of idle cycles). In general,
if the application is small enough to fit in the cache, there is
a loss in performance by allowing migration, which is the
case with the image filter benchmark.
Table 1 shows a significant performance increase due to

the use of our HW-RTOS module. While a solution based
on traditional software RTOS, in our case eCos, processes
only 6 pixels in the simulated time (i.e., one million proces-
sor cycles), the same single processor architecture with the
addition of HW-RTOS can process 278 pixels. Similarly,
the software RTOS can process 3 packets, while the sin-
gle processor with HW-RTOS can process 30, and the SMP
with HW-RTOS and task migration can process 43.
We can also observe that the SMP architecture improved

the throughput of the image filter by 23% in the static sce-
nario and 22% in the scenario with task migration. Sim-
ilarly, the throughput of the packet processor improved by

33% in the static allocation and by 43%with task migration,
when compared to the single processor with HW-RTOS.
The HW-RTOS is used to accelerate the context switch

and communication between tasks. While in the software
only RTOS based on eCos takes approximately 10,000 cy-
cles to complete a context switch, the proposed hardware
scheduling module can execute the same context switch in
947 cycles. The context switch is detailed on Figure 3(a). It
shows all the stages of the context switch, performed by the
HW-RTOS and by the software.
Figure 3(b) shows the task scheduling in the SMP ar-

chitecture with task migration disabled. The first two rows
show the tasks running on each processor of the SMP. The
two bottom rows show the scheduling in the HW-RTOS
units. Every pulse in the waveform represents the next task
computation procedure in the HW-RTOS. Tasks are always
scheduled in the same processor, and it is possible to notice
an idle period on processor 1. Similarly, Figure 3(c) shows
the trace of task scheduling with task migration enabled.
Note that some tasks are actually executing in both proces-
sors, such as tasks Packetizer, Decoder 0, and Enqueue.
Finally, we observe that the performance gain provided

by the HW-RTOS comes at a small cost. Using Synopsys
Design Compiler, we estimated the area overhead to imple-
ment the extra hardware components for HW-RTOS support
to be about 20k gates in the SMP architecture.

4.1 Future Developments

There are some topics related to the HW-RTOS and task
scheduling and migration that we plan to explore in the near
future. Specifically, we want to explore different strategies
for task migration, as well as verifying the scalability of our
approach as the number of tasks and processors increases.
Task Migration. Currently, our approach to task migra-

tion is either enabled for all tasks, or for no task. It would
be interesting to experiment with different strategies for mi-
gration, specially one involving selective migration. In this
case, task migration decision would consider where the task
executed last, and other issues such as timing constraints
and current available tasks to perform migration.
Scalability. Our HW-RTOS solution supports a fixed

number of tasks and a specific number of processors. In-
creasing the number of tasks impacts linearly on the mem-
ory requirements for the HW-RTOS, since more resources
are needed to store task context and the wait port list struc-
ture. Increasing the number of processors that are man-
aged by the HW-RTOS has a direct impact on the area re-
quirements for the HW-RTOS, along with an increase in the
number of possible parallel accesses to the shared memory.
While the extra area is due to the scheduling modules for
each processor, and could be managed in the design, the in-
creasing strain on the memory could limit the solution to a



Figure 3. Task scheduling in SMP

certain number of processors.
Cache Coherence Protocols. Data cache coherence is

an important issue. With static scheduling, all data that are
shared among tasks in different processors need to be coher-
ently updated. One possibility is to use the data cache only
to non-shared data. This way, shared data always have to
be fetched from the main memory. When tasks can migrate,
however, cache coherence is essential, as even non-shared
data need to be correctly transferred from one processor to
another when tasks migrate. We are investigating the impact
of different cache coherence protocols on the proposed ar-
chitecture, and evaluating the impact each has in the system
performance and its effect in task migration.
Dynamic Task Priorities. Given the complexity of cur-

rent embedded systems, dynamic priority can expand the set
of applications that benefits from the HW-RTOS solution.

5 Conclusions

In this work, we presented a SMP architecture with ded-
icated hardware support for tasks scheduling and commu-
nication. We also provided a quantitative analysis of the
proposed SMP architecture, comparing them to single pro-
cessor architectures. We also showed the impact of some
design decisions regarding SMPs, specifically the ability to
schedule a task in different processors, supporting task mi-
gration, and the impact of a shared bus in the performance
of an SMP. Results show that our SMP architecture with
HW-RTOS support is significantly more efficient than a SW
only solution. Additionally, we were able to improve per-
formance of the system by adding a second processor and
the corresponding modifications in the HW-RTOS.
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