
An Algorithm to Minimize Leakage through Simultaneous Input Vector Control

and Circuit Modification

Nikhil Jayakumar Sunil P Khatri

nikhil AT ece DOT tamu DOT edu sunilkhatri AT tamu DOT edu

Department of Electrical & Computer Engineering,

Texas A&M University, College Station TX 77843.

Abstract

Leakage power currently comprises a large fraction of

the total power consumption of an IC. Techniques to min-

imize leakage have been researched widely. In this paper,

we present an approach which minimizes leakage by simul-

taneously modifying the circuit while deriving the input vec-

tor that minimizes leakage. In our approach, we selectively

modify a gate so that its output (in sleep mode) is in a state

which helps minimize the leakage of other gates in its transi-

tive fanout. Gate replacement is performed in a slack-aware

manner, to minimize the resulting delay penalty.

1 Introduction

Traditionally dynamic (switching) power has dominated

the total power consumption of an IC. However, due to

current scaling trends, leakage power has now become a

major component of the total power consumption in VLSI

circuits. Further, the increasing demand for portable/hand-

held electronics has meant that leakage power has received

even greater attention. Since these portable devices spend

most of their time in a standby state (also sometimes called

sleep state), reducing the leakage power consumption in this

standby state is crucial to extending the battery life of such

products.

One of the techniques used to minimize leakage is the

technique of parking a circuit in its minimum leakage state.

This technique involves very little or no circuit modification

and does not require additional power supplies. A com-

binational circuit is parked in a particular state by driving

the primary inputs of the circuit to a particular value. This

value can be scanned in or forced using MUXes (with the

standby/sleep signal used as a select signal for the MUX).

This is frequently referred to as input vector control. In this

paper we extend this technique to achieve control over the

leakage of a circuit at a finer granularity. The leakage reduc-

tion technique discussed in this paper is orthogonal to other

circuit level leakage reduction approaches such as MTC-

MOS and others that statically or dynamically change the

VT of the devices.

The remainder of this paper is organized as follows: The

motivation for this work is described in Section 2. Section 3

discusses some previous work in this area. In Section 4

we describe our method to minimize leakage in a circuit

through simultaneous input vector control and circuit modi-

fication. In Section 5 we present experimental results, while

conclusions are discussed in Section 6.

2 Motivation

Table 1 shows the leakage of a NAND3 gate for all possi-

ble input vectors to the gate. The leakage values shown are

from a SPICE simulation using the 0.1µ BPTM [3] models

at 1.2V.

Input Leakage(A)

000 1.37e-10

001 2.70e-10

010 2.70e-10

011 4.96e-09

100 2.62e-10

101 2.68e-09

110 2.51e-09

111 1.01e-08

Table 1. Leakage of a NAND3 gate

As can be seen from Table 1, setting a gate in its mini-

mal leakage state (000 in the case of the NAND3 gate) can

reduce leakage by about 2 orders of magnitude. This leak-

age reduction is attributed to the stack effect, according to

which having as many off transistors in series as possible

minimizes leakage. While it is desirable to set every gate in

a circuit to its minimal leakage state, it may not be possible

978-3-9810801-2-4/DATE07 © 2007 EDAA 

 



do so due to the logical inter-dependencies of the inputs of

the gates. Even if the individual gates have a wide range

of leakage values, that does not mean the circuit that uses

these gates will have a wide range of leakage values as well.

For example if a NAND3 gate and a NOR3 gate in a circuit

share inputs, the leakage of the NAND3 is minimum when

all the inputs are set to logic 0, but to get the NOR3 gate into

its minimum leakage state requires all the inputs to be set to

logic 1. Due to constraints such as these, we are limited in

terms of the leakage reduction that we can achieve by using

just vector control at the primary inputs. In order to exploit

the stack effect better, we need a technique that offers more

freedom in setting the inputs at each gate. Herein lies the

contribution of this paper. Gate leakage currents can also

contribute to the total leakage of a gate. While the contribu-

tion of gate leakage may affect the table of leakage values

for each input vector for a gate, our algorithm is agnostic to

this and only requires a reliable estimate of leakage currents

of a gate for different input vectors.

3 Previous Work

Traditionally, input vector control has involved using

MUXes or scan-chains to control primary input values of

a circuit during standby. We extend this idea further by

modifying the circuit such that we are not restricted to con-

trolling just the primary inputs, but can also control the in-

ternal nodes of a circuit. While the idea of adding control

points is similar to what is expressed in [1, 2], we allow a

greater degree of freedom. In [1, 2], the authors insert either

AND or OR gates to set the logic value of a particular line

during standby. We, on the other hand, allow one input go-

ing to 2 or more different gates to be split (using pass-gate

MUXes), so that each fanout can be set to different values

during standby. This ability provides significantly more op-

portunities to control internal nodes and minimize leakage.

Also in [1, 2], the authors use a SAT based algorithm to find

control points and to minimize leakage. The accuracy of the

algorithm is dependent on the number of quantization levels

of leakage values. However, with a higher number of quan-

tization levels the runtime also increases. The algorithm

we use has significantly lower complexity, and involves a

linear pass of the circuit. In [8], a technique is presented

which involves gate replacement. However, in [8] a gate G

is replaced by a different gate G′ to only reduce the leakage

of gate G, not control internal nodes. The authors of [4],

improve on the implementation of [8] in terms of both leak-

age improvement and runtime of the gate replacement al-

gorithm. Previous approaches to minimize leakage through

vector control and gate replacement [1, 2, 8, 4], have a de-

lay penalty to get a reasonable leakage reduction. In our

approach, we get a significant leakage reduction (as shown

in Section 5) with no delay penalty.

4 Our Approach

One of the sources of our flexibility in controlling in-

ternal nodes of a circuit stems from the fact that we define

several different variants of each gate in the library. While

it may be argued that the creation of different variants of

a cell can be time consuming and expensive, it should be

noted that this step is done only once up-front. An example

of the different variants is shown in Figure 1. In the snglmx

type of variant, a MUX is placed at the output of a regular

gate. There are two type of snglmx gates, snglmx0 and

snglmx1. The snglmx0 gates have a weak pull-down de-

vice at the output of the MUX. A snglmx0 variant is used

as a replacement for a gate when the output of a gate G is

logic 1, but some gates in the fanout of G require a logic

0 to get into a low leakage state. Similarly, snglmx1 gates

have a weak pull-up device at the output of the MUX. A

snglmx1 variant is used when the output of a gate G is logic

0, but some gates in its fanout require a logic 1 to get into

a low leakage state. Note that the snglmx type of variants

are dual output gates and hence offer the most flexibility of

’splitting’ internal signals.

There can be situations when the all the gates in the

fanout of the gate in question need a value that is comple-

mentary to what is generated at the output of a gate. For

such cases we have a type of variant called the sngl1out

variant. This type of variant has only 1 output and is

similar to the structure discussed in [2]. We define 2

types of sngl1out variants, sngl1out0 and sngl1out1. The

sngl1out0 uses a PMOS sleep transistor to cut-off the

PMOS stack of the gate (marked as sleep cut-off in Figure 1)

and a weak NMOS pull-down device (marked as sleep by-

pass in Figure 1) to pull down the output. This variant is

used when the output of a gate is high in the standby state,

while all the gates in the fanout require a logic low value to

get into a low leakage state. Similarly the sngl1out1 uses

a NMOS sleep transistor to cut-off the NMOS stack of the

gate and a weak PMOS pull-up device to pull up the out-

put. This variant is used when the output of a gate is low

in the standby state, while the gates in the fanout require a

logic high value to get into a low leakage state. Note that

while the snglmx type of variant worsens both output rise

and output fall delays, the sngl1out worsens delay for ei-

ther only the rise or only the fall transition and can actually

speed up the opposite transition. In [2], the authors take

advantage of this fact and assume the delay of such a gate

to be the average of the rise and fall delays. This assump-

tion can lead to inaccuracies in the timing analysis. In this

paper, we account for the rise and fall delays separately.

Due to the introduction of sleep devices, the delay of the

sngl1out gates is larger than the regular cells (for one tran-

sition). Similarly, the snglmx variants also suffer a delay

due to the pass gate MUX at the output. Since we have tim-



b

b

a

a
b

b

a

a

b

b

a

a

b

b

a

a

out1

out0

b

b

a

a

out0

out1

sleep cut−off

sleep bypass

sleep bypass

sleep cut−off

sleep bypass

sleep bypass

sleep

sngl1out0 V ariantRegular NAND2 sngl1out1 V ariant

sleep

snglmx0 V ariant snglmx1 V ariant

sleep

sleep
sleep

sleep

sleep

sleep

Figure 1. Some Variants of a NAND2 gate

ing constraints, this delay limits the flexibility of the gate

replacement algorithm. To enhance the flexibility of the al-

gorithm and give it more degrees of freedom, we also create

larger cells that we call dbl cells. We create dblmx and as

well as dbl1out variants. Their structure and purpose is the

same as their sngl counterparts except that they use larger

device sizes (≤ 2× of their sngl counterparts). They are

sized such that their delays are closer to the delays for reg-

ular gates.

All these variants are crucial to our approach and help

provide enough flexibility to our algorithm to reduce the

leakage of a given circuit while making sure there is no de-

lay penalty. The details of the algorithm are explained in

Section 4.1.

4.1 The Gate Replacement Algorithm

Before we use the gate replacement algorithm, we first

characterize our library of cells (including the variants) us-

ing SPICE [6], and generate a file in the GENLIB format

from the characterized data. In the GENLIB format each

pin of a gate is associated with an intrinsic delay compo-

nent well as a load dependent component for both rise and

fall times separately. Also included in the genlib file is the

load capacitance of each input pin.

Our algorithm takes as input a netlist of gates in levelized

order. We first perform a static timing analysis on this netlist

to find the Arrival Times (ATs) and Required Times (RTs)

at all nodes in the circuit. We use the cell characterization

data for our static timing analysis. We assume that for gates

driven by primary inputs, the primary input can be split to

get the desired logic value at the inputs of these gates. Once

the logic values of the inputs to the 0th level of gates (the

gates with only primary inputs as the inputs) has been fixed,

we propagate these values forward to the next level. Next,

we pick a gate G from the first level. Lets say the output

of the gate is a signal g. We then look through the list of

gates in the fanout of G and find the input that gives min-

imum possible leakage. From this we get the logic value

required of g. For example, if one of these fanout gates is a

2 input gate H and assuming that one of its inputs is set to

1 due to another gate J , we would pick the minimum leak-

age from the following set of input vectors (11, 10). Thus

we get the value of g required to get this 2 input gate H in

its minimum possible leakage state. Note that initially, we

assume all possible input vectors are possible at each gate

(i.e. we would consider all vectors 00, 01, 10 and 11 to get

the minimum possible leakage vector). This step of finding

the best value of g is done for all fanouts of G. If we need

to set the value of g to 0 for some fanouts and to 1 in others

(which would happen in situations where the signal is an

input to a nand gate and a nor gate), then we see if we can

replace the gate G with its snglmx variant. We first esti-

mate the leakage savings (if any) of doing this replacement.

The presence of the MUX and the weak pull-up/ pull-down

used in the snglmx variant is a source of additional leakage.

However, this increase could be outweighed by the leakage

savings at the gates in the fanout of G. We estimate the dif-

ference and if there are savings, we then test if replacing G

with a snglmx variant causes timing violations. If there are

timing violations, we attempt to use a dblmx variant. Again

we first check for leakage savings and if there are savings in

leakage, we then check for timing violations. When check-

ing for timing violations due to replacing G with a gate G′,



Algorithm 1 replaceGateForMinLkg

replaceGateForMinLkg (levelized netlist, genlib data,

allowed slack)

find AT at all nodes

find RT at all nodes

set all gates at first level to minimum leakage state

for (i = 1; i <= maxLevel of Ckt; i + +) do

for (j = 1; j <= num of gates at Level(i); j + +)

do

G = G(j) ; pick a gate G from the gates at level i

g = output signal of G

find suggestedVal of g for all fanout(G)

if all suggestedVal = 0 and logic value of g = 1 then

Gnew = sngl1out0 variant of G

CheckIfReplaceable(G, Gnew)
else if all suggestedVal = 1 and logic value of g = 0

then

Gnew = sngl1out1 variant of G

CheckIfReplaceable(G, Gnew)
else

Gnew = snglmx0 variant of G

CheckIfReplaceable(G, Gnew)
end if

end for

end for

Algorithm 2 CheckIfReplaceable

CheckIfReplaceable (G,Gnew)

Check if G can be replaced by a sngl variant

if G can be replaced by sngl variant of G reduction in

leakage and satisfying timing then

replace G with the sngl variant

else if G can be replaced by dbl variant of G with reduc-

tion in leakage and satisfying timing then

replace G with the dbl variant

end if

we first propagate new RTs at the gate G to its fanins. Also,

note that replacing G implies changes in the capacitance

seen by the gates in the fanin of G. We recalculate the AT

of the gates in the fanin of G. If the new AT is greater than

the new RT, then we don’t replace G with G′. If there is no

timing violation (there is enough slack) and there are pos-

sible savings in leakage, then we go ahead and replace the

gate G with its dblmx variant. We follow a similar proce-

dure if all the fanouts of G require the same value at g for

minimum leakage. If this value required is the same as the

value at g due to fixing the logic values at the inputs of G,

then we don’t need to replace the gate. If however, these

value differ, then we attempt to first replace the gate with its

sngl1out variant. If such a replacement does not save leak-

age current, then we don’t replace the gate G and move on

to the next gate in the netlist. If such a replacement does not

work due to timing slack reasons, we then see if a dbl1out

variant of G would help without sacrificing power or tim-

ing. In this way we traverse the netlist in levelization order

from primary inputs to primary outputs and replace gates as

we move along to reduce leakage while guaranteeing that

there are no timing slack violations.

5 Experimental Results

We performed extensive experiments to validate our

method and compare its results to the minimum circuit leak-

age values. If the circuit input space was small we found

the exact minimum leakage through exhaustive simulation,

if not we simulated the circuit for 10000 random vectors

to find the minimum leakage(as suggested in [5]). We as-

sumed a library with the following basic cells: INV1X,

INV2X, NAND2, NAND3, NAND4, NOR2, NOR3. The

circuits for our simulations are from the ISCAS85 and

MCNC91 benchmark suites. We first performed a technol-

ogy independent synthesis on these circuits in SIS [7] using

script.rugged.

In Table 2, column 2 and column 3 show the minimum

leakage current (in nA) for the original circuit and for the

circuit modified by our algorithm, respectively. The % de-

crease in leakage current is shown in column 4. The de-

crease in leakage current is 29.18% on average. Note that

this is the leakage decrease compared to the leakage ob-

tained by applying input vector control alone. The critical

delays (in ps) for the original and the modified circuit are

shown in columns 5 and 6 respectively. Column 7 give the

% decrease in critical delays of the modified circuit. We

conjecture that one of the reasons for the delay decreasing

is due to the fact that when the algorithm can’t choose a

sngl variant due to timing issues, it chooses a dbl variant

and this can cause a decrease in the delay. Also, as men-

tioned in Section 4, while the delay of one type of transition

gets worse in the sngl1out variants, the delay of the oppo-

site transition is sped up slightly. The last column of Ta-

ble 2, gives the runtimes of the algorithm. The algorithm

is currently implemented in PERL and was run on an Intel

Pentium 4 with 2GB of RAM, running Linux Fedora Core

3. The runtimes are expected to improve substantially when

the algorithm is implemented in a compiled language such

as C/C++. Our algorithm assumes that there are MUXes at

the primary inputs. They help ensure that all 0th level gates

can be set independently into their low leakage state. For a

fair comparison, we give the same flexibility (ability for the

inputs of each of the 0th level gates to be set independently)

when finding the minimum leakage vector for the original

circuit.

In Table 3, the area penalty associated with using our al-

gorithm is given. Note that this table refers to only the active



Ckt. Min Lkg New Min % Lkg Original New % Delay Runtime (s)

Original(nA) Lkg(nA) Decr Delay Delay Incr

alu2 1251.72 1022.44 -18.32 1460.70 1422.16 -2.64 5.53

alu4 2598.14 2094.99 -19.37 1755.99 1753.09 -0.17 21.16

apex6 2743.08 1753.82 -36.06 739.94 739.93 -0.00 20.03

apex7 812.72 592.88 -27.05 704.11 704.11 0.00 2.89

C1355 2003.61 1697.87 -15.26 930.41 930.23 -0.02 7.8

C432 584.46 449.93 -23.02 1110.89 1110.89 0.00 1.03

C880 1375.73 977.07 -28.98 1803.93 1718.75 -4.72 6.12

C1908 1909.95 1548.12 -18.94 1489.95 1488.61 -0.09 10.1

C3540 4079.92 3126.00 -23.38 1870.95 1870.63 -0.02 51.89

C6288 13020.10 12011.39 -7.75 5651.08 5637.02 -0.25 695.85

dalu 3293.89 2378.24 -27.80 1506.29 1504.32 -0.13 42.75

des 15218.02 12013.16 -21.06 3021.52 2470.33 -18.24 655.38

i10 8738.32 6318.98 -27.69 2549.68 2499.43 -1.97 238.13

i1 158.38 102.96 -35.00 353.61 353.21 -0.11 0.11

i2 372.66 98.72 -73.51 392.98 392.98 0.00 0.51

i3 323.05 60.13 -81.39 182.46 182.46 0.00 0.98

i6 1907.06 1650.16 -13.47 1080.10 1080.10 0.00 5.5

i7 2499.20 1973.08 -21.05 1088.31 1088.31 0.00 10.38

i8 3805.49 2321.63 -38.99 1591.76 1297.01 -18.52 38.62

i9 2552.20 1440.26 -43.57 1651.78 1618.21 -2.03 15.87

t481 2915.54 2409.63 -17.35 901.69 838.36 -7.02 28.21

too large 1034.72 796.34 -23.04 680.24 677.89 -0.35 4.09

Avg -29.18 -2.56 84.68

Table 2. Leakage, Delay Improvements Using Our Approach, Runtimes

area. Column 2 of the table shows the area of the original

circuit. Column 3 and column 4 of the table give the total

area and the overhead respectively of the modified circuit

including the area of the sleep cut-off transistors used in the

sngl1out and the dbl1out type of gates. The active area of

these sleep cut-off transistors is given in column 5. Column

6 (which is obtained by subtracting column 5 from column

3) and column 7, report the area and overhead respectively

of the modified circuit excluding the sleep-cut-off transis-

tors. On average, the total active area overhead including

the sleep cut-off transistors is about 23.6%. However, the

active area overhead excluding the sleep cut-off transistors

is only about 3.7% which implies that the sleep cut-off tran-

sistors caused most of the active area penalty. The size of

the sleep transistors can be reduced by sharing them as they

do in many MTCMOS based designs. This would not only

save area but also reduce delays. Hence, we consider the

active area excluding the sleep-cut off transistors (columns

6 and 7 of Table 3) to be a more meaningful measure of

the area penalty. Another important point to note is that, the

area overhead reported is only the active area overhead. The

effective area overhead is expected to be much smaller once

the circuits are placed and routed.

We also estimated the dynamic power consumption as-

sociated with using our approach. Intuitively, the dynamic

power overhead is expected to be proportional to the active

area overhead excluding the sleep transistors (3.7%). How-

ever, some of this active area is devoted to the sleep bypass

transistors which contribute only their diffusion capacitance

to the total switched capacitance during circuit operation.

Based on this we estimated the total switched capacitance

overhead which is proportional to the dynamic power con-

sumption overhead. The switched capacitance overhead is

shown in column 8 of Table 3. The average switched capac-

itance overhead is only about 1.5% which is also roughly

the dynamic power consumption penalty.

The tables 2 and 3 prove the effectiveness of our method-

ology. Note, that the modified circuits have a lower leak-

age with no delay penalty (or in some cases a delay im-

provement) and a modest increase in dynamic power con-

sumption. This is an improvement over previous ap-

proaches [1, 2, 8, 4] that got similar leakage improvements

only at the expense of a delay increase.

6 Conclusions

In this paper we presented an algorithm that replaced

gates in a circuit in an effort to reduce the standby leakage of



New Area Area overhead

Sleep excluding excluding

Ckt. Original Total New Total New Transistor sleep cut-off sleep cut-off Switched

Area(µ2) Area(µ2) Area Ovh(%) Area(µ2) transistors(µ2) transistors(%) Cap Ovh.(%)

alu2 78.52 96.20 22.52 14.08 82.12 4.58 2.42

alu4 155.42 187.94 20.92 24.87 163.07 4.92 2.68

apex6 157.36 197.15 25.29 34.71 162.44 3.23 1.06

apex7 49.04 66.32 35.24 15.05 51.27 4.55 1.38

C1355 108.20 133.74 23.60 22.34 111.40 2.96 1.38

C432 37.92 46.01 21.33 7.29 38.72 2.11 0.42

C880 83.94 107.56 28.14 20.52 87.04 3.69 1.31

C1908 104.21 134.74 29.30 26.95 107.79 3.44 1.04

C3540 246.42 305.13 23.83 48.84 256.29 4.01 1.69

C6288 672.99 970.35 44.18 260.06 710.29 5.54 1.53

dalu 211.55 259.04 22.45 38.50 220.54 4.25 1.53

des 812.09 1054.80 29.89 209.27 845.53 4.12 1.64

i10 490.08 621.40 26.80 109.84 511.56 4.38 1.79

i1 11.90 13.99 17.56 1.85 12.14 2.02 0.40

i2 50.84 53.99 6.20 2.81 51.18 0.67 0.13

i3 32.28 40.36 25.03 5.00 35.36 9.54 6.37

i6 109.22 124.21 13.72 13.49 110.72 1.37 0.27

i7 147.63 170.96 15.80 21.11 149.85 1.50 0.30

i8 234.59 273.09 16.41 32.37 240.72 2.61 0.75

i9 151.56 179.53 18.45 24.13 155.40 2.53 0.73

t481 166.08 213.81 28.74 40.15 173.66 4.56 2.05

too large 62.51 80.85 29.34 15.40 65.45 4.70 2.17

Avg 23.85 3.69 1.50

Table 3. Area (Active area) Cost of Using Our Approach

the circuit. The replacement does not necessarily reduce the

leakage of the gate being replaced, but helps set the gates in

the transitive fanout to their low leakage states. The algo-

rithm involves traversing the circuit from the PIs to the POs,

replacing gates as required to try and get as many gates as

possible to their low leakage state. We get an average de-

crease in leakage of about 29% with an active area penalty

of about 24%. This leakage decrease is the decrease over

the leakage obtained through input vector control alone.

References

[1] A. Abdollahi, F. Fallah, and P. Massoud. Runtime mecha-

nisms for leakage current reduction in CMOS VLSI circuits.

In Proceedings of the 2002 International Symposium on Low

Power Electronics and Design, pages 213–218, 2002.

[2] A. Abdollahi, F. Fallah, and M. Pedram. Leakage current re-

duction in CMOS VLSI circuits by input vector control. IEEE

Trans. VLSI Syst., 12(2):140–154, 2004.

[3] Y. Cao, T. Sato, D. Sylvester, M. Orshansky, and C. Hu. New

paradigm of predictive MOSFET and interconnect modeling

for early circuit design. In Proc. of IEEE Custom Integrated

Circuit Conference, pages 201–204, Jun 2000. http://www-

device.eecs.berkeley.edu/ ptm.

[4] L. Cheng, L. Deng, D. Chen, and M. D. F. Wong. A fast si-

multaneous input vector generation and gate replacement al-

gorithm for leakage power reduction. In DAC, pages 117–120,

2006.

[5] J. Halter and F. Najm. A gate-level leakage power reduction

method for ultra low power CMOS circuits. In Proceedings

of CICC, pages 475–478, 1997.

[6] L. Nagel. Spice: A computer program to simulate com-

puter circuits. In University of California, Berkeley UCB/ERL

Memo M520, May 1995.

[7] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Mur-

gai, A. Saldanha, H. Savoj, P. R. Stephan, R. K. Brayton, and

A. L. Sangiovanni-Vincentelli. SIS: A System for Sequen-

tial Circuit Synthesis. Technical Report UCB/ERL M92/41,

Electronics Research Laboratory, Univ. of California, Berke-

ley, CA 94720, May 1992.

[8] L. Yuan and G. Qu. Enhanced leakage reduction technique by

gate replacement. In DAC, pages 47–50, 2005.


	Main
	DATE07
	Front Matter
	Table of Contents
	Author Index




