
Feasibility of Combined Area and Performance Optimization for Superscalar
Processors Using Random Search

S. van Haastregt
LIACS, Leiden University
svhaast@liacs.nl

P.M.W. Knijnenburg
Informatics Institute, University of Amsterdam

peterk@science.uva.nl

Abstract

When designing embedded systems, one needs to make
decisions concerning the different components that will be
included in a microprocessor. An important issue is the chip
area vs. performance trade-off. In this paper we investigate
the relationship between chip area and performance for su-
perscalar microprocessors. We investigate the feasibility to
obtain a suitable configuration by searching. We show that
our approach gives a good configuration after 100 to 150
iterations using a simple random search algorithm. This
shows the feasibility of our approach, in particular when
more sophisticated search algorithms are employed as we
plan in future work.

1. Introduction

Current embedded systems require high performance.
Therefore, several current and many future embedded
processors are out-of-order or even simultaneous multi-
threaded [8]. A drawback of these types of processor is that
they consume much silicon area because of the complicated
control structures required to support out-of-order execu-
tion [6]. This may be problematic for embedded systems
where silicon area is expensive. Therefore, it is important
to tune the architecture in such a way that maximum per-
formance is achieved using a minimal amount of resources.
Obviously, this is very difficult for general purpose proces-
sors, but in the case of embedded processors that only run
a limited set applications, it may be possible to select a re-
stricted set of resources in such a way that high performance
still is achieved. For in-order processors there exist many
approaches to explore the design space [5]. For example,
PICO is an automatic system to explore application spe-
cific VLIW processors [7]. In the Artemis project [13] two
different frameworks for the simulation phase are adopted:
Spade [9] provides a model for rapid high level architec-
ture performance simulations, and Sesame [12], provides a
method for evaluating designs at multiple abstraction levels.

Recently, Eyerman et al. have proposed methods to ex-
plore the design space of out-of-order processors [4] fo-
cussing mainly on performance. In this paper, we study
the feasibility to automatically search for good out-of-order
processors configurations for specific applications, paying
attention to both performance and area. That is, we want
to find a processor configuration that is small but powerful
enough for specific applications.

We use the SimpleScalar toolset as the design space to
explore [1]. SimpleScalar allows us to set many architec-
tural parameters. Each component has a different effect on
the final performance. Furthermore, there exist dependen-
cies between these components. For example, increasing
the number of arithmetical units will not increase perfor-
mance, unless multiple instructions can be executed in par-
allel. It requires extensive analysis to find all dependen-
cies between the various components and the list of depen-
dencies quickly becomes complex. As we show in Sec-
tion 2, even with a relatively small amount of possible de-
sign options (from now on referred to as tuning parame-
ters), the search space is huge. Therefore, we employ a
random search algorithm to explore only a fraction of this
space. We show that in this way, using only about 100 to
150 configurations, we can find a high performance archi-
tecture that is much smaller than a general purpose architec-
ture. This shows the feasibility of our approach, particularly
when more sophisticated search algorithms are developed
as we plan in future work.

This paper is structured as follows. In Section 2, we de-
scribe the experiments we have performed with this new
approach, and Section 3 contains the results of these exper-
iments and we also give a short discussion. In Section 4, we
mention some possible directions for future work. Section 5
summarizes this paper.

2. Experimental Setup

In this section, we discuss how we generate configura-
tions, how performance is measured, the parameters of our
experiments and the area model that is being used.

978-3-9810801-2-4/DATE07 © 2007 EDAA

The search algorithm we use in our experiments is the
most basic one available: we randomly generate a set
of 1000 configurations (without duplicates) using different
tuning parameters and then measure the performance and
calculate the area of each configuration.

To evaluate the performance of each configuration, we
use the SimpleScalar Tool Set [1]. The SimpleScalar simu-
lator supports several instruction set architectures. We use
the PISA architecture.

We use two applications for our experiments, ijpeg
and mpeg2dec. Both of these programs rely heavily on in-
teger calculations and scarcely on floating point operations.
Therefore, we keep the number of floating point arithmeti-
cal units constant throughout the experiments. The ijpeg-
simulation accounts for a total of about 1.1 × 109 instruc-
tions. The mpeg2dec-simulation results in about 1.3 × 108

instructions.
We have selected the following tuning parameters. In an

iteration a value from the matching parameter value set is
assigned to each parameter.

• Data cache size: number of bytes of the first level
direct mapped data cache, blocksize of 32 bytes.
We use 6 values: {1024, 2048, 4096, 8192,
16384, 32768}

• Instruction cache size: number of bytes of the di-
rect mapped instruction cache, blocksize of 32 bytes.
We use 6 values: {1024, 2048, 4096, 8192,
16384, 32768}

• GShare branch predictor size: A GShare branch
predictor consists of a w bits wide shift register (the
global history register, containing the history of the
w most recently executed branches) and a table con-
taining 2w bimodal counters [10]. We use 5 values:
{512, 1024, 2048, 4096, 8192}

• Branch Target Buffer (BTB) size: the maximum
number of entries in the BTB. We use 6 values: {1,
64, 128, 256, 512, 1024}

• Register Update Unit (RUU) size: the number of
slots available in the RUU, the unit that controls the
out-of-order execution. We use 7 values: {2, 4, 8,
16, 32, 64, 128}

• Number of integer ALUs: the number of integer
Arithmetic Logic Units available. We use 5 values:
{1, 2, 3, 4, 5}

• Number of memory ports: the number of ports avail-
able to the CPU to access the first level cache. We use
4 values: {1, 2, 3, 4}

• Instruction fetch queue size: the maximum number
of instructions that can be stored in the fetch queue.
We use 5 values: {1, 2, 4, 8, 16}

• Instruction issue width: the maximum number of in-
structions that can be issued per cycle. We use 3 val-
ues: {2, 4, 8}

• Load/Store Queue (LSQ) size: The LSQ handles the
actual memory communication and contains a mecha-
nism that avoids data hazards. We use 4 values: {2,
4, 8, 16}

All other possible architecture parameters remain constant
throughout the experiment and are set at the SimpleScalar
default values. With this set of parameters, more than nine
million different configurations are possible.

To obtain an estimate of the area of a particular proces-
sor configuration, we use the model proposed by Steinhaus
et al. [14] extended to cover GShare. This model provides
an area estimate for a superscalar microprocessor design,
specified using a SimpleScalar configuration, using analyt-
ical and empirical models. Chip area is expressed in λ2 in
order to get a quantity that is independent of the technology
used to manufacture the microprocessor. Here, λ is defined
as half of the minimum feature size which is the size of the
smallest transistor, interconnect, etc. that can be produced
using a certain manufacturing process.

3. Results

3.1. Simulation Results

We ran 1000 performance simulations for ijpeg and
mpeg2dec to generate the search space that we use in our
experiments below. The results are plotted in Figures 1 and
2 where the x-axis represents the area corresponding to a
single configuration and the y-axis shows the performance,
which is calculated by:

performance =
1

number of cycles

We also executed four additional simulations for each
benchmark, which are plotted using horizontal lines. First,
we determined the performance for the minimum and max-
imum configuration, by selecting the smallest and largest
values, respectively, for each tuning parameter. These are
called “reachable minimum” and “reachable maximum”.
Next, we determined the absolute lower bound allowed by
SimpleScalar by selecting the minimum value for each tun-
ing parameter. Finally, we determined an estimate of the
upper bound by selecting very large values for each tuning
parameter as listed in Table 1. The sizes of these configura-
tions is listed in Table 2.

Register Update Unit size 2048 slots
Data cache size 16 Megabytes
Instruction cache size 16 Megabytes
GShare branch predictor size 524288 entries
Branch target buffer size 524288 entries
Number of integer ALUs 8 (maximum)
Number of memory ports 8 (maximum)
Instruction issue width 64 instructions per cycle
Instruction fetch queue size 64 instructions
Load/Store Queue size 1024 entries

Table 1. Parameters estimated upper bound.

Configuration Area (Mλ2)
Speedup

ijpeg mpeg2

Reachable minimum 11250 1.0 1.0
Reachable maximum 44539 6.4 7.5
Minimal configuration 11168 0.6 0.7
Huge configuration 13764139 7.2 8.5

Table 2. Area and speedup of reference con-
figurations.

Figures 1 and 2 show that there is a difference in per-
formance between the minimum reachable and maximum
reachable configurations of about a factor of five. Compared
to this, the difference between the reachable minimum and
the SimpleScalar minimum is quite small. The same applies
to the difference between the reachable maximum and the
large SimpleScalar configuration. Thus, the value sets we
have chosen for the tuning parameters cover a broad range
of the search space.

One immediately notices the four clusters that appear in
both plots. These turn out to be caused by the “number
of memory ports” parameter: each value for this parameter
corresponds to a cluster. Since this parameter has a huge im-
pact on the total area of a configuration, it clearly separates
the different classes. This is caused by the amount of addi-
tional wiring and logic needed for each memory port. For
example, when the number of memory ports is increased
by one, the load/store queue requires at least one additional
read and write port for each of its SRAM cells. This is be-
cause the LSQ must be able to serve an additional read or
write operation during a single cycle. The area of several
other components, like the register file, TLB and cache, is
influenced in a similar manner. However, it seems there
is not much to gain anymore when the number of memory
ports is higher than 2.

We observe that the majority of the configurations is lo-
cated below two times the performance of the reachable
minimum. However, there are some differences when look-

ing at certain individual configurations. Some have a high
performance for the ijpeg benchmark while that same
configuration does not perform as well as in the mpeg2dec
simulation, although the performance still lies above the av-
erage. Interestingly, this hardly holds conversely: configu-
rations that perform well for the mpeg2dec benchmark are
also among the best performing configurations of ijpeg.

3.2. Improvement under Area Restrictions

In this section, we study how fast the random search al-
gorithm finds a good configuration when we impose a limit
on the allowable area. Such a limit is important in practice
when a system needs to be fit on a given amount of silicon.
The measure of “goodness” we employ is speedup over the
reachable minimum configuration. For a configuration x,
speedup(x) is given by:

speedup(x) =
performance(x)

performance(min config.)

Speedups of the reference configurations are shown in Ta-
ble 2. We use area restrictions ranging from 12,000 to
30,000 Mλ2. The resulting plots, shown in Figures 3 to
8, are produced by iterating over the set of 1000 configura-
tions. The performance of each configuration that satisfies
the area restriction is plotted. The two different lines in a
figure indicate the best configuration encountered so far for
both benchmarks.

In Figure 3 we pose a limit that is only slightly larger
than the minimum area shown in Table 2. We still produce
a configuration that is about 2.5 times as fast as this min-
imal one. This shows that carefully selecting a few extra
resources can be highly effective.

Limits of 13,000 to 15,000 Mλ2 produce better configu-
rations with speedups of around 4. For ijpeg, these limits
deliver the same configurations, as shown in Table 3. For
mpeg2dec, a larger value for the limit is used for a larger
instruction cache, as shown in Table 3. This indeed gives a
higher performance, as shown in Figures 5 and 6.

When the limit allows more than 1 memory port, 2 mem-
ory ports are chosen, as shown in Table 2. Figures 7 and 8
show that this gives more performance than 1 port. When
the limit is 30,000 Mλ2, 3 ports could be accommodated.
However, this value is not chosen, indicating that such extra
port does not give extra performance compared to 2 ports.

Finally, we note that we only need around 100 simula-
tions to find good candidates, irrespective of the limit we
impose on the area. When the area limit is 20,000 Mλ2, a
better configuration is found after about 400 iterations, but
the configuration after 100 iterations already produces good
results. This shows that our simple approach of using a ran-
dom search algorithm is already reasonably effective.

 0

 5e-10

 1e-09

 1.5e-09

 2e-09

 2.5e-09

 3e-09

 10000 15000 20000 25000 30000 35000 40000 45000

P
er

fo
rm

an
ce

Area (106 lambda2)

reachable minimum
reachable maximum

sim-outorder minimum
huge sim-outorder config

Figure 1. Area vs. performance ijpeg

 0

 5e-09

 1e-08

 1.5e-08

 2e-08

 2.5e-08

 3e-08

 10000 15000 20000 25000 30000 35000 40000 45000

P
er

fo
rm

an
ce

Area (106 lambda2)

reachable minimum
reachable maximum

sim-outorder minimum
huge sim-outorder config

Figure 2. Area vs. performance mpeg2dec

data instr. branch BTB RUU #ALUs #memports FQsize Issue LSQ
cache cache pred. width

ijpeg

area ≤ 12000 Mλ2

2048 16384 512 512 16 1 1 2 2 4

area ≤ 13000 Mλ2

2048 8192 2048 512 32 5 1 4 4 16

area ≤ 14000 Mλ2

2048 8192 2048 512 32 5 1 4 4 16

area ≤ 15000 Mλ2

2048 8192 2048 512 32 5 1 4 4 16

area ≤ 20000 Mλ2

8192 32768 4096 64 64 3 2 8 4 16

area ≤ 30000 Mλ2

8192 16384 1024 256 128 4 2 4 8 16

mpeg

area ≤ 12000 Mλ2

1024 2048 512 512 8 5 1 2 2 16

area ≤ 13000 Mλ2

2048 8192 2048 512 32 5 1 4 4 16

area ≤ 14000 Mλ2

2048 32768 1024 128 64 3 1 4 4 8

area ≤ 15000 Mλ2

2048 32768 1024 128 64 3 1 4 4 8

area ≤ 20000 Mλ2

8192 32768 4096 64 64 3 2 8 4 16

area ≤ 30000 Mλ2

2048 32768 2048 256 128 5 2 8 4 16

Table 3. Configurations

Combining the configurations in Table 3 and the
speedups from Figures 3 to 8, it is clear that both caches
do not need to be that large for ijpeg. A data cache of
2048 bytes and an instruction cache of 4096 bytes should be
sufficient. For the mpeg2dec benchmark, the same holds
for the data cache, but the preferred instruction cache size
turns out to be 32 kilobytes. This stresses that one should be
careful when evaluating simulation data: the microproces-
sor configurations that are returned by our approach depend
highly on the benchmark applications used. It shows how
important it is to chose the right benchmark suite when de-
signing a microprocessor.

In general, the RUU size needs to be at least 32 and
the BTB size at least 64. In the best performing configu-
rations, the branch predictor size varies between the lowest
and highest possible values. So it seems this parameter does
not have a big influence on the performance. For the ijpeg
benchmark, the average branch predictor accuracy is about
89%. For the mpeg2dec benchmark, the average accu-
racy is about 97%. In general, the accuracy doesn’t deviate
more than 1% from the average for both benchmarks. The
minimum number of integer ALUs that need to be included
turns out to be 3 for both benchmark applications. The fetch
queue size, issue width and load/store queue size tend to
have higher values for good performance results (≥ 4, ≥ 4,
≥ 8, respectively). The only aspect in which both bench-
marks significantly differ is the fetch queue size: in general,
the mpeg2dec benchmark performs better when the fetch
queue size equals eight or sixteen.

4. Future Work

In this paper, we have used a very simple random search
algorithm. The results of the simulations are not used for
any feedback. Doing so could improve the search. For ex-
ample, genetic algorithms can be used. Another direction
is by applying data mining techniques on the obtained data,
which consists of the configurations together with their es-
timated area and computed performance to create heuristics
in order to decrease the size of the search space. An exam-
ple heuristic can restrict the number of ALUs to the number
of instructions that can be fetched simultaneously. Another
heuristic can prevent a configuration from having more LSQ
slots than RUU slots. Furthermore, one could try to improve
the performance simulation step. A possible way to do this,
is to use small, but representative inputs for the benchmark
applications used in the simulations [3]. Another approach
could use statistical simulation [11, 2].

5. Conclusion

In this paper we have shown the feasibility of an iterative
approach to the problem of finding suitable microprocessor

configurations: we can find a a high performance configu-
ration that satisfies a given area restriction using a simple
search algorithm and a limited number of iterations. We
have shown that even a small increase in the resources com-
pared to a minimal configuration can give a speedup of 2.5,
which implies that tuning a processor can be highly effec-
tive. Our results suggest that around 100 evaluations could
be sufficient. However, this can still be too time consuming,
in particular when several applications need to accommo-
dated. Therefore, in future work, we focus on reducing this
number by designing more sophisticated search algorithms
than the random search from this paper.

References

[1] T. Austin, E. Larson, and D. Ernst. SimpleScalar: An infras-
tructure for computer system modeling. IEEE Computer,
35(2):59–67, 2002.

[2] L. Eeckhout and K. D. Bosschere. Hybrid analytical-
statistical modeling for efficiently exploring architecture and
workload design spaces. In Proc. PACT, 2001.

[3] L. Eeckhout, H. Vandierendonck, and K. de Bosshere.
Quantifying the impact of input data sets on program behav-
ior and its applications. J. of Instruction-Level Parallelism,
5:1–33, 2003.

[4] S. Eyerman, L. Eeckhout, and K. D. Bosschere. Efficient de-
sign space exploration of high performance embedded out-
of-order processors. In Proc. DATE, 2006.

[5] M. Gries. Methods for evaluating and covering the design
space during early design development. Integration, the
VLSI Journal, 38(2):131–183, 2004.

[6] J. L. Hennessy and D. A. Patterson. Computer Architecture:
A Quantitative Approach. Morgan Kaufmann, 1996.

[7] V. Kathail, S. Aditya, R. Schreiber, B. Rau, D. Cronquist,
and M. Sivaraman. PICO: Automatically designing custom
computers. IEEE Computer, 35(9):39–47, 2002.

[8] M. Levy. Multithreaded technologies disclosed at MPF. Mi-
croprocessor Report, Nov. 2003.

[9] P. Lieverse, P. van der Wolf, E. Deprettere, and K. Vissers. A
methodology for architecture exploration of heterogeneous
signal processing systems. In Proc. SiPS, pages 181–190,
1999.

[10] S. McFarling. Combining branch predictors. Technical Re-
port TN-36, Digital Western Research Lab., 1993.

[11] S. Nussbaum and J. E. Smith. Modeling superscalar proces-
sors via statistical simulation. In Proc. PACT, pages 15–24,
2001.

[12] A. Pimentel, C. Erbas, and S. Polstra. A systematic approach
to exploring embedded system architectures at multiple ab-
styraction levels. IEEE Trans. on Computers, 55(2):99–112,
2006.

[13] A. D. Pimentel, , P. Lieverse, P. van der Wolf, L. Herzberger,
and E. F. Deprettere. Exploring embedded-systems architec-
tures with artemis. IEEE Computer, 34(11):57–63, 2001.

[14] M. Steinhaus, R. Kolla, J. Larriba-Pey, T. Ungerer, and
M. Valero. Transistor count and chip-space estimation of
simplescalar-based microprocessor models. In Proc. Work-
shop on Complexity-Effective Design, 2001.

 0

 1

 2

 3

 4

 5

 6

 7

 0 5 10 15 20 25 30 35

S
pe

ed
up

Simulation number

ijpeg mpeg2dec ijpeg mpeg2dec

Figure 3. Area ≤ 12000Mλ2

 0

 1

 2

 3

 4

 5

 6

 7

 0 20 40 60 80 100 120

S
pe

ed
up

Simulation number

ijpeg mpeg2dec ijpeg mpeg2dec

Figure 4. Area ≤ 13000Mλ2

 0

 1

 2

 3

 4

 5

 6

 7

 0 20 40 60 80 100 120 140 160 180

S
pe

ed
up

Simulation number

ijpeg mpeg2dec ijpeg mpeg2dec

Figure 5. Area ≤ 14000Mλ2

 0

 1

 2

 3

 4

 5

 6

 7

 0 50 100 150 200

S
pe

ed
up

Simulation number

ijpeg mpeg2dec ijpeg mpeg2dec

Figure 6. Area ≤ 15000Mλ2

 0

 1

 2

 3

 4

 5

 6

 7

 0 50 100 150 200 250 300 350 400 450

S
pe

ed
up

Simulation number

ijpeg mpeg2dec ijpeg mpeg2dec

Figure 7. Area ≤ 20000Mλ2

 0

 1

 2

 3

 4

 5

 6

 7

 0 100 200 300 400 500 600 700

S
pe

ed
up

Simulation number

ijpeg mpeg2dec ijpeg mpeg2dec

Figure 8. Area ≤ 30000Mλ2

	Main
	DATE07
	Front Matter
	Table of Contents
	Author Index

