
Register Pointer Architecture for Efficient Embedded Processors

JongSoo Park, Sung-Boem Park, James D. Balfour, David Black-Schaffer
Christos Kozyrakis and William J. Dally

Computer Systems Laboratory
Stanford University

{jongsoo, sbpark84, jbalfour, davidbbs, kozyraki, dally}@stanford.edu

Abstract

Conventional register file architectures cannot optimally
exploit temporal locality in data references due to their lim-
ited capacity and static encoding of register addresses in
instructions. In conventional embedded architectures, the
register file capacity cannot be increased without resorting
to longer instruction words. Similarly, loop unrolling is of-
ten required to exploit locality in the register file accesses
across iterations because naming registers statically is in-
flexible. Both optimizations lead to significant code size in-
creases, which is undesirable in embedded systems.

In this paper, we introduce the Register Pointer Architec-
ture (RPA), which allows registers to be accessed indirectly
through register pointers. Indirection allows a larger regis-
ter file to be used without increasing the length of instruc-
tion words. Additional register file capacity allows many
loads and stores, such as those introduced by spill code, to
be eliminated, which improves performance and reduces en-
ergy consumption. Moreover, indirection affords additional
flexibility in naming registers, which reduces the need to
apply loop unrolling in order to maximize reuse of register
allocated variables.

1 Introduction
Embedded system designers must optimize three efficiency
metrics: performance, energy consumption, and static code
size. The processor register file helps improve the first two
metrics. By storing frequently accessed data close to the
functional units, the register file reduces the time and energy
required to access data from caches or main memory. How-
ever, conventional register file architectures cannot fully ex-
ploit temporal locality because of their limited capacity and
lack of support for indirection.

The Register Pointer Architecture (RPA) supports large
register files to reduce the time and energy expended ac-
cesses data caches without increasing code size. The main
idea of the RPA is to allow instructions to access registers
indirectly through register pointers. This provides two key
benefits:
• Large Register File Capacity: Indirect register access

relaxes the correlation between register file capacity and

instruction word length. Hence, large register files can be
used without sacrificing code density.

• Register Naming Flexibility: By dynamically modify-
ing register pointers, a small set of instructions can flexi-
bly access data allocated in the register file in a way that
maximizes data reuse.
We introduce extensions to the ARM instruction set to

implement the RPA. In addition to the conventional register
file, the modified architecture includes a dereferencible reg-
ister file (DRF). Existing arithmetic and load/store instruc-
tions can use a register pointer (RP) in any register operand
position to access the contents of the DRF. We define ef-
ficient update policies for RPs to support common access
patterns with minimal runtime overhead. At the microar-
chitecture level, we describe the interlocks and forwarding
paths needed to minimize read-after-write hazards on RPs.
We execute a set of embedded applications on a model of
the modified processor to demonstrate that the RPA leads to
a speedup of up to 2.8× and energy savings of up to 68%.

We compare the RPA to alternative techniques that pro-
vide register indexing flexibility or software controlled stor-
age near to the processor. Loop unrolling can be used to fol-
low arbitrary data patterns within the register file. We show
that RPA leads to similar flexibility in register file accesses
without the code size increases introduced by longer regis-
ter names and replicated loop bodies. A software-controlled
scratchpad memory could be used to capture temporal lo-
cality in embedded applications. Nevertheless, a scratchpad
memory suffers from requiring explicit load and store in-
structions to make data available to arithmetic instructions.

In summary, the major contributions of this paper are: we
introduce the RPA architecture, which supports indirect reg-
ister file access through register pointers; we explore design
options for RPA at the instruction set and microarchitecture
level, including parameters such as the number of additional
registers; and, we compare an embedded processor imple-
menting the RPA to a conventional organization. We also
compare to techniques such as loop unrolling and scratch-
pad memory.

The remainder of this paper is organized as follows. Sec-
tion 2 provides a detailed description of RPA including in-
struction set and microarchitectural considerations. Sec-
tions 3 and 6 describes the experimental methodology and

1
978-3-9810801-2-4/DATE07 © 2007 EDAA 

 



results. Sections 5 and 6 present related work and conclu-
sions.

2 Register Pointer Architecture
This section describes the RPA architecture at the instruc-
tion set and microarchitecture levels.

2.1 Instruction Set Architecture
The RPA extends a base instruction set, such as ARM, to
support indirect register file accesses. An instruction indi-
rectly accesses a register by identifying in its encoding a
register pointer, whose contents provide the address for the
actual register file reference. While implementations of ex-
isting ISAs may use indirect register accesses to implement
techniques such as register renaming [1], the RPA exposes
the indirection to the software.

In addition to the conventional register file (RF), the
RPA defines a dereferencible register file (DRF) and regis-
ter pointers (RPs). The DRF contains all registers accessed
indirectly, while the RPs contain indirection information
(DRF address and other configuration fields). Data process-
ing and transfer instructions can specify any of the follow-
ing as an input or output operand: an RF entry, a DRF entry
through an RP, or an RP. Note that only register operands
are modified by the RPA; no additional opcodes or memory
addressing modes are added to the instruction set.

The example instruction shown below illustrates impor-
tant features of the RPA ISA. The instruction adds r0, a RF
entry, to the DRF entry pointed by the RP p0. The sum is
stored in the RP p1. The postfix operator “!” increments RP
p0 after it is dereferenced.

add p1, r[p0]!, r0

Assembly instructions access the DRF by specifying an RP
enclosed in square brackets after the symbol r. An RP is
accessed as though it was a conventional general purpose
register: by directly specifying the RP as an operand.

To reduce the overhead of RP updates, a register pointer
may be incremented when named in an instruction. For fur-
ther flexibility, we support circular addressing using two
additional fields in each RP: a base address (begin), and
a limit address (end). An attempt to increment the address
beyond the end address causes the pointer to wrap around to
the begin address. An overflow bit is set when the pointer
wraps around to allow the software to detect the wrapping
around if desired. Each RP stores the base address and limit
address field in its higher bits. When an instruction derefer-
ences an RP, it accesses only the least significant bits, whose
contents are the actual address for DRF accesses.

The number of bits required to encode the RP and DRF
addresses depends on the number of RPs, the binding of
RPs, and the number of access modes. Note that the number
of DRF entries does not influence the encoding of instruc-
tions. The specific modification on ARM ISA is described
in Section 3.

2.2 Architectural Parameter Space
So far, we have described the ISA extensions for RPA in
rather abstract terms. The exact parameters used to size

pertinent resources introduce interesting tradeoffs amongst
performance, software flexibility, energy consumption, and
hardware complexity, as described below.

Number of DRF Entries: The relationship between the
reduction of cache accesses and the number of DRF
entries varies by application. For applications such as
1DFIR, cache access reduction is a linear function of the
DRF size, while for matrix multiplication, it follows a
square root function. For applications with table lookups,
it is a step function: it saturates once the lookup table fits
in the DRF.
There are two costs associated with larger DRF sizes.
First, the energy consumption of a DRF access increases
with the number of DRF entries. Second, the DRF ac-
cess time increases because the larger row decoders in-
cur longer delays while the discharge time of the longer
bit-lines increases. The additional access latency should
not adversely impact program execution times unless it
requires increasing the clock cycle time. Given a small
DRF (fewer than 256 entries), we expect the clock cycle
time will be limited by the cache access latency rather
than the DRF.
In Section 4, we examine how these factors influence
the DRF size which best balances performance improve-
ments with energy consumption.

Number of DRF Ports: We can limit the number of DRF
ports to one read port and one write port, which reduces
the DRF area and energy consumption. However, the re-
duced number of DRF ports penalizes the performance
of applications which have multiple independent data
streams, such as 1DFIR.

Number and Binding of Register Pointers: The simplest
design, in terms of hardware complexity, would provide
one dedicated RP for each operand position. Using the
ARM ISA as an example, we would have pd, pn and pm,
which correspond to the d, n and m operands, respectively.
However, such a scheme lacks flexibility and may intro-
duce overheads when the same stream is used as an in-
put and an output or in different input operand positions.
Providing more RPs with flexible bindings tends to in-
crease the encoded instruction width and the complexity
of the interlocks required in pipelined processor imple-
mentations.

We evaluate these parameters quantitatively in Sec-
tion 4.1, focusing primarily on the number of DRF entries.

2.3 RPA Processor Organization
Figure 1 shows a five-stage processor pipeline modified to
implement the RPA. The main additions are the DRF and
RPs, which, as in a conventional scalar pipeline, are read in
the decode stage. The post-increment of the RPs is also per-
formed in the decode stage, in parallel with the DRF access,
using dedicated incrementers. Writes of both the RPs and
DRF are performed in the write-back stage, thereby avoid-
ing output dependencies and anti-dependencies on these
registers.

2



Data Cache
DRF

WADDR
RADDR1

...
RADDRN

RPs

Instruction
Decoder

Instruction
Cache

Instruction
Fetch

Instruction Decode/
Register Read Execution Memory

Access

Register
Write
Back

WR

RD1 ... N

WR

RD

ADDR

WR

RF

+1
Incrementers &

Wrapping-around
Logic

WADDR
RADDR1
...
RADDRN

RD1 ... N

Figure 1: Register Pointer Architecture Pipeline Design

Table 1: Summary of Register Designator Patterns.
Register Uses

Designator
r0∼ r15 access r0∼r15
r16∼r26 reserved for future extension

r27 access DRF
using the RP bound to the operand

r28 access DRF and auto-increment RP
r29 access pd
r30 access pn
r31 access pm

The modified pipeline must deal with true dependencies
through RPs and the DRF. Dependencies through direct RP
accesses are easily handled through forwarding in exactly
the same manner that true dependencies are resolved for
regular registers. Dependencies through DRF entries are
slightly trickier, since their detection involves a comparison
of the addresses stored in the corresponding RPs used for
the DRF access, instead of using the name of the register.
Facilitating these comparisons without increasing the clock
cycle is a major motivation for keeping the RP design sim-
ple.

If an arithmetic or memory instruction directly accesses
an RP as the destination operand, we can use the value of
RP only after the execute or memory pipeline stage. There-
fore, if the next instruction uses that RP to indirectly ac-
cess a DRF entry, the RP value is not available in the de-
code pipeline stage, and we thus need to stall. However,
in most performance critical loops, this does not occur and
RP update patterns can be expressed by post-increments. In
Section 4, we experimentally show that the pipeline bubbles
introduced by RPA have a negligible effect on performance.

The architectural parameters described in the previous
section may affect the clock frequency of the processor.
The critical path in most embedded processors is the exe-
cution or the memory stage; thus it is important that all the
added latencies do not make the decode stage the critical
path. With the most basic setting, the addition of a serial
read to a small value of RP should have negligible impact
on the clock frequency.

Table 2: Benchmark Specification
1D FIR Filter 35 taps, 10000 integer samples
Insertion Sort 32 integers

Multi-way Merge 7 ways, 128 integers per way
MD5 16 KBytes input

Matrix Multiplication 140×140 matrices
2D FIR Filter 320×240 gray scale, 3×3 kernel
Stringsearch 1335 strings

GSM Decoding large.au (52 seconds)
TiffDither 1520×1496, gray scale

PGP Verify 1024 bit RSA key

3 Methodology & Applications

We modified the ARM version of the SimpleScalar simu-
lator [2] to implement the RPA. Specifically, each register
operand was increased from four bits to five bits, where the
highest five numbers indicate various DRF and RP access
modes as shown in Table 1. The unused space between r16
and r26 can be used to implement other RPA variations with
different architectural parameters. The extra three bits were
added at the expense of conditional execution bits. In our
experiment, the RPA configuration without conditional ex-
ecution is compared to the baseline configuration with con-
ditional execution. Stall cycles introduced by dependencies
through RPs and the DRF are also included.

We used Sim-panalyzer [10] to estimate the energy con-
sumption of the processor. We chose StrongARM-1110 as
our processor parameter model, which has a 200MHz clock
frequency, 32-way 16KB instruction cache, 32-way 8KB
data cache, and a 128-entry bimodal branch predictor. We
model a 0.18 µm technology with a 1.75V supply.

The comparison with scratchpad memory was performed
by approximating it with an infinite cache. Such a cache
has no capacity or conflict misses and provides an upper
bound to the performance possible with a software man-
aged scratchpad memory. For the comparison with loop-
unrolling, all benchmarks were unrolled in assembly and
hand-optimized to minimize the number of load/store in-
structions.

Applications with the following properties benefit most
from the RPA extensions:

• The entire working set fits into the DRF or it can be de-
composed into smaller blocks that will fit.

• Each datum in the working set has a fair amount of reuse
in a short time span.

The six kernels and four applications [6] shown in Table 2
were selected for our evaluation because they exhibit these
properties.

4 Experimental Results

In this section, we explore various design space parameters
for the DRF and compare the RPA to a scratchpad memory
and loop unrolling in terms of performance, code size, and
energy consumption.

3



0.0

0.2

0.4

0.6

0.8

1.0

1.2

1DFIR
Sort*

Merge*
MD5

MatM
ult

2DFIR

Strin
gse

arch GSM

TiffD
ith

er

PGPVerify

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
Ti

m
e

 a

16 + 16
16 + 48
16 + 112
16 + 240

(a)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1DFIR
Sort*

Merge*
MD5

MatM
ult

2DFIR

Strin
gse

arch GSM

TiffD
ith

er

PGPVerify

N
or

m
al

iz
ed

 E
ne

rg
y

16 + 16
16 + 48
16 + 112
16 + 240

(b)

Figure 2: Sensitivity of Performance (a) and Energy Consumption (b) to the Number of DRF Entries.

4.1 DRF Design Space Exploration

This section evaluates design parameters, focusing mostly
on the number of DRF entries. Since the RPA targets the
embedded systems, we focus on minimizing the complex-
ity and energy consumption of the additional hardware re-
quired to implement the RPA while preserving the RPA ar-
chitecture’s performance benefits.

4.1.1 Number of DRF Entries

Figure 2(a) shows application execution times as a function
of the number of registers (lower is better). The execution
times are normalized to the baseline StrongARM without a
DRF (1.0). The number ‘16 + 48’ means 16 RF entries and
48 DRF entries. Note that Sort and Merge are marked by
stars (*) because it is hard to find representative input sizes
for them, and we thus should not consider them when de-
ciding the appropriate number of DRF entries. RPA with 16
DRF entries cannot exploit any performance critical work-
ing sets of 1DFIR, Stringsearch and PGPVerify. RPA with
16 DRF entries does not improve the performance of Mat-
Mult and TiffDither because the block size is too small to
amortize the register pointer configuration overhead in the
loop prologue code.

Applications that use blocking such as MatMult, 2DFIR
and TiffDither show a relatively smooth execution time re-
duction with more DRF entries. For MD5, Stringsearch,
and PGPVerify with 48 or 112 DRF entries, some lookup
table entries are subword-packed. Since the ARM ISA
does not support subword access to registers, shifting and
bit masking operations have to be done for each subword-
packed data access. This overhead negates some of the per-
formance gain from the load and store instruction elimina-
tion. Overall, all applications benefit from 48 DRF entries,
and improvements from more registers are typically smaller.

Figure 2(b) shows energy consumption relative to the
baseline ARM architecture for different numbers of regis-
ters. For MatMult and 2DFIR, the performance improve-
ment dominates over the increase in register power, thus
they do not show their minimum energy point up until 240

DRF entries. Except 1DFIR and PGPVerify, all the other
applications achieve minimum energy consumption at 48
DRF entries.

Access time is another important metric. However, for a
register file smaller than 16 + 240 entries, it is unlikely that
the register file access time will be the determining factor
for the clock frequency of the pipeline, given that SA-1110
has 32-way 8KB data cache, which has sufficiently longer
access time.

Thus the optimal number of DRF entries balancing per-
formance and energy-efficiency is between 48 and 112. If
the processor will mostly run applications such as 1DFIR,
MatMult, 2DFIR and PGPVerify, using 112 DRF entries
would be more appropriate. In other cases, using 48 DRF
entries is a better choice.

4.1.2 Other Parameters
We also studied the impact of other RPA design parameters.
We summarize the major conclusions but do not present de-
tailed results due to space limitations.

Number of DRF Read Ports: At most 3% energy reduc-
tion can be obtained by using a single read port over two
read ports. The energy reductions were acquired at the
expense of 13% and 10% performance loss from 1DFIR
and Sort respectively. If energy efficiency is the most
important metric of a processor or the target application
does not have structured memory access patterns similar
to 1DFIR, a single read port may be an appropriate design
point.

Number of RPs: Most applications would not benefit
from more RPs because they do not have more than three
data streams. MD5 has five streams of pointer accesses,
which interact with each other. However, MD5 using five
RPs performs only 4% faster than the version with three
RPs.

Binding of RPs with Operand Positions: Among the
chosen applications, only Merge showed a benefit from
more flexible RP binding.

4



0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

ba
se

in
fin

ite
R

P
A

un
ro

ll
ba

se
in

fin
ite

R
P

A
un

ro
ll

ba
se

in
fin

ite
R

P
A

un
ro

ll
ba

se
in

fin
ite

R
P

A
un

ro
ll

ba
se

in
fin

ite
R

P
A

un
ro

ll
ba

se
in

fin
ite

R
P

A
un

ro
ll

ba
se

in
fin

ite
R

P
A

un
ro

ll
ba

se
in

fin
ite

R
P

A
un

ro
ll

ba
se

in
fin

ite
R

P
A

un
ro

ll
ba

se
in

fin
ite

R
P

A
un

ro
ll

1DFIR Sort Merge MD5 MatMult 2DFIR Stringsearch GSM TiffDither PGPVerify

N
or

m
al

iz
ed

 e
xe

cu
tio

n 
tim

e
__

etc
branch
I-miss
D-miss
ld/st

Figure 3: Performance Comparison

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

1DFIR MD5 MatMult 2DFIR GSM Tiffdither

N
or

m
al

iz
ed

 C
od

e 
Si

ze

RPA
unroll

3.70

Figure 4: Relative Code Size Compare
to the Baseline

RP Update Policies: Since memory operations already
support indexed access, data can be properly aligned in
the DRF to create a sequential register access pattern.
For example, in the case of MatMult, one of the matrices
can be transposed when being loaded. For this reason,
stride or post-decrement access patterns are not particu-
larly useful in RPA.

4.2 Comparison with Other Techniques
This section compares other techniques to RPA using a 48
entry DRF with two read ports, one write port, and three
RPs, which corresponds to the optimal parameters identified
in the previous section.

4.2.1 Performance Comparison
Figure 3 presents the execution times of various techniques
relative to the baseline. The result of using an infinite cache
on top of the baseline is shown as ‘infinite’. Certain applica-
tions cannot be unrolled, hence the corresponding ‘unroll’
bar is not present. The time spent on load and store instruc-
tions is labeled with ‘ld/st’. Branch execution and branch
miss prediction penalties are labeled in ‘branch’.

On average, RPA performs 46% better than the baseline
with most of the gains coming from the removal of load and
store instructions. The maximum gains are observed with
MD5 and 2DFIR where RPA leads to a speedup of 2.8×
relative to the baseline design.

The infinite cache simulations represent an optimistic
model of a scratchpad memory. The results show that the
RPA consistently outperforms scratchpad for these applica-
tions. Nevertheless, these conclusion does not generalize.
A scratchpad memory typically has larger capacity and sim-
pler hardware than multi-ported DRF. A processor can im-
plement both a scratchpad memory and RPA, using them se-
lectively depending on the application. For example, small
and performance critical data can be allocated in the DRF
to completely avoid loads and stores, while larger structures
can be allocated in the scratchpad memory.

For the ‘unroll’ configuration, each application was un-
rolled using the same total number of registers as ‘RPA’. Be-
cause Sort, Merge, Stringsearch and PGPVerify have data

dependent control flow or table lookups, they were excluded
from the unrolling experiment. RPA and unrolling lead to
similar flexibility in register file usage and both allow for
elimination of load and store operations. Nevertheless, as
indicated by the graph, unrolling has an additional advan-
tage of reducing branch overhead on loop iterations.

GSM is an interesting application in the unrolling exper-
iment because the unrolled version’s branch misprediction
and instruction cache miss rates are higher. Because GSM’s
main loop has conditional statements in it, loop unrolling
duplicates branches, which cause slower branch predictor
warm-up time.

If unrolling does not contribute to a significant increase
in code size, and performance is the most important metric,
unrolling would be the best solution. RPA performs bet-
ter when code cannot be unrolled or has an irregular loop
structure, such as exhibited by GSM. Applications having
a reasonable tradeoff between performance and code size,
such as 1DFIR and MD5, also benefit from RPA.

4.2.2 Code Size Comparison
Figure 4 shows static code sizes for RPA and unrolled ver-
sion, normalized to the baseline (ARM ISA). To factor out
auxiliary code such as glibc, we present the aggregate sizes
of the relocatable objects before the final linking step.

For the selected applications, RPA increases the static
code size by an average of 5%, while unrolling increases
it by 51%. Note that the static code size of an unrolled ver-
sion does not account for the increase in instruction word
size required to address a larger register file, making the ac-
tual difference larger.

4.2.3 Energy Comparison
Figure 5 shows the energy consumption relative to the base-
line processor. On average, energy savings of 32% were
achieved. In addition to the energy savings from the perfor-
mance improvements, additional energy savings were ob-
tained by reducing the number of cache accesses. Note
that the energy estimates exclude ALU energy consump-
tion. Using the energy breakdown for the StrongARM pro-
cessor described in [4], we estimate that the energy reduc-

5



0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.+

1.0
ba

se
in

de
x

un
ro

ll
ba

se
in

de
x

un
ro

ll
ba

se
in

de
x

un
ro

ll
ba

se
in

de
x

un
ro

ll
ba

se
in

de
x

un
ro

ll
ba

se
in

de
x

un
ro

ll
ba

se
in

de
x

un
ro

ll
ba

se
in

de
x

un
ro

ll
ba

se
in

de
x

un
ro

ll
ba

se
in

de
x

un
ro

ll

1DFIR Sort Merge MD5 MatMult 2DFIR Stringsearch GSM TiffDither PGPVerify

N
or

m
al

iz
ed

 E
ne

rg
y

etc
D-Cache
I-Cache
RF

Figure 5: Energy Consumption (excluding ALU)

tion from RPA remains approximately 32% when the ALU
energy is accounted for.

It can be seen that for applications that do not satisfy the
conditions listed in Section 3, the RPA extensions incur no
performance penalty and increase energy consumption by
at most 3%: the register file consumes 5% of the total pro-
cessor power and register file with 64 entries dissipate 47%
more power than register file with 16 entries.
5 Related Work
The Cydra-5 VLIW supercomputer provided a Rotating
Register File (RRF) [3] to address the unrolling incurred by
modulo variable expansion [8]. Register Connection (RC)
[7] was proposed to incorporate large number of registers
without enlarging the instruction word size. Although RC
resolves the capacity problem of register file, it does not ad-
dress the naming flexibility problem described in Section 1.
The Register Queue (RQ) [11] concept combines the above
two techniques to resolve loop unrolling without increas-
ing the instruction word size. However, similar to RRF, RQ
mostly focuses on software pipelining, and thus it cannot be
efficiently utilized in many embedded applications, such as
the benchmarks we examined. For example, because only
write operations rotate a register queue, we cannot load data
to a register queue and then read them multiple times, as was
done for FIR and MatMult to exploit locality. Moreover,
because the queue sizes are fixed, we pay the overhead of
traversing multiple queues if the data is larger than a single
queue.

The windowed register file architecture for low power
processor [5] has also been introduced to address the lim-
ited number of bits available to encode operand specifiers
which incurs power consuming memory accesses. The win-
dowed register file addresses the capacity problem in a man-
ner largely orthogonal to RPA. The SIMdD architecture [9]
has Vector Pointer Registers (VPR) which is similar to RPs.
However, SIMdD architecture focuses on the naming flex-
ibility, more specifically data alignment and reuse problem
in SIMD DSP architecture.
6 Conclusions
This paper introduces the RPA, a register file architecture
that is based on indirect access through register pointers.

RPA addresses both capacity and naming flexibility limita-
tions inherent in conventional register files. It allows the
number of registers to be increased significantly without in-
creasing the instruction word length, and supports flexible
indirect accessing of the register file. We presented simula-
tion results for an augmented StrongARM processor which
show that RPA leads to 46% average performance improve-
ment and 32% average reduction in energy consumption
without significant increase in the code size.

We compared RPA to other techniques addressing limita-
tions of a conventional register file. A scratchpad memory
addresses the capacity problem of register file, but still re-
quires load/store instructions and lacks multiple ports. Un-
rolling resolves the naming flexibility problem of the reg-
ister file, but cannot be applied to data dependent access
pattern and leads to large code size increase.

References
[1] D. W. Anderson, F. J. Sparacio, and R. M. Tomasulo.

The IBM System/360 model 91: machine philosophy and
instruction-handling. IBM Journal of Research and Devel-
opment, 11(1):8–24, 2000.

[2] D. Burger and T. M. Austin. The SimpleScalar Tool Set,
version 2.0. ACM SIGARCH Computer Architecture News,
25(3):13–25, 1997.

[3] J. C. Dehnert, P. Y. Hsu, and J. P. Bratt. Overlapped loop
support in the Cydra 5. In ASPLOS-III: Proceedings of the
third international conference on Architectural support for
programming languages and operating systems, pages 26–
38, 1989.

[4] J. M. et. al. A 160-MHz, 32-b, 0.5-W CMOS RISC micro-
processor. Digital Tech. J., 9(1):49–62, 1997.

[5] R. A. R. et. al. Increasing the number of effective registers
in a low-power processor using a windowed register file. In
CASES ’03: Proceedings of the 2003 International Confer-
ence on Compilers, Architecture and Synthesis for Embedded
Systems, pages 125–136, 2003.

[6] M. Guthaus, R. J.S., D. A. Ernst, T. Austin, T. Mudge, and
R. Brown. Mibench: A free, commercially representative
embedded benchmark suite. In WWC-4 2001: IEEE Interna-
tional Workshop on Workload Characterization, pages 3–14,
2001.

[7] T. Kiyohara, S. Mahlke, W. Chen, R. Bringmann, R. Hank,
S. Anik, and W. Hwu. Register connection: a new approach
to adding registers into instruction set architectures. In ISCA
’93: Proceedings of the 20th Annual International Sympo-
sium on Computer Architecture, pages 247–256, 1993.

[8] M. D. Lam. Software pipelining: an effective scheduling
technique for VLIW machines. In PLDI ’88: Proceedings of
the ACM SIGPLAN 1988 conference on Programming Lan-
guage Design and Implementation, pages 318–328, 1988.

[9] D. Naishlos, M. Biberstein, S. Ben-David, and A. Zaks. Vec-
torizing for a SIMdD DSP architecture. In CASES ’03: Pro-
ceedings of the 2003 International Conference Compilers,
Architecture and Synthesis for Embedded Systems, pages 2–
11, 2003.

[10] The SimpleScalar-Arm Power Modeling Project. Web Page:
http://www.eecs.umich.edu/∼panalyzer.

[11] G. S. Tyson, M. Smelyanskiy, and E. S. Davidson. Evalu-
ating the use of register queues in software pipelined loops.
IEEE Trans. Comput., 50(8):769–783, 2001.

6


	Main
	DATE07
	Front Matter
	Table of Contents
	Author Index




