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Abstract 
We present a decoupled architecture of processors with a 
memory hierarchy of only scratch–pad memories, and a 
main memory. The decoupled architecture also exploits the 
parallelism between address computation and processing 
the application data. The application code is split in two 
programs the first for computing the addresses of the data 
in the memory hierarchy and the second for processing the 
application data. The first program is executed by one of 
the decoupled processors called Access which uses 
compiler methods for placing data in the memory 
hierarchy. In parallel, the second program is executed by 
the other processor called Execute.  The synchronization of 
the memory hierarchy and the Execute processor is 
achieved through simple handshake protocol. The Access 
processor requires strong communication with the memory 
hierarchy which strongly differentiates it from traditional 
uniprocessors. The architecture is compared in 
performance with the MIPS IV architecture of SimpleScalar 
and with the existing decoupled architectures showing its 
higher normalized performance. Experimental results show 
that the performance is increased up to 3.7 times. 
Compared with MIPS IV the proposed architecture 
achieves the above performance with insignificant 
overheads in terms of area.  
 
 
1. Introduction 
 

Today’s modern applications require very large amounts 
of data that are accessed through several layers of temporal 
memory storage. Accessing data from the memory 
hierarchy determine to a large extent the system’s 
performance. 

Cache is the most common memory used for temporal 
data storage. However, its performance is frequently limited 
by a number of factors such as data are copied in fixed size 
blocks equal to the cache line size, conflict misses increase 
drastically when the number of processors or functional 
units fed by a memory hierarchy grow. Moreover, data are 
written in cascaded addresses of cache lines which reduces 
the cache’s flexibility of avoiding conflicts.  

Scratch-pad memories are used for overcoming these 
problems, since no conflict misses occur and data blocks 
written, can be of any size less than the scratch-pad’s size. 
Moreover, accessing a scratch-pad memory costs less in 
power and time than cache which consumes more area. 

However, comparing to cache, scratch-pad memories do 
not include a logic circuit responsible for performing its 
read and write operations in bursts. In platforms using 
cache memories, the data transfers between hierarchy levels 
are performed by cache circuits which copy line sized 
blocks while the processor is not concerned on how the data 
are fetched. In platforms with scratch-pad memory 
hierarchy, the processor has to perform each data block 
transfer between levels usually using Direct Memory 
Access (DMA) circuits. However for their initialization, 
extra cycles are needed by the processor for computing the 
data block source and destination addresses in the memory 
layers and for programming the DMAs to perform the 
transfers. To save these extra cycles a separate processor 
strongly communicating with the memory hierarchy is 
required. 

In this paper a decoupled processor architecture is 
presented having a memory hierarchy of only scratch-pad 
memories, and a main memory. In this architecture, the first 
of the processors performs data transfers (Access processor) 
between the main memory, the layers of the scratch-pad 
memory hierarchy and the register file of the Execute 
processor and the second performs data processing 
(Execute processor). 

The main contributions of this architecture are that the 
data transfers between the layers of memory hierarchy are 
controlled by the Access processor. This processor uses 
memory management compiler methods and exploits the 
flexibility of storing data in scratch-pad memories avoiding 
misses and reducing memory accesses while using 
prefetching techniques. By these, the execution time of 
applications is reduced compared to existing decoupled 
processors without scratch-pad memories.  

This paper is organized as follows. Section 2 presents 
the related work. The proposed decoupled processor 
architecture is presented in Section 3. Experimental results 
are given in section 4. Finally, section 5 concludes this 
paper. 
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2. Related work 
 

Decoupled architectures have been researched in the 
past. In [1] the main idea of decoupling is presented. A 
more recent decoupled architecture with additional 
hardware for increasing performance is shown in [2]. A 
cache hierarchy exists between the main memory and the 
processor that computes the memory addresses. It should be 
noted that none of the above architectures handle 
scratchpad memory hierarchy addressing. 

Scratchpad management techniques are presented in [5]. 
[7] describes Scratchpad compiler techniques that 
outperform techniques applied in cache. [3] and [6] present 
run time techniques, applied in uniprocessor platforms. In 
[14] the benefits on hiding memory latency are presented, 
using DMA combined with a software prefetch technique 
and a customized on-chip memory hierarchy mapping.  In 
[8] there is a study showing that decoupled processors with 
caches outperform uniprocessors with caches and that this 
speedup is increased as the memory latencies increase.  

In [3] run time management of scratchpad is presented. 
The platform used contains one level of cache, one of 
scratch pad, a DMA engine, and a controller that controls 
the DMA engine. The computation of memory addresses 
are done by the processor that also handles processing data, 
which means the architecture of [3] is not decoupled. 

Finally, in [4] an SRAM memory architecture is used on 
a VLIW processor while a distributed address generation 
architecture with a loop acceleration unit calculates the 
memory addresses of data to be transferred to/from the 
SRAMs. The start addresses of the data blocks that are to 
be transferred are generated at compile time which 
increases the instruction code size significantly. This is 
avoided in our architecture by assigning the delivering of 
data to the Access processor which will calculate each time 
the new start addresses of the data blocks executing 
repeatedly one code routine, thus keeping the instruction 
code size small. 
  Continuing in [4], the use of address generators for 
fetching data to the functional units contributes a lot on 
increasing the performance of applications with stream 
computations but in the case of random data accessing there 
shall be serious initialization overheads. The transfer from 
the main memory to L1 scratch-pad is not on the paper’s 
scope. In our work the complete transfer of data from main 
memory to the register file of the Execute processor and 
vice versa is performed by the Access processor.  
 
3. Proposed Architecture 
 

The decoupled Architecture of processors is shown in 
Fig. 1. It consists of a main memory, a memory hierarchy 
of various levels of SRAMs (next are referred as Scratch-
pad memories), DMAs for the transfers of data between the 

above levels, an Access Processor, an Execute processor 
and a small buffer used for communication between the two 
processors.  

The DMAs are as many as the levels of memory 
hierarchy and are used for the transfer of data in bursts 
between them. 

The task for the transfer of data between the layers of 
memory hierarchy is critical for the system’s performance. 
Using scratch-pad in our architecture, data can be placed at 
any of its memory location. The block sizes transferred 
to/from scratch-pad can be of any size. For our memory 
hierarchy a compiler is used for applying memory 
management techniques. The Access processor executes the 
compiler’s output taking design time and also run time 
decisions, increasing the system’s performance.  

The Access processor is as an integer processor. Its main 
operations are the   computation    of   the   addresses in the 
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Fig. 1 Proposed Architecture 

memory hierarchy for storing the application’s data types 
and the control of the DMAs for the transfers of data 
between the levels of memory hierarchy.  

Computation of the addresses need very small amount of 
data compared to the data of the Execute processor (e.g. the 
base address of a data type stored in a level of memory 
hierarchy). For that reason the Access processor does not 
need a separate data memory hierarchy. It uses one memory 
hierarchy for storing data and program without having 
serious performance overhead.  

The Execute Processor is a processor that can handle 
both integer and floating point numbers. Its main task is the 
processing of application’s data. It does not contain any 
load/store instructions in its instruction set since this task is 
assigned to the Access processor and the DMAs. The DMA 
between L1 scratch-pad and the Execute processor (Fig. 1), 
executes instructions provided by the Access processor for 
placing data from L1 scratch-pad to the Execute processor’s 



 

register file and vice versa. Having this functionality the 
Execute processor focuses only on processing application’s 
data and since the proposed architecture is decoupled these 
data are prefetched in its register file  which leads  to 
increased performance as the delay of data to be fetched is 
most of the times eliminated.  

Communication between the Access and Execute 
processors is a critical task in order for the system to 
operate efficiently. For that reason it must be sure that the 
correct data are placed in the Execute processor’s register 
file before the execution of the set of instructions 
corresponding to these data. Also, it must be sure that the 
action of sending data from the Execute processor’s register 
file to L1 scratch-pad has been concluded before new data 
are written in the same registers replacing the old ones. For 
that reason the two processors communicate through the 
buffer in Fig.1 with a simple handshake protocol. 

They must also communicate in the case where the 
execution path in the Control Data Flow Graph changes 
(e.g. when a branch is executed in which different data are 
required for each case of the branch). The above buffer is 
used in this case by the two processors for declaring which 
of the execution paths is followed.  

The size of the buffer is small (16 bytes are enough) 
since it is needed for writing information about data that 
exist in the Execute processor’s register file and for 
currently executed branches. Also it is not accessed as 
frequently as the register file of the Execute processor but 
only when a data block has been transferred or a critical 
branch occurs which does not comprise a significant 
overhead to the system’s performance.  

An example of the code executed by the decoupled 
processors is shown in Fig.2. The code calculates the 
average values of sixteen numbers repeatedly. In the 
example there are two data types used, the input data type 
whose values are averaged and the output data type which 
contain the result of the average process. When the Execute 
processor requests a block to be transferred to/from its 
register file, it writes the value 1 to the communication 
buffer when the input data type is requested and 2 for the 
output data type. The Access processor reads these values 
and executes the transfer for the correct data type.  In effect 
the above is an implementation of handshake protocol. 

The Execute processor (Fig. 2) using the LOAD_com 
command (line: 1) sends an interrupt request to the Access 
processor for transferring the first eight numbers to the 
register file and writes the value 1 to the first register of the 
buffer (BUF[1]) to declare to the Access processor that a 
new block of data is requested from the input data type. In 
line 3 there is a check whether the Access processor has 
transferred the requested block to the Execute processor’s 
register file (the Access processor writes the value 0 to 
BUF[1] when the transfer has been completed). This is 
done using while loops (lines 3, 13). In the case that the 
Access processor has not written the zero value to the first 

register of the buffer, the processing of the next eight 
numbers is stalled. 

Access Processor 
1:   while(1){ 
 
2:   Transfer(M_2_L2); 
 
3:   Transfer (L2_2_M); 
 
4:   Transfer (L2_2_L1); 
 
5:   Transfer (L1_2_L2); 
 
6:   } 
 
7:   Int_Routine1: 
8:   Transfer (L1_2_RF); 
 
9:   Int_Routine2: 
10: BUF[1]=BUF[1]-BLOCKSIZE; 
 
12: Int_Routine3: 
13: Transfer (RF_2_L1); 
 
14: Int_Routine4: 
15: BUF[2]=BUF[2]-BLOCKSIZE;

Execute Processor 
1 :LOAD_COM; 
2 :while(1){ 
3 :  while(BUF[1]!=0){  }
4 :  LOAD_COM; 
5 :  R0=R0+R1; 
6 :  R0=R0+R2; 
7 :  R0=R0+R3; 
8 :  R0=R0+R4; 
9 :  R0=R0+R5; 
10 :  R0=R0+R6; 
11 :  R0=R0+R7; 
12 :  R0=R0+R8; 
13 :  while(BUF[1]!=0){ } 
14 :  LOAD_COM; 
15 :  R0=R0+R11; 
16 :  R0=R0+R12; 
17 :  R0=R0+R13; 
18 :  R0=R0+R14; 
19 :  R0=R0+R15; 
20 :  R0=R0+R16; 
21 :  R0=R0+R17; 
22 :  R0=R0+R18; 
23 :   while(BUF[2]!=0){ }
24 :  R9=R0/16; 
25 :  STORE_COM; 
26 :}  

Fig. 2 Decoupled Processor pseudo-code example 
Continuing, the Execute processor requests the next block 
of data using the LOAD_com command (line: 4) and while 
the Access processor transfers (prefetch) it to the register 
file in different locations than the first block, the Execute 
processor calculates the first 8 sums of the first block. The 
same technique for writing data to the Execute processor’s 
register file from L1 scratch-pad is used for transferring 
them to the opposite direction. In the example of Fig. 2 the 
R9 register contains the value of output data type which 
must be stored in L1 scratch-pad. The Execute processor 
sends an interrupt request to the Access processor for 
uploading the value of R9 and writes to the second register 
of the buffer the value 2 using the STORE_COM command 
(line: 25). Before writing the new value to R9 it must be 
sure that the Access processor has already sent the previous 
average number to L1 scratch-pad (line:23). If the second 
register of the buffer is zero then the Execute processor 
writes the next average value to R9 (line: 24) else it waits. 

The Access processor transfers data through the main 
memory to L1 scratch-pad using a polling technique. In Fig. 
2 this is shown in pseudo-code in the Access processor 
code (lines: 1-6).  It also receives two kinds of interrupts. 
One from the Execute processor for writing/reading new 
data from L1 scratch-pad to its register file (lines: 8, 13) 
and vice versa and one from the lower DMA indicating that 
the last transfer is completed and the registers in the buffer 
must be updated (lines: 10, 15).  Using interrupts for 
transferring data to/from the register file from/to L1 
scratch-pad ensures that the stalling time of the Execute 
processor until data arrive will be minimized.   



 

It is important to notice that the program of the Execute 
processor is much less sized compared to the corresponding 
one of a uniprocessor as there are no load instructions for 
every new data word but only a request for a block of eight 
words. This decreases even more the application’s 
execution time. Also the code size is not increased by the 
amount of instructions used for the two processors’ 
communication as indicated in Fig. 2 since it is very small 
compared to the application’s total code size. 

Observing the architecture of the decoupled processor in 
Fig. 1 it can be concluded that transferring of data through 
the memory levels of hierarchy is a task separated from 
processing and assigned to the Access processor which uses 
prefetching techniques. The Access processor provides a 
flexible way of placing data to the levels of the memory 
hierarchy with no misses following memory management 
techniques. Also, this memory hierarchy can operate in a 
pipelined way since the Access Processor may transfer 
every available data and not a distinct data type through the 
whole path at a time, decreasing significantly the total 
transfer time from the Execute Processor to the Main 
Memory. Data are transferred in blocks usually larger in 
size than the cache line sizes making the instructions for 
these transfers less and avoiding getting the processing load 
of the Access processor high.  The Execute processor is not 
occupied with accessing memory but processes the 
application data which are prefetched in its register file 
reducing the memory hierarchy’s delay.  

 
4. Experimental Evaluation 
 

In this section we present the simulation method and the 
experimental results of comparing the proposed architecture 
with the MIPS IV architecture. Also our experimental 
results are compared to the architectures in [2] and [4].  

4.1 Simulation Method 
  We used the SimpleScalar simulator [9] for measuring 
the MIPS IV performance. Table 1 shows the SimpleScalar 
configuration used for our measurements. For fairness, the 
MIPS IV processor may execute 2 instructions in parallel. 
By this way the MIPS processor is able to perform 
load/store operations in parallel with data processing 
operations. All benchmarks for running in the SimpleScalar 
simulator were compiled by the gcc compiler using 
optimization level –O3. For evaluating our architecture we 
created its behavioral VHDL model using in-order 
processors for the Execute and Access ones having 
instruction set identical to that of MIPS IV, one Arithmetic 
Logic Unit (ALU) and one multiplier. Each processor 
executes one instruction per cycle. We implemented the 
front end of a C compiler using lexical and syntax analysis 
tools and an automated flow for generating the assembly 
code of the processors. The C codes of the benchmarks that 

were input to our compiler’s front end were optimized 
manually.  

The actual delay times of the memories used are 
provided from the Cacti model [10]. In the experiments of 
Fig. 3 and Fig. 4 we used L1 and L2 memories with sizes of 
4KB and 16KB correspondingly. In the experiments of Fig. 
5 and Fig. 6 we used the  memory sizes given above for our 
architecture while for SimpleScalar the size for L1 cache 
varied from 4KB to 32KB and for L2 cache from 16KB to 
128KB.  The main memory is an SRAM of 256KB since 
this was the largest size that our benchmark required. Its 
latency is also provided by the Cacti model. In most 
systems the off chip memory size requirements are much 
larger and their latencies are also increased. However, as 
proved in [8] the more the memory latencies increase the 
better the decoupled processors performance become, 
comparing to uniprocessors’ performance. For that reason 
the gains of our architecture become larger. For our DMAs 
we used circuits with a simple functionality for transferring 
data in bursts. For this operation a more simplified version 
of the loop unit of [4] which can only execute one loop 
instruction per cycle is used having 1 cycle latency for each 
new address calculation. 

Table 1. SimpleScalar configuration 

Integer alu  1 Fetch ifqsize 2 
Integer mult  1 Load/Store Queue 8 
Issue width 2 RUU 16 
Decode width 2 Branch Prediction Perfect 

 
In [12] a method for estimating the MIPS IV area 

according to its configuration is given. The technology used 
was 0.5 micron. We applied this method for 0.18 micron. 
After estimating the area of each architecture we compared 
them calculating their ratio for avoiding any method 
variations between the two architectures. The differences of 
our architecture with the SimpleScalar’s in terms of area are 
that in our case there are two in order processors with no 
Register Update Unit (RUU), the Access processor is 
integer and has no floating point unit and the data memory 
hierarchy does not include tag arrays. The dominant 
components for area are the memories and not the 
processors. For these reasons the area in the decoupled 
architecture is slightly incremented by 5.1% compared to 
the one in the SimpleScalar’s architecture. 

Our benchmark suite consists of five benchmarks: 
full_search, a motion estimation code; mxm, an integer 
matrix multiplication program (it contains one initialization 
and one multiplication nest); detect_roots, a kernel of cavity 
detector which is a medical image application;  rasta_filt, a 
filtering routine  for speech recognition application from 
MediaBench[11]; and sub_4 a kernel of QSDPCM (Quad-
Tree Structured Difference Pulse Code Modulation) [13] 
which is  an inter-frame compression technique for video 
images. 



 

4.2 Simulation Results  
Fig. 3 illustrates the speedup gained using the proposed 

architecture compared with SimpleScalar’s performance 
according to the configurations given in the previous 
section. In applications where the temporal locality 
becomes more dominant (e.g. matrix multiplication) the 
performance becomes up to 3.7 times higher than 
SimpleScalar’s. This is because the use of scratch-pad 
allows better compiler methods than those achievable by 
cache hierarchy, due to cache misses. Also cache makes 
unnecessary transfers by fetching data through the memory 
hierarchy that are not needed for processing. This is 
because used and not used data may be stored together in a 
cache line and transfers are done in blocks. In cache 
memory prefetching is done for data blocks having the size 
of a cache line. They are transferred according to the rules 
of modulo addressing in which cache misses occur, 
decreasing performance. In our architecture prefetching is 
done more flexibly since no misses occur. Also, the blocks 
transferred in bursts have sizes of multiple cache lines for 
decreasing their latency. This is more important to the 
highest levels of the memory hierarchy in which the non-
burst response delay is larger. 
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Fig. 3 Normalized Performance of Decoupled Architecture 

and SimpleScalar 

The relative area delay product cost of MIPS IV and of 
the proposed architecture has been estimated using the 
delay reports of the Fig. 3 and estimating the area as 
described in the simulation method section.  
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Fig. 4 Comparison between Decoupled Architecture and 

SimpleScalar in terms of area delay product 

Fig. 4 shows that the decoupled architecture costs less in 
most of the cases except of the rasta_filt case where the cost 
is slightly higher. From this experiment it is concluded that 
our architecture performs higher in factors larger than 2 and 
3 in most cases without any serious area penalty. 

We also examined whether the SimpleScalar architecture 
using larger conventional caches can outperform the 
proposed decoupled architecture of processors. 

For this we kept the decoupled architecture’s memory 
sizes of L1 and L2 scratch-pads constant at 4KB and 16KB 
respectively and increased the data cache sizes of 
SimpleScalar for L1 from 4KB to 32KB and L2 from 16KB 
to 128KB.  
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Fig. 5 Normalized Performance of Decoupled Architecture 
and SimpleScalar when caches of variable sizes are used 

The results are given in Fig. 5 where in most cases the 
SimpleScalar’s performance is stable as the memory sizes 
increase and in other cases is increased until a certain 
memory size and then becomes stable. The conclusion of 
these experiments is that the decoupled processor is faster 
than SimpleScalar in all memory sizes used.   
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Fig. 6 Area delay product comparison between Decoupled 

Architecture and SimpleScalar with caches of variable sizes 
The relative area delay product for the above variations 

of memory sizes for SimpleScalar was estimated as above 
and is shown in Fig. 6. This product becomes far better for 
the decoupled architecture as the memory sizes in the 
SimpleScalar’s architecture increase.  

In the following, we perform a kind of comparison 
between  our results and those of other existing 
architectures. Since the information about their area was not 



 

available for defining the total hardware cost as with MIPS 
IV, we converted the results of their measurements in order 
to be relevant to our simulation method as described below. 

In MediaBreeze [2] the 16 times maximum speedup is a 
result of hardware acceleration units included in the Access 
processor. More specifically, in each clock cycle four 
address, five loops (five branch instructions and five 
increment instructions), three load and one store 
instructions are computed by the hardware, which 
corresponds to 18 instructions per cycle. In applications 
with many loop nests and complex addressing such as 
motion estimation this hardware has significant impact on 
increasing performance.  

Continuing in [2], a prefetching engine is introduced 
which increases the speedup from 18 to 28 times. For 
converting this result to be relevant to our simulation 
method, we divide it by a factor of 9 since it is assumed (as 
a worst case) that all 18 extra execution units will operate 
on 50% of the execution cycles. The relevant increment of 
the maximum performance is 3.07 and the average value of 
all the results in [2] is 0.9 which are less compared to ours 
(3.7 and 2.2 respectively).  The average values for [2] here 
and [4] below are estimated from the corresponding figures 
in these papers. The higher speedup of our architecture is 
because we use a more flexible memory hierarchy in which 
no data misses occur. Also, prefetching is done in our 
architecture more efficiently since data are transferred 
through each memory level guided by memory 
management techniques, executed by the Access processor. 

In order to compare our results with those in [4] a 
conversion of the measurements is also needed since the 
simulation method is different. The processor in [4] has 8 
Function Units (FUs) running in 1 GHz and its performance 
is compared with XScale which is a RISC processor with 1 
FU running on 400 MHz. We convert those simulation 
results by dividing them by a factor of 10 
(8*1GHz/400MHz*50%) since it is assumed (as a worst 
case) that the execution units will operate on 50% of the 
execution cycles. In [4] the maximum difference in 
performance between the two processors occurs for the 
benchmark GAU, where the architecture in [4] outperforms 
XScale nearly 20 times. Its converted value to our 
simulation method is 2 and is below our maximum speedup 
(3.7). The average values for these testbenches used for 
MIPS IV and our architecture are 1.2 and 2.2 respectively 
which shows that our architecture is almost twice as fast as 
that of MIPS IV. 

5. Conclusions  
In this paper we have presented a decoupled architecture 

of processors having only a scratch-pad memory hierarchy. 
The processors synchronization is done through protocol. 
We implemented the behavioral VHDL, the compiler’s 
front end and the automated flow for generating the 
assembly language for the proposed architecture. The 

experiments we preformed show that the system’s 
performance is increased 2.2 times on average and 3.7 
times maximum more than in MIPS IV architecture and 
also outperform other existing decoupled architectures, 
while the cost in terms of area is inconsiderable. More work 
is currently done, focusing on the energy consumed by the 
proposed architecture. 
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