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Abstract

Resource prediction refers to predicting required com-
pute power and energy resources for consuming a service
on a device. Resource prediction is extremely useful in a
client-server setup where the client requests a media service
from the server or content provider. The content provider (in
cooperation with the client) can then determine what ser-
vice quality to deliver given the client’s available resources.

This paper proposes a practical approach to predicting
resources for decoding media streams. The idea is to group
frames with similar decode complexity from various media
streams in the content provider’s database into so called
scenarios. Client profiling using scenario representatives
characterizes the client’s computational power. This en-
ables the content provider for predicting decode time, de-
code energy and quality of service for a media stream of
interest once deployed on the client.

1 Introduction
Resource prediction, i.e., predicting client side com-

pute power and energy required for consuming a service,
has an important application in today’s media systems.
The content provider could inform a client about the re-
quired resources for consuming the requested service. This
is especially relevant for battery-operated and resource-
constrained clients. For example, if a complex high-
resolution video stream is demanded, the content provider
could warn the client that its resources will be insufficient
for guaranteeing a given quality of service. Or, the client
could be suggested that the available battery lifetime will
be insufficient to view the entire video stream the client asks
for; the client could then acquire the same video stream in
a smaller resolution, or the content provider may do that
automatically.

This paper proposes a resource prediction method that
operates at the content provider side. The key idea of our
proposal is to exploit the notion of similarities both within
and across media streams. An offline analysis determines
frames across the various media streams in the content
provider’s database that exhibit similar decode complexity,
i.e., require similar compute power and energy consump-
tion at decode time. These similarly behaving frames are

determined based on their encoding and are called scenar-
ios. Scenario information is then maintained in the content
provider’s database for the various media streams. This sce-
nario information is platform-independent, i.e., is indepen-
dent of the system configuration and/or decoder version of
a particular client. Resource prediction is then performed
by profiling scenario representatives on the client and by
subsequently relating the profiling info to the frames in the
media stream of interest.

The media stream decoding application that we specifi-
cally focus on in this paper is video decoding, however, our
scheme is also applicable to other media stream processing
applications. We apply scenario-aware resource prediction
for predicting decode time, decode energy and quality of
service. Our experimental results using the H.264 video de-
coder show good accuracy for all three purposes. For ex-
ample, our method predicts decode time and energy with a
worst case error less than 4% and an average 1.4% error.

This paper is organized as follows. We first discuss how
scenarios are identified by the content provider. We subse-
quently discuss how this scenario information can be used
for predicting required resources. After having detailed our
experimental setup, we then evaluate the proposed scenario-
aware resource prediction method.

2 Scenario identification
Figure 1 (on the left) illustrates how video streams

are annotated with scenario information by the content
provider. The content provider collects a macroblock pro-
file for all video streams in his database. A macroblock pro-
file counts the number of macroblocks of a given type for
all frames in a video stream — note that a frame is built
up from macroblocks and that each macroblock can be of
a specific type or encoding style. The purpose of a mac-
roblock profile is to characterize the decode complexity in a
platform-independent way, i.e., a macroblock profile is in-
dependent of the decoder as well as the system on which the
video stream is to be decoded. A macroblock profile thus is
a matrix in which the rows are the consecutive frames in the
video stream and in which the columns are the macroblock
counts for each of the macroblock types.

Once a macroblock profile is collected for all video
streams in the database, all frames correspond to points in
a multidimensional space, which we call the frame space,
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Figure 1. Annotating video streams with scenario information by the content provider (on the left),
finding a scenario representative (in the middle) and filling the scenario profile table at the client side
(on the right).

see Figure 1. The various dimensions in the frame space
are the number of macroblocks of a given type; this is a 22-
dimensional space in our experiments. We then apply clus-
ter analysis in the frame space. Cluster analysis finds groups
of frames, which we call scenarios, based on their mac-
roblock characteristics. The idea is that frames belonging
to a given scenario show similar macroblock characteris-
tics, whereas frames from different scenarios show dissimi-
lar macroblock characteristics. Note that cluster analysis is
done on the collection of frames from all video streams in
the database. As such, scenarios may be formed consisting
of frames from different video streams.

The scenario identifiers are then to be maintained by the
content provider in a scenario database.

Note that identifying scenarios is a one-time cost. When-
ever a new video stream is added to the database though, a
macroblock profile needs to be computed for the new video
stream, and scenario identifiers need to be determined for
all frames in the video stream.

We now discuss in more detail the following issues re-
lated to scenario identification by the content provider: (i)
macroblock profiling, (ii) identifying the video stream sce-
narios using cluster analysis, and (iii) maintaining the sce-
nario information for all video streams.

2.1 Macroblock profiling
Macroblock profiling captures a platform-independent

image of the coding complexity at the frame level. Al-
though the discussion below on macroblock profiling is
geared towards the H.264/AVC decoder [18] that we tar-
get in this work, similar profiles can be computed for other
types of media streams. A macroblock consists of 16 × 16

picture elements. We identify the following macroblock
types — there are 21 macroblock types in total.

• An intra prediction macroblock only uses already
transmitted macroblocks of the same image for pre-
dicting samples of the given macroblock. There are
two flavors of intra prediction macroblocks, namely

16 × 16 (type 1) and 4 × 4 (type 2). The 4 × 4 mac-
roblock consists of 16 4 × 4 subblocks which are sep-
arately encoded.

• An inter prediction or a motion compensated mac-
roblock uses previously transmitted images for pre-
dicting samples of the given macroblock. An inter
prediction macroblock can be divided into 4 partitions,
namely 16× 16 (type 3), 16× 8 (type 4), 8× 16 (type
5) and 8 × 8. The 8 × 8 submacroblock can be fur-
ther subdivided into 8 × 4, 4 × 8 and 4 × 4 partitions.
As such, we consider 15 macroblock types for 8 × 8

macroblocks depending on the partitioning within the
submacroblocks.

• The final macroblock type is the skip macroblock type
(type 21) which means that the current macroblock is
the same as the corresponding macroblock of the pre-
vious frame.

For each of these 21 macroblocks, macroblock profiling
computes the number of each of these macroblock types
per frame. Note that not all of the above macroblock types
appear for all frame types, e.g., I frames do not contain in-
ter prediction macroblocks. In such a case, the macroblock
type count then equals zero.

Next to these macroblock type counts, macroblock pro-
filing also measures the residual byte count per frame. (The
residual bytes allows the decoder to correct the predictions
based on the macroblock encoding.) We normalize the
residual byte count in order to bring it in the range of the
macroblock type counts — note that we will use the mac-
roblock profile to build the frame space.

2.2 Video stream scenario identification
We identify video stream scenarios through cluster anal-

ysis in the frame space. Cluster analysis [15] is a data analy-
sis technique that is aimed at clustering n cases, in our case
video frames, based on the measurements of p variables,



in our case macroblock characteristics. The final goal is to
obtain a number of groups, containing frames that exhibit
‘similar’ behavior, which we call scenarios. There exist
two commonly used types of clustering techniques, namely
linkage clustering and K-means clustering. We advocate K-
means clustering because it is known to scale better with an
increased number of cases which may be the case for large
video stream databases. K-means clustering produces ex-
actly K clusters with the greatest possible distinction. The
algorithm works as follows. In each iteration, the distance
is calculated for each case to the center of each cluster. A
case is then assigned to the closest cluster. As such, new
cluster centers can be computed. This algorithm is iterated
until no more changes are observed.

2.3 Maintaining scenario identifiers
Maintaining scenario identifiers can be done using a sce-

nario database or using a separate scenario stream associ-
ated with each respective video stream [2]. Since scenario
information needs to be stored for all video streams, it is of
primary importance to limit the storage cost at the content
provider side.

3 Scenario-driven resource prediction
The scenario IDs annotated to the video streams can be

exploited for predicting required resources. Before actually
predicting the required resources on the client side, we first
need to profile the client by building the scenario profile
table, see Figure 1 (on the right). The scenario profile ta-
ble (SPT) contains the decode time and/or decode energy
(depending on what resource needs to be predicted) for de-
coding a frame belonging to each of the scenarios.

3.1 Client profiling
In order to enable efficient client profiling, the content

provider needs to determine a scenario representative for
each scenario, see Figure 1 (in the middle). The scenario
representatives can be determined as part of the cluster anal-
ysis that the content provider needs to do for identifying the
video stream scenarios. We select the frame that is closest
to the cluster’s centroid as the scenario representative.

The content provider sends these scenario representa-
tives to the client for client profiling. The client then de-
codes these scenario representatives and monitors (i) how
long it takes to decode each scenario representative and (ii)
how much energy is consumed for decoding each scenario
representative. Monitoring the decode time and consumed
energy can be done using user accessible hardware perfor-
mance counters that are available on modern microproces-
sors [14]. The end result of the client profiling process is a
filled up SPT that summarizes the decode time and energy
per scenario.

3.2 Resource prediction
For enabling scenario-driven resource prediction, the

client has to communicate the SPT to the content provider,

video stream abbr JVT class
akiyo ak A
coast guard cg B
container con A
foreman for B
hall monitor hall A
head w/ glasses hd A
mobile mob C
mother daughter md A
news news B
silent sil B
stefan ste C
table tab C

Table 1. The video streams and abbreviations
used throughout the paper along with their
JVT [3] classification.

Window ROB/LSQ 32/16
Cache hierarchy 64KB L1 I/D-caches, 1MB unified L2
Latencies (L1/L2/MEM) L1: 2 cycles; L2: 20 cycles; MEM: 80ns
Branch predictor Hybrid 4K tables, 3 cycle front-end pipeline
Processor width 4-wide
Functional units 4 integer ALUs, 2 memory ports

Table 2. Baseline processor model consid-
ered in this study.

or alternatively, for popular clients, the SPT can be cached
by the content provider. Predicting the required compute
and energy resources for decoding a given video stream on
the given client is then trivial. The content provider only
needs to combine the scenario ID information for the video
stream of interest with the information in the SPT. For ex-
ample, if the goal is to estimate the amount of energy re-
quired for decoding a video stream on the given client, the
content provider needs to make a weighted sum over the
energy column in the SPT with the weights being the num-
ber of frames in a given video stream belonging to a given
scenario. A similar method applies to estimating decode
time; the total decode time is estimated by a weighted sum
over the decode time column in the SPT. Yet another po-
tential application is to estimate quality-of-service, i.e., the
number of missed frame deadlines when decoding the video
stream at a given clock frequency. This is done by count-
ing the number of frames in the video stream for which the
decode time exceeds the frame decode deadline.

4 Experimental setup
Our experiments are done using the H.264 Advanced

Video Coding (AVC) codec [18]. AVC is the new gener-
ation compression algorithm for consumer digital video. In
our measurements we use version JM6.1 of the reference
software of the JVT/AVC codec [1].

In our evaluations we use twelve video sequences, see
Table 1. Each video sequence contains 297 frames; this cor-
responds to approximately 10 seconds of video at a decode



rate of 30 frames per second. The results presented in this
paper are obtained for these video streams in CIF resolution
(352× 288 pixels per frame). Further, we consider content-
adaptive variable-length coding (CAVLC) and a IPPPP. . .
GOP structure, i.e., there is one I frame followed by 15 P
frames.

The performance results presented in this paper were
obtained using detailed cycle-level processor simulations
using the SimpleScalar/Alpha v3.0 tool set [5]. Micro-
processor energy consumption is estimated using Wattch
v1.02 [4]. These simulation tools were extended to model
frequency scaling as well as voltage scaling. When apply-
ing both frequency and voltage scaling we vary voltage with
frequency based on f ∼ (V −Vth)α

V
[13] using 100MHz fre-

quency steps. We also model the time cost for changing
the processor operating frequency. The baseline processor
model used in this paper is a contemporary 4-wide super-
scalar microarchitecture, i.e., up to four instructions can
be issued per cycle, see Table 2. We also evaluated our
scenario-based resource prediction technique on other pro-
cessor architectures, both wider and narrower microarchi-
tectures, and obtained very similar results. These results
are not reported here because of space constraints.

Note that in all of our experiments, we assume a leave-
one-out methodology. This means that when evaluating
the prediction accuracy for a given video stream we leave
that video stream out of the content provider’s database for
building the scenarios. This reflects what is to be expected
in practice whenever a new video stream is added to the
content provider’s database.

5 Evaluation
We now evaluate the proposed scenario-based resource

prediction method. We consider three flavors of resource
prediction: predicting decode time, predicting quality of
service and predicting energy consumption. Finally, we
also evaluate the storage cost at the content provider side
for maintaining the scenario IDs. In this paper, we assume
32 scenarios which we found to achieve good prediction
accuracy. We do not include a detailed exploration of the
impact of the number of scenarios here because of space
constraints.

5.1 Predicting decode time
We first evaluate the prediction accuracy for predicting

the decode time for a given video stream on a given client.
When assuming a 2GHz clock frequency at the client side1,
the decode time for decoding the entire video stream can be
predicted with an error of at most 4% and an average er-
ror of 1.4%, see Figure 2. Figure 3 gives a more detailed
view by showing the absolute prediction error for predict-
ing decode times for individual frames. The graph shows
the cumulative distribution function of per-frame prediction
errors. For example, 90% of all frames have a decode time

1We have to set the client clock frequency to 2GHz in order to meet the
30ms frame deadlines using the reference decoder.
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Figure 2. Predicting video stream decode
times.
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Figure 3. Predicting individual frame decode
times. The percentage frames (on the verti-
cal axis) for which the decode time prediction
error is less than a given percentage (on the
horizontal axis).

prediction error of less than 6.3%. Or, 96.8% of all frames
have a decode time prediction error of less than 10%.

5.2 Predicting quality of service
Resource prediction can also be used to predict quality

of service. More in particular, the content provider can pre-
dict whether the client platform is computationally powerful
enough for decoding a given video stream. In other words,
the content provider can make an estimate of the number of
frame deadlines that will be missed by the client. Figure 4
quantifies the accuracy for predicting the quality of ser-
vice. The two curves show the real percentage missed frame
deadlines and the predicted percentage missed frame dead-
lines as a function of the client’s clock frequency. When
running the client’s clock frequency at 1.2GHz, approxi-
mately 40% of all frame deadlines will be missed; however,
at 2.5GHz, no deadlines will be missed. This graph clearly
shows that the estimated number of missed frame deadlines
matches the real number of missed frame deadlines very
closely over the entire client’s clock frequency range. The
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Figure 5. Energy prediction error for a 2 GHz
client clock frequency.

prediction error is never larger than 4%.

5.3 Predicting energy consumption
We now evaluate the accuracy of scenario-based video

stream analysis for predicting the overall energy consump-
tion. The results are shown in Figure 5 for decoding at a
2GHz clock frequency — we obtained similar results over
the entire 1.2GHz to 2.5GHz range. The average (abso-
lute) prediction error is 1.4%; the maximum prediction error
is observed for the container, foreman and hall monitor
video streams (3.5% to 3.8%).

The above results were obtained when decoding a video
stream at a fixed clock frequency. However, recent research
has considered applying dynamic voltage and frequency
scaling (DVFS) to reduce the energy consumed in video
stream decoding. The idea is to lower the clock frequency
and supply voltage so that energy consumption is mini-
mized while still meeting the frame deadlines. Scenario-
aware resource prediction can also be used to predict the
energy consumed by such energy-efficient video decoding
solutions. Figure 6 shows the error when predicting the
amount of energy consumed for decoding the given video
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Figure 6. Energy prediction error for a DVFS-
aware client.
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Figure 7. Total storage cost per video stream
for maintaining scenario IDs.

stream using the DVFS-driven video decoding method pre-
sented in [10]. The average prediction error is 1.4%; the
maximum prediction error is never larger than 4%.

5.4 Cost
Scenario-aware resource prediction incurs a cost at the

content provider side, namely scenario IDs need to be main-
tained for all video streams in the database. The average
cost per video stream assuming run-length encoding is less
than 1K bits, see Figure 7. This corresponds to less than
100 bits per second on average. Or, a one-hour video only
requires approximately 45KB of storage. The cost for un-
compressed scenario information is approximately 66KB
per hour of video. This is an overhead of less than 0.02%.

6 Related work
Video decoder complexity analysis. Horowitz et al. [11]
present a detailed platform-independent video decoder
complexity analysis of the H.264/AVC video decoder. The
characterization is done in terms of macroblock types and
the number of fundamental operations required to perform
the key decoder subfunctions.



Mattavelli and Brunetton [17] also characterize video
streams in a platform-independent manner by counting the
number of inter prediction macroblocks, the number of intra
prediction macroblocks, the number of skip macroblocks,
etc. For predicting the decoder performance on a partic-
ular platform, they then employ linear regression to learn
how to weight the platform-independent metrics for mak-
ing decode time predictions. There are two important lim-
itations with this approach. First, Mattavelli and Burnetton
require “a relatively large set of video sequences with as-
sociated measurements”. This is impractical on resource-
constrained embedded devices as profiling the client may
take considerable time. In case of scenario-based resource
prediction on the other hand, client profiling is done very
quickly using only a few frames, namely the scenario rep-
resentatives. Second, the storage requirements on the con-
tent provider side for Mattavelli and Brunetton’s technique
is very large (at least two orders of magnitude larger) com-
pared to scenario-based resource prediction. Mattavelli and
Brunetton need to store regression weights for all platform-
independent metrics per frame; this would be hundreds of
bits per frame in our setup. We only need a few bits for
encoding the scenario ID per frame.

Energy-efficient video decoding. Several proposals to
energy-efficient video decoding have been made in recent
literature [6, 7, 8, 12, 13, 16]. Several of these proposals do
an online prediction of how fast the client’s clock frequency
needs to be set in order to minimize energy and still meet the
frame deadlines. However, these approaches do not make a
priori resource predictions at the content provider’s side.

WCET estimation. Gheorghita et al. [9] use scenarios
for worst case execution times (WCET) estimation. WCET
estimation is a different problem than resource prediction.
WCET estimation needs formally proved execution time
bounds; resource prediction on the other hand strives at
making realistic performance, QoS and energy estimates.

7 Conclusion
Resource prediction is useful in media stream applica-

tions where content providers deliver services to clients.
This paper proposed scenario-aware resource prediction for
predicting decode time, decode energy and quality of ser-
vice. The key idea of this approach is to identify platform-
independent scenarios across the media streams in the con-
tent provider’s database. A scenario collects frames with
similar decode complexity. Our experimental results using
the H.264 video decoder showed accurate resource predic-
tions. Per-stream decode time and energy can be predicted
with an average error of 1.4% and a maximum error of 4%.
Predicting the number of missed frame deadlines can be
done with an error of at most 4%.
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