
A Decoupled Architecture of Processors with Scratch-Pad Memory Hierarchy

A. Milidonis1, N. Alachiotis1, V. Porpodas1, H. Michail1, A. P. Kakarountas1, and C. E. Goutis1

1 VLSI Design Lab., Electrical & Computer Engineering Department, University of Patras, Rio, Greece
e-mail: milidon@ee.upatras.gr

Abstract
We present a decoupled architecture of processors with a
memory hierarchy of only scratch–pad memories, and a
main memory. The decoupled architecture also exploits the
parallelism between address computation and processing
the application data. The application code is split in two
programs the first for computing the addresses of the data
in the memory hierarchy and the second for processing the
application data. The first program is executed by one of
the decoupled processors called Access which uses
compiler methods for placing data in the memory
hierarchy. In parallel, the second program is executed by
the other processor called Execute. The synchronization of
the memory hierarchy and the Execute processor is
achieved through simple handshake protocol. The Access
processor requires strong communication with the memory
hierarchy which strongly differentiates it from traditional
uniprocessors. The architecture is compared in
performance with the MIPS IV architecture of SimpleScalar
and with the existing decoupled architectures showing its
higher normalized performance. Experimental results show
that the performance is increased up to 3.7 times.
Compared with MIPS IV the proposed architecture
achieves the above performance with insignificant
overheads in terms of area.

1. Introduction

Today’s modern applications require very large amounts
of data that are accessed through several layers of temporal
memory storage. Accessing data from the memory
hierarchy determine to a large extent the system’s
performance.

Cache is the most common memory used for temporal
data storage. However, its performance is frequently limited
by a number of factors such as data are copied in fixed size
blocks equal to the cache line size, conflict misses increase
drastically when the number of processors or functional
units fed by a memory hierarchy grow. Moreover, data are
written in cascaded addresses of cache lines which reduces
the cache’s flexibility of avoiding conflicts.

Scratch-pad memories are used for overcoming these
problems, since no conflict misses occur and data blocks
written, can be of any size less than the scratch-pad’s size.
Moreover, accessing a scratch-pad memory costs less in
power and time than cache which consumes more area.

However, comparing to cache, scratch-pad memories do
not include a logic circuit responsible for performing its
read and write operations in bursts. In platforms using
cache memories, the data transfers between hierarchy levels
are performed by cache circuits which copy line sized
blocks while the processor is not concerned on how the data
are fetched. In platforms with scratch-pad memory
hierarchy, the processor has to perform each data block
transfer between levels usually using Direct Memory
Access (DMA) circuits. However for their initialization,
extra cycles are needed by the processor for computing the
data block source and destination addresses in the memory
layers and for programming the DMAs to perform the
transfers. To save these extra cycles a separate processor
strongly communicating with the memory hierarchy is
required.

In this paper a decoupled processor architecture is
presented having a memory hierarchy of only scratch-pad
memories, and a main memory. In this architecture, the first
of the processors performs data transfers (Access processor)
between the main memory, the layers of the scratch-pad
memory hierarchy and the register file of the Execute
processor and the second performs data processing
(Execute processor).

The main contributions of this architecture are that the
data transfers between the layers of memory hierarchy are
controlled by the Access processor. This processor uses
memory management compiler methods and exploits the
flexibility of storing data in scratch-pad memories avoiding
misses and reducing memory accesses while using
prefetching techniques. By these, the execution time of
applications is reduced compared to existing decoupled
processors without scratch-pad memories.

This paper is organized as follows. Section 2 presents
the related work. The proposed decoupled processor
architecture is presented in Section 3. Experimental results
are given in section 4. Finally, section 5 concludes this
paper.

978-3-9810801-2-4/DATE07 © 2007 EDAA

2. Related work

Decoupled architectures have been researched in the
past. In [1] the main idea of decoupling is presented. A
more recent decoupled architecture with additional
hardware for increasing performance is shown in [2]. A
cache hierarchy exists between the main memory and the
processor that computes the memory addresses. It should be
noted that none of the above architectures handle
scratchpad memory hierarchy addressing.

Scratchpad management techniques are presented in [5].
[7] describes Scratchpad compiler techniques that
outperform techniques applied in cache. [3] and [6] present
run time techniques, applied in uniprocessor platforms. In
[14] the benefits on hiding memory latency are presented,
using DMA combined with a software prefetch technique
and a customized on-chip memory hierarchy mapping. In
[8] there is a study showing that decoupled processors with
caches outperform uniprocessors with caches and that this
speedup is increased as the memory latencies increase.

In [3] run time management of scratchpad is presented.
The platform used contains one level of cache, one of
scratch pad, a DMA engine, and a controller that controls
the DMA engine. The computation of memory addresses
are done by the processor that also handles processing data,
which means the architecture of [3] is not decoupled.

Finally, in [4] an SRAM memory architecture is used on
a VLIW processor while a distributed address generation
architecture with a loop acceleration unit calculates the
memory addresses of data to be transferred to/from the
SRAMs. The start addresses of the data blocks that are to
be transferred are generated at compile time which
increases the instruction code size significantly. This is
avoided in our architecture by assigning the delivering of
data to the Access processor which will calculate each time
the new start addresses of the data blocks executing
repeatedly one code routine, thus keeping the instruction
code size small.
 Continuing in [4], the use of address generators for
fetching data to the functional units contributes a lot on
increasing the performance of applications with stream
computations but in the case of random data accessing there
shall be serious initialization overheads. The transfer from
the main memory to L1 scratch-pad is not on the paper’s
scope. In our work the complete transfer of data from main
memory to the register file of the Execute processor and
vice versa is performed by the Access processor.

3. Proposed Architecture

The decoupled Architecture of processors is shown in
Fig. 1. It consists of a main memory, a memory hierarchy
of various levels of SRAMs (next are referred as Scratch-
pad memories), DMAs for the transfers of data between the

above levels, an Access Processor, an Execute processor
and a small buffer used for communication between the two
processors.

The DMAs are as many as the levels of memory
hierarchy and are used for the transfer of data in bursts
between them.

The task for the transfer of data between the layers of
memory hierarchy is critical for the system’s performance.
Using scratch-pad in our architecture, data can be placed at
any of its memory location. The block sizes transferred
to/from scratch-pad can be of any size. For our memory
hierarchy a compiler is used for applying memory
management techniques. The Access processor executes the
compiler’s output taking design time and also run time
decisions, increasing the system’s performance.

The Access processor is as an integer processor. Its main
operations are the computation of the addresses in the

Main Memory

L2 Scratch-Pad

L1 Scratch-Pad

Access
Processor

Execute
Processor

D
M

A
D

M
A

D
M

A

 b
uf

fe
r

Fig. 1 Proposed Architecture

memory hierarchy for storing the application’s data types
and the control of the DMAs for the transfers of data
between the levels of memory hierarchy.

Computation of the addresses need very small amount of
data compared to the data of the Execute processor (e.g. the
base address of a data type stored in a level of memory
hierarchy). For that reason the Access processor does not
need a separate data memory hierarchy. It uses one memory
hierarchy for storing data and program without having
serious performance overhead.

The Execute Processor is a processor that can handle
both integer and floating point numbers. Its main task is the
processing of application’s data. It does not contain any
load/store instructions in its instruction set since this task is
assigned to the Access processor and the DMAs. The DMA
between L1 scratch-pad and the Execute processor (Fig. 1),
executes instructions provided by the Access processor for
placing data from L1 scratch-pad to the Execute processor’s

register file and vice versa. Having this functionality the
Execute processor focuses only on processing application’s
data and since the proposed architecture is decoupled these
data are prefetched in its register file which leads to
increased performance as the delay of data to be fetched is
most of the times eliminated.

Communication between the Access and Execute
processors is a critical task in order for the system to
operate efficiently. For that reason it must be sure that the
correct data are placed in the Execute processor’s register
file before the execution of the set of instructions
corresponding to these data. Also, it must be sure that the
action of sending data from the Execute processor’s register
file to L1 scratch-pad has been concluded before new data
are written in the same registers replacing the old ones. For
that reason the two processors communicate through the
buffer in Fig.1 with a simple handshake protocol.

They must also communicate in the case where the
execution path in the Control Data Flow Graph changes
(e.g. when a branch is executed in which different data are
required for each case of the branch). The above buffer is
used in this case by the two processors for declaring which
of the execution paths is followed.

The size of the buffer is small (16 bytes are enough)
since it is needed for writing information about data that
exist in the Execute processor’s register file and for
currently executed branches. Also it is not accessed as
frequently as the register file of the Execute processor but
only when a data block has been transferred or a critical
branch occurs which does not comprise a significant
overhead to the system’s performance.

An example of the code executed by the decoupled
processors is shown in Fig.2. The code calculates the
average values of sixteen numbers repeatedly. In the
example there are two data types used, the input data type
whose values are averaged and the output data type which
contain the result of the average process. When the Execute
processor requests a block to be transferred to/from its
register file, it writes the value 1 to the communication
buffer when the input data type is requested and 2 for the
output data type. The Access processor reads these values
and executes the transfer for the correct data type. In effect
the above is an implementation of handshake protocol.

The Execute processor (Fig. 2) using the LOAD_com
command (line: 1) sends an interrupt request to the Access
processor for transferring the first eight numbers to the
register file and writes the value 1 to the first register of the
buffer (BUF[1]) to declare to the Access processor that a
new block of data is requested from the input data type. In
line 3 there is a check whether the Access processor has
transferred the requested block to the Execute processor’s
register file (the Access processor writes the value 0 to
BUF[1] when the transfer has been completed). This is
done using while loops (lines 3, 13). In the case that the
Access processor has not written the zero value to the first

register of the buffer, the processing of the next eight
numbers is stalled.

Access Processor
1: while(1){

2: Transfer(M_2_L2);

3: Transfer (L2_2_M);

4: Transfer (L2_2_L1);

5: Transfer (L1_2_L2);

6: }

7: Int_Routine1:
8: Transfer (L1_2_RF);

9: Int_Routine2:
10: BUF[1]=BUF[1]-BLOCKSIZE;

12: Int_Routine3:
13: Transfer (RF_2_L1);

14: Int_Routine4:
15: BUF[2]=BUF[2]-BLOCKSIZE;

Execute Processor
1 :LOAD_COM;
2 :while(1){
3 : while(BUF[1]!=0){ }
4 : LOAD_COM;
5 : R0=R0+R1;
6 : R0=R0+R2;
7 : R0=R0+R3;
8 : R0=R0+R4;
9 : R0=R0+R5;
10 : R0=R0+R6;
11 : R0=R0+R7;
12 : R0=R0+R8;
13 : while(BUF[1]!=0){ }
14 : LOAD_COM;
15 : R0=R0+R11;
16 : R0=R0+R12;
17 : R0=R0+R13;
18 : R0=R0+R14;
19 : R0=R0+R15;
20 : R0=R0+R16;
21 : R0=R0+R17;
22 : R0=R0+R18;
23 : while(BUF[2]!=0){ }
24 : R9=R0/16;
25 : STORE_COM;
26 :}

Fig. 2 Decoupled Processor pseudo-code example
Continuing, the Execute processor requests the next block
of data using the LOAD_com command (line: 4) and while
the Access processor transfers (prefetch) it to the register
file in different locations than the first block, the Execute
processor calculates the first 8 sums of the first block. The
same technique for writing data to the Execute processor’s
register file from L1 scratch-pad is used for transferring
them to the opposite direction. In the example of Fig. 2 the
R9 register contains the value of output data type which
must be stored in L1 scratch-pad. The Execute processor
sends an interrupt request to the Access processor for
uploading the value of R9 and writes to the second register
of the buffer the value 2 using the STORE_COM command
(line: 25). Before writing the new value to R9 it must be
sure that the Access processor has already sent the previous
average number to L1 scratch-pad (line:23). If the second
register of the buffer is zero then the Execute processor
writes the next average value to R9 (line: 24) else it waits.

The Access processor transfers data through the main
memory to L1 scratch-pad using a polling technique. In Fig.
2 this is shown in pseudo-code in the Access processor
code (lines: 1-6). It also receives two kinds of interrupts.
One from the Execute processor for writing/reading new
data from L1 scratch-pad to its register file (lines: 8, 13)
and vice versa and one from the lower DMA indicating that
the last transfer is completed and the registers in the buffer
must be updated (lines: 10, 15). Using interrupts for
transferring data to/from the register file from/to L1
scratch-pad ensures that the stalling time of the Execute
processor until data arrive will be minimized.

It is important to notice that the program of the Execute
processor is much less sized compared to the corresponding
one of a uniprocessor as there are no load instructions for
every new data word but only a request for a block of eight
words. This decreases even more the application’s
execution time. Also the code size is not increased by the
amount of instructions used for the two processors’
communication as indicated in Fig. 2 since it is very small
compared to the application’s total code size.

Observing the architecture of the decoupled processor in
Fig. 1 it can be concluded that transferring of data through
the memory levels of hierarchy is a task separated from
processing and assigned to the Access processor which uses
prefetching techniques. The Access processor provides a
flexible way of placing data to the levels of the memory
hierarchy with no misses following memory management
techniques. Also, this memory hierarchy can operate in a
pipelined way since the Access Processor may transfer
every available data and not a distinct data type through the
whole path at a time, decreasing significantly the total
transfer time from the Execute Processor to the Main
Memory. Data are transferred in blocks usually larger in
size than the cache line sizes making the instructions for
these transfers less and avoiding getting the processing load
of the Access processor high. The Execute processor is not
occupied with accessing memory but processes the
application data which are prefetched in its register file
reducing the memory hierarchy’s delay.

4. Experimental Evaluation

In this section we present the simulation method and the
experimental results of comparing the proposed architecture
with the MIPS IV architecture. Also our experimental
results are compared to the architectures in [2] and [4].

4.1 Simulation Method
 We used the SimpleScalar simulator [9] for measuring
the MIPS IV performance. Table 1 shows the SimpleScalar
configuration used for our measurements. For fairness, the
MIPS IV processor may execute 2 instructions in parallel.
By this way the MIPS processor is able to perform
load/store operations in parallel with data processing
operations. All benchmarks for running in the SimpleScalar
simulator were compiled by the gcc compiler using
optimization level –O3. For evaluating our architecture we
created its behavioral VHDL model using in-order
processors for the Execute and Access ones having
instruction set identical to that of MIPS IV, one Arithmetic
Logic Unit (ALU) and one multiplier. Each processor
executes one instruction per cycle. We implemented the
front end of a C compiler using lexical and syntax analysis
tools and an automated flow for generating the assembly
code of the processors. The C codes of the benchmarks that

were input to our compiler’s front end were optimized
manually.

The actual delay times of the memories used are
provided from the Cacti model [10]. In the experiments of
Fig. 3 and Fig. 4 we used L1 and L2 memories with sizes of
4KB and 16KB correspondingly. In the experiments of Fig.
5 and Fig. 6 we used the memory sizes given above for our
architecture while for SimpleScalar the size for L1 cache
varied from 4KB to 32KB and for L2 cache from 16KB to
128KB. The main memory is an SRAM of 256KB since
this was the largest size that our benchmark required. Its
latency is also provided by the Cacti model. In most
systems the off chip memory size requirements are much
larger and their latencies are also increased. However, as
proved in [8] the more the memory latencies increase the
better the decoupled processors performance become,
comparing to uniprocessors’ performance. For that reason
the gains of our architecture become larger. For our DMAs
we used circuits with a simple functionality for transferring
data in bursts. For this operation a more simplified version
of the loop unit of [4] which can only execute one loop
instruction per cycle is used having 1 cycle latency for each
new address calculation.

Table 1. SimpleScalar configuration

Integer alu 1 Fetch ifqsize 2
Integer mult 1 Load/Store Queue 8
Issue width 2 RUU 16
Decode width 2 Branch Prediction Perfect

In [12] a method for estimating the MIPS IV area

according to its configuration is given. The technology used
was 0.5 micron. We applied this method for 0.18 micron.
After estimating the area of each architecture we compared
them calculating their ratio for avoiding any method
variations between the two architectures. The differences of
our architecture with the SimpleScalar’s in terms of area are
that in our case there are two in order processors with no
Register Update Unit (RUU), the Access processor is
integer and has no floating point unit and the data memory
hierarchy does not include tag arrays. The dominant
components for area are the memories and not the
processors. For these reasons the area in the decoupled
architecture is slightly incremented by 5.1% compared to
the one in the SimpleScalar’s architecture.

Our benchmark suite consists of five benchmarks:
full_search, a motion estimation code; mxm, an integer
matrix multiplication program (it contains one initialization
and one multiplication nest); detect_roots, a kernel of cavity
detector which is a medical image application; rasta_filt, a
filtering routine for speech recognition application from
MediaBench[11]; and sub_4 a kernel of QSDPCM (Quad-
Tree Structured Difference Pulse Code Modulation) [13]
which is an inter-frame compression technique for video
images.

4.2 Simulation Results
Fig. 3 illustrates the speedup gained using the proposed

architecture compared with SimpleScalar’s performance
according to the configurations given in the previous
section. In applications where the temporal locality
becomes more dominant (e.g. matrix multiplication) the
performance becomes up to 3.7 times higher than
SimpleScalar’s. This is because the use of scratch-pad
allows better compiler methods than those achievable by
cache hierarchy, due to cache misses. Also cache makes
unnecessary transfers by fetching data through the memory
hierarchy that are not needed for processing. This is
because used and not used data may be stored together in a
cache line and transfers are done in blocks. In cache
memory prefetching is done for data blocks having the size
of a cache line. They are transferred according to the rules
of modulo addressing in which cache misses occur,
decreasing performance. In our architecture prefetching is
done more flexibly since no misses occur. Also, the blocks
transferred in bursts have sizes of multiple cache lines for
decreasing their latency. This is more important to the
highest levels of the memory hierarchy in which the non-
burst response delay is larger.

0
0.5

1
1.5

2
2.5

3
3.5

4

full search
mxm

detect_roots
rasta_filt sub4

Sp
ee

du
p

SimpleScalar Decoupled Architecture

Fig. 3 Normalized Performance of Decoupled Architecture

and SimpleScalar

The relative area delay product cost of MIPS IV and of
the proposed architecture has been estimated using the
delay reports of the Fig. 3 and estimating the area as
described in the simulation method section.

full search mxm
detect_roots rasta_filt sub4

R
el

at
iv

e
A

re
a

D
el

ay
 P

ro
du

ct

0
0.2
0.4
0.6
0.8

1
1.2

SimpleScalar Decoupled Architecture

Fig. 4 Comparison between Decoupled Architecture and

SimpleScalar in terms of area delay product

Fig. 4 shows that the decoupled architecture costs less in
most of the cases except of the rasta_filt case where the cost
is slightly higher. From this experiment it is concluded that
our architecture performs higher in factors larger than 2 and
3 in most cases without any serious area penalty.

We also examined whether the SimpleScalar architecture
using larger conventional caches can outperform the
proposed decoupled architecture of processors.

For this we kept the decoupled architecture’s memory
sizes of L1 and L2 scratch-pads constant at 4KB and 16KB
respectively and increased the data cache sizes of
SimpleScalar for L1 from 4KB to 32KB and L2 from 16KB
to 128KB.

0
0.5

1
1.5

2
2.5

3
3.5

4

full search mxm
detect_roots

rasta_filt sub4
Sp

ee
du

p

Dec_ Arch SS4k_16k SS8k_32k
SS16k_64k SS32k_128k

Fig. 5 Normalized Performance of Decoupled Architecture
and SimpleScalar when caches of variable sizes are used

The results are given in Fig. 5 where in most cases the
SimpleScalar’s performance is stable as the memory sizes
increase and in other cases is increased until a certain
memory size and then becomes stable. The conclusion of
these experiments is that the decoupled processor is faster
than SimpleScalar in all memory sizes used.

0
1
2
3
4
5
6

full search mxm
detect_roots rasta_filt sub4R

el
at

iv
e

A
re

a
D

el
ay

Pr
od

uc
t Dec_ Arch SS4k_16k SS8k_32k

SS16k_64k SS32k_128k

Fig. 6 Area delay product comparison between Decoupled

Architecture and SimpleScalar with caches of variable sizes
The relative area delay product for the above variations

of memory sizes for SimpleScalar was estimated as above
and is shown in Fig. 6. This product becomes far better for
the decoupled architecture as the memory sizes in the
SimpleScalar’s architecture increase.

In the following, we perform a kind of comparison
between our results and those of other existing
architectures. Since the information about their area was not

available for defining the total hardware cost as with MIPS
IV, we converted the results of their measurements in order
to be relevant to our simulation method as described below.

In MediaBreeze [2] the 16 times maximum speedup is a
result of hardware acceleration units included in the Access
processor. More specifically, in each clock cycle four
address, five loops (five branch instructions and five
increment instructions), three load and one store
instructions are computed by the hardware, which
corresponds to 18 instructions per cycle. In applications
with many loop nests and complex addressing such as
motion estimation this hardware has significant impact on
increasing performance.

Continuing in [2], a prefetching engine is introduced
which increases the speedup from 18 to 28 times. For
converting this result to be relevant to our simulation
method, we divide it by a factor of 9 since it is assumed (as
a worst case) that all 18 extra execution units will operate
on 50% of the execution cycles. The relevant increment of
the maximum performance is 3.07 and the average value of
all the results in [2] is 0.9 which are less compared to ours
(3.7 and 2.2 respectively). The average values for [2] here
and [4] below are estimated from the corresponding figures
in these papers. The higher speedup of our architecture is
because we use a more flexible memory hierarchy in which
no data misses occur. Also, prefetching is done in our
architecture more efficiently since data are transferred
through each memory level guided by memory
management techniques, executed by the Access processor.

In order to compare our results with those in [4] a
conversion of the measurements is also needed since the
simulation method is different. The processor in [4] has 8
Function Units (FUs) running in 1 GHz and its performance
is compared with XScale which is a RISC processor with 1
FU running on 400 MHz. We convert those simulation
results by dividing them by a factor of 10
(8*1GHz/400MHz*50%) since it is assumed (as a worst
case) that the execution units will operate on 50% of the
execution cycles. In [4] the maximum difference in
performance between the two processors occurs for the
benchmark GAU, where the architecture in [4] outperforms
XScale nearly 20 times. Its converted value to our
simulation method is 2 and is below our maximum speedup
(3.7). The average values for these testbenches used for
MIPS IV and our architecture are 1.2 and 2.2 respectively
which shows that our architecture is almost twice as fast as
that of MIPS IV.

5. Conclusions
In this paper we have presented a decoupled architecture

of processors having only a scratch-pad memory hierarchy.
The processors synchronization is done through protocol.
We implemented the behavioral VHDL, the compiler’s
front end and the automated flow for generating the
assembly language for the proposed architecture. The

experiments we preformed show that the system’s
performance is increased 2.2 times on average and 3.7
times maximum more than in MIPS IV architecture and
also outperform other existing decoupled architectures,
while the cost in terms of area is inconsiderable. More work
is currently done, focusing on the energy consumed by the
proposed architecture.

References

[1] J. E. Smith, ”Decoupled Access/Execute Architectures”,
Proceedings of the 9th International Symposium on Computer
Architecture, pp. 112-119, May 1982.
 [2] D. Talla, L. K. John, “MediaBreeze: A Decoupled
Architecture for Accelerating Multimedia Applications” ACM
Computer Architecture News, ACM Press, ISSN 0163-5964, pp.
62-67, vol. 29. no. 5, December 2001.
[3] P. Francesco, P. Marchal, D. Atienza, L. Benini, F. Catthoor, J.
Mendias, “An integrated Hardware/Software Approach For Run-
Time Scratchpad Management”, Proceedings of the 41st annual
conference on Design automation, June 07-11, 2004, San Diego,
CA, USA.
[4] B. Mathew, A. Davis, “A Loop Accelerator for Low Power
Embedded VLIW Processors”, Proceedings of the 2nd
IEEE/ACM/IFIP international conference on Hardware/software
codesign and system synthesis, September 08-10, 2004,
Stockholm, Sweden.
[5] P. R. Panda, F. Catthoor, et al. Data and memory optimizations
for embedded systems. ACM TODAES, April 2001.
[6] Kandemir M., et al.“A Compiler Based Approach for
Dynamically Managing Scratch-pad Memories in Embedded
Systems”, IEEE Trans. on CAD. 23 (2), pp.:243 – 260. Feb 2004
[7] M. T. Kandemir, A. Choudhary.“Compiler-directed scratch
pad memory hierarchy design and management”, DAC (2002)
New Orleans, USA
[8] L.Kurian, T.Hulina, L.D. Coraor, ”Memory Latency Effects in
Decoupled Architectures”, IEEE Trans. on Computers, Vol. 43
No. 10, October 1994
[9] D. Burger and T.M. Austin, "The simplescalar toolset, Version
2.0," Comp. Sciences Dept, UW, Tech. Rep., June 1997.
[10] G. Reinman and N. Jouppi. An integrated cache timing and
power model. Technical report, Compaq Western Research
Lab,1999
[11] C. Lee, M. Potkonjak and W. H. Mangione-Smith,
“MediaBench: A Tool for Evaluating and Synthesizing
Multimedia and Communications Systems” International
Symposium on Microarchitecture (1997)
[12] M. Steinhaus, R. Kollaz, J. L. Larriba-Pey, T. Ungerer, M.
Valero,”Transistor Count and Chip-Space Estimation of
SimpleScalar-based Microprocessor Models”, Workshop on
Complexity-Effective Design, June 30, 2001, Göteborg, Sweden
[13] P. Stobach. “A new technique in scene adaptive coding”,
European Signal processing Conference (EUSIPCO), 1998.
[14] M. Dasygenis, E. Brockmeyer, B. Durinck, F. Catthoor, D.
Soudris, A. Thanailakis: A combined DMA and application-
specific prefetching approach for tackling the memory latency
bottleneck. IEEE Trans. VLSI Syst. 14(3): 279-291 (2006)

	Main
	DATE07
	Front Matter
	Table of Contents
	Author Index

