
Techniques for Designing Noise-Tolerant Multi-Level Combinational Circuits

K. Nepal, R. I. Bahar, J. Mundy, W. R. Patterson, A. Zaslavsky

Brown University, Division of Engineering, Providence, RI 02912

Abstract

As CMOS technology downscales, higher noise levels, wider

threshold variation, and low supply voltage will force designers

to contend with high rates of soft logical errors and many defec-

tive devices. A probabilistic design framework based on Markov

random fields (MRF) has been previously proposed to address dy-

namic fault and noise vulnerability of ultimate digital CMOS cir-

cuitry. The idea is to use additional transistors and feedback loops

to achieve significant noise immunity and ensure correct logic op-

erations at low VDD. However, the extra reliability achieved in

previously published work came at a cost of high transistor counts.

In this paper, we present techniques to reduce the transistor count

of larger multi-level combinational circuits built within the MRF

framework by using variable sharing, implied dependence and su-

pergates. Using these techniques we show an average reduction

of approximately 28% in transistor counts over a range of combi-

national benchmark circuits built within the MRF framework com-

pared to the best previously published results.

1. Introduction

For several decades, mainstream silicon technology has relied

on scaling down CMOS transistors, with the miniaturization driven

by Moore’s Law and the continuously updated ITRS roadmap [1].

While CMOS devices with gate length LG < 10nm have been

experimentally demonstrated [2], it is certain that shrinkage of de-

vices to such extreme LG, combined with the power-consumption

constrained reduction of VDD down to 0.5 V or even lower, will

produce faulty systems. Both soft faults due to noise and signal

coupling, and hard faults due to process variations and defects can

be expected, making error-free logic and data retention a difficult

proposition.

Probabilistic computing provides a possible approach towards

building fault-tolerant nanoarchitectures and systems. Previous

work has proposed the use of Markov random fields as a frame-

work for probabilistic computation in nano- scale systems [3].

The mapping of the MRF-based probabilistic framework to ulti-

mate CMOS circuitry was shown in [4, 5] and the approach was

extended to state and memory protection against single event up-

sets in [6, 7]. These papers showed that subthreshold operation

was viable for reliable computation at reduced dynamic power lev-

els and with high level of noise immunity; however the improve-

ments came with up to an order of magnitude increase in transistor

count [4]. In this paper we address this transistor overhead prob-

lem for large multi-level combinational circuits by using different

design strategies. The first strategy involves the creation of MRF

elements using the concept of common clique variable sharing and

implied dependence. The second strategy involves the creation and

This work is supported in part by NSF grants CCR-0304284,
CCR-0403958, and CCR-0541106.

use of supergates. Our results show a 28% improvement in tran-

sistor count compared to the area-optimal mapping reported in [5].

This translates to only a 3.5X overhead in transistor count in order

to obtain reliable computation compared to an unreliable standard

CMOS implementation.

2. Background

To better understand how our combinational circuits are de-

signed, we first provide a brief background on Markov random

fields.

2.1 Markov Random Fields

The Markov Random Field defines a set of random variables

which can each take on various values and interact with other sim-

ilar random variables in a finite neighborhood. Circuit networks

can be expressed in terms of such neighborhoods [3] and the in-

teraction of the logic states and variables can be represented as

a dependence graph. Figure 1 shows a simple multi-level circuit

and its corresponding dependence graph. In this case, the graph is

equivalent to a Markov random field, where the nodes are random

logic variables that can hold values ranging from 0 to VDD and

the edges are the conditional dependencies between the variables.

Importantly, there is no notion of directed logic flow and causality,

just statistical dependence. For instance, if the output of the first

NAND gate is at logic 0, then both the inputs are constrained to

be at logic 1 — i.e., there is a (backward) statistical dependency

between the output state and the input state. This dependency be-

tween the inputs as well as the outputs is modeled with a edge

connecting the nodes of the gate.

Figure 1. A logic circuit and its dependence graph for a

simple Markov random field.

All the logic variables, {s0, s1, s2, s3, s4, s5} in this example,

are varying in a random manner over the range of the logic signal

levels. The correct logic states are those that maximize their joint

probability, i.e., the correct logic operation for the example corre-

sponds to the variables that maximize, p(s0, s1, s2, s3, s4, s5).

978-3-9810801-2-4/DATE07 © 2007 EDAA 

 



In the graph of Figure 1, three distinct sets of cliques (i.e.,

fully connected subsets of the nodes in the graph) {s0, s1, s3},

{s2, s3, s4}, {s4, s5} are observed. These cliques represent the

local statistical dependencies of the logic states. The crucial fac-

tor for probabilistic circuit design is that the full set of nodes (logic

variables) in the circuit can be factored into a product of joint prob-

abilities in the set of cliques that describe the local interactions.

Using the Hammersley Clifford theorem [8], the joint probability

distribution can be written as,

p(S) =
1

Z

∏

c∈C

e
−U(sc)

U0 (1)

where S is the set of all nodes in the dependence graph, C is the set

of cliques, sc is the set of nodes in a clique c, U(sc) is the clique

energy function also referred to as the logic compatibility func-

tion, and U0 is an abstract term that defines the sharpness of the

probability distribution. The term Z is called the partition function

and is a constant required to normalize the probability function to

[0,1].

2.2 State Propagation in MRF Networks

The general algorithm for finding individual site labels that

maximize the probability of the overall network is called belief

propagation [9] and provides an efficient means of solving infer-

ence problems by propagating marginal probabilities through the

network. The basic idea of belief propagation is that the prob-

ability of state labels at a given node in the network can be de-

termined by marginalizing (summing) over the joint probabilities

for the node state given just the probabilities for site labels in

the neighborhood. In our example of Figure 1 the probability

p(s0, s1, s2, s3, s4, s5) can be decomposed into:

p(s0,s1,s2,s3,s4,s5)=U(s0,s1,s3)U(s2,s3,s4)U(s4,s5) (2)

For belief propagation, we start from the primary inputs of the

circuit network. As a first step, s0 and s1 are eliminated by sum-

ming U(s0, s1, s3) over all states of s0 and s1 to obtain U(s3),

i.e., s0 and s1 are marginalized out. Then s2 and s3 can be elim-

inated by summing U(s3)U(s2, s3, s4) over all states of s2 and

s3, giving U(s4). Finally, s4 can be eliminated similarly to obtain

U(s5).

This example illustrates that achieving the correct state con-

figuration in the network corresponds to propagating state values

through the network and updating each node assignment with a

node state having the maximum probability.

3. Mapping Multi-level Circuits to MRF ele-

ments

In our previous works, MRF encodings for simple logic ele-

ments were shown [4, 5]. Each encoding consisted of bistable

elements and feedback circuitry to keep the circuit input and out-

puts at their correct values. The MRF encodings provided superior

noise immunity but such immunity came at the cost of larger tran-

sistor counts. These simple elements were cascaded to form larger

multi-level circuits resulting in extremely high area overhead. In

this section, we identify various ways of reducing the transistor

counts of multi-level circuit designs by using the concept of clique

variable sharing, implied dependence and supergates.

3.1 Variable Sharing and Implied Dependence

Figure 2. An inverter cascade.

Consider a cascade of two inverters as shown in Figure 2 for

an application where the output of the first inverter as well as the

second inverter are used elsewhere in the circuit. In such a case,

the middle node y as well as the output node z need to be treated

equally. One possible solution to create such a structure is to take

two MRF inverter elements and cascade them together. The first

inverter would implement the clique function Uc(x, y) = x′y +
xy′ and the second inverter would implement Uc(y, z) = yz′ +
y′z. The cost of this cascaded implementation would be a total of

40 transistors.

In the cascade of gates, signal y appears as the output of the

first stage and an input to the second stage. The bistable element

as well as the feedback mechanism of the first stage will try to re-

enforce the value at node y. The bistable element and feedback

mechanism of the second stage would do the same. In this simple

example, the value at node y is being re-enforced twice. There is

nothing functionally wrong with the double reenforcement — it is

simply wasteful.

In order to avoid the double cost of node storage and feed-

back, the node y can be shared and the two clique energy functions

can then be written using the shared variable y as: Uc(x, y, z) =
x′yz′ + xy′z. Hence, an MRF encoding can be built by sharing

the common label y as shown in Figure 3. Here the sharing occurs

both in the bistable elements as well as the feedback circuitry and

hence the total transistor count is reduced. For this particular cir-

cuit structure, the total cost in terms of area is just 28 transistors

— a 30% savings compared to a naı̈ve cascade of gates.

Figure 3. Clique encoding of the inverter cascade.

Sharing clique variables in both the bistable element and the

feedback circuitry reduced the transistor count in this particular

example. However, the possibility of sharing a node on the bistable

element is constrained by the total number of transistors allowed

on the bistable circuit stack. In general, an N -input/M -output

MRF element would require up to (N + M) transistors in se-

ries in the transistor-level implementation of the bistable element.

While larger logic functions could be realized using higher tran-

sistor stacks, for practical purposes this is generally not preferred.



When all the devices in the stack are turned on and conducting,

the threshold voltage of each device increases due to the stack ef-

fect and causes the drive current to decrease. Circuit designers

typically handle this problem by restricting the stack height of a

design to four [10]. Higher number of clique variables could be

handled using a multi-level bistable element.

Figure 4. A circuit network with multiple outputs. p, q

are the inputs and x, y are the outputs.

Often in real designs we encounter circuits that have multiple

outputs. Usually these multiple outputs are all a function of the

same primary inputs of the circuit. Consider the circuit shown in

Figure 4 with inputs p, q and outputs x and y. The output x is

defined by the logical AND of the two inputs, i.e., x = p.q and y

is defined as y = p + q′. The clique energy function for these two

relations can be written as:

Uc(p, q, x) = pqx + x
′(q′ + p

′) (3)

Uc(p, q, y) = p
′
qy

′ + y(p + q
′) (4)

Figure 5. MRF dependence graph of the circuit from

Figure 4.

The dependence graph in Figure 5 shows the relationship be-

tween the inputs and the respective outputs. The solid lines in the

graph show the explicit dependence of the two separate outputs x,

and y on the inputs. There is also a dashed line between outputs x

and y representing the implied dependence between the two out-

puts. The logical state of output x is directly dependent on inputs

p and q, but inputs p and q also directly depend on y. If output

y were set to a 0 then inputs p and q would have to be logic 0

and 1 respectively, setting x to a logic 0. This implied dependence

between all the nodes of the dependence graph adds some degree

of complexity but it also confers an advantage: instead of treating

these two outputs as two separate entities with two different clique

functions, we can treat the entire system as one large entity gov-

erned by a fourth-order clique function consisting of nodes p, q, x

and y.

Uc(p, q, x, y) = pqxy + p
′
qx

′
y
′ + q

′
x
′
y (5)

Using this combined clique energy function, we can now create

an MRF mapping for the entire circuit. The circuit encoding is

shown in Figure 6. The total number of transistors required to

implement this combined clique energy function is 50 compared

to 84 if the individual clique energies were separately mapped. In

other words, the transistor count overhead required to obtain noise

immunity dropped from 6 fold to about 3 fold relative to the circuit

implemented with 14 transistors in standard CMOS.

Figure 6. MRF encoding of clique energy function shown

in Equation 5. p, q are the inputs and x, y are the outputs.

3.2 Supergates

The concept of supergates was introduced in [11] and its use

as a preprocessing step before technology mapping was shown

in [12]. In both these works, a supergate was introduced as a

single-output network composed of several logic levels of basic

logic elements found in a standard cell library. In our case, how-

ever, we use the term supergate to refer to both single and multiple

output networks. Given a MRF circuit netlist consisting of simple

logic elements, our goal is to find supergates that have the same

logic functionality but lower transistor counts.

Figure 7. A circuit network.

Consider the circuit network shown in Figure 7 that implements

an arbitrary function. For simplicity of illustration, the logic gates

in this example are restricted to a simple inverter and two-input

NAND; however these could be more complex logic gates (e.g.,

NAND4, AOI21, etc.). Larger multilevel circuits such as the one

shown here can always be built by cascading simple MRF ele-

ments. The noise tolerance of the individual MRF element cas-

caded to form such multi-level elements will result in reliable sig-

nal at the primary outputs. The total cost of cascading such ele-

ments to form the network would come at a cost of 208 transistors

compared to 28 in fault-susceptible standard CMOS.

We can consider various supergate structures that are function-

ally equivalent to the circuit network shown in Figure 7. Consider



the equivalent structure consisting of the following supergates:

SG1 = {1, 2, 3, 4}

SG2 = {5, 6}

SG3 = {7, 8}

The first supergate now has three primary inputs c,d and e and

produces the output i. The internal nodes f, g and h are no longer

relevant. As such, one can write the clique energy function directly

for the circuit, ignoring all internal nodes, as: Uc(c, d, e, i) =
id(c + e′) + i′(c′d + e′). Implementing this clique energy func-

tion directly requires a total of only 36 transistors. Similarly node

j becomes irrelevant in the second supergate and the clique en-

ergy function of that supergate with respect to nodes a, i and k is

Uc(a, i, k) = ai′k′ + k(i + a′). This supergate implementation

comes at a cost of 36 transistors, fewer than the 48 transistors that

would have been required if the circuit were built by a cascade

of gates 5 and 6. The third supergate consisting of gates 7 and 8

has two outputs. For this gate, output P is dependent on nodes

{k, Q} and Q is dependent on nodes{b, i}. Here node k is not

directly dependent on node b or i but there is a direct dependence

between k and P . Similarly, P and Q have a direct dependence

and Q in turn is dependent on the nodes b and i. From the con-

cept of implied dependence introduced in the preceding section,

there is a dependence of Q on k. Hence, we can say that all the

nodes of this supergate are implicitly or explicitly dependent on

each other, enabling us to create a single clique energy function

representing the five variables. The combined clique energy func-

tion is a little complex but can be written as: Uc(b, i, k, P, Q) =
kb′P ′Q + ki′P ′Q + k′b′PQ + k′i′PQ + biPQ′. Implement-

ing this clique energy function requires a total of 56 transistors.

Using these three supergates, the multi-level combinational circuit

shown in Figure 7 can be created using a total of 120 transistors,

for a savings of 42% compared to the one mapped with cascaded

simple MRF elements.

The supergate set shown in this example is not unique. For a

given circuit, there exist multiple sets of supergates that can effi-

ciently represent the original functionality. Consider the possibil-

ity of combining supergates SG2 and SG3 into a single supergate.

This new supergate would involve gates {5, 6, 7, 8} with inputs

a, b and i and outputs P and Q. Using implied dependence, the

combined clique energy function for this supergate can be writ-

ten as Uc(a, b, i, P, Q) = ab′PQ + a′b′P ′Q + biPQ′ + bi′P ′Q.

This clique function can be implemented with a total of 66 transis-

tors leading to the MRF implementation of the circuit of Figure 7

with only 102 transistors. This is about a 50% savings in terms of

transistor count compared to a cascade of simple gates.

Note that for this particular circuit, the presence of multiple

outputs on a supergate increases the total transistor count of that

supergate. For instance, for the final supergate we had P and Q

as the outputs. If the circuit design did not dictate the need for

signal Q to be set as a primary output, we could have ignored

it as an internal node and created the second supergate consist-

ing of gates {5, 6, 7, 8} with much fewer transistors. The ab-

sence of Q would have simplified the clique energy function to

Uc(a, b, i, P ) = ab′P + a′b′P ′ + biP + bi′P ′. The implementa-

tion of this would have reduced the complexity of both the bistable

elements and the feedback circuitry and required 20 fewer transis-

tors.

Table 1 summarizes the area, power consumption and propa-

gation delay of the different supergate sets for the circuit network

Supergate set Area(# tran) Power(µW) Delay(ns)

MRF cascade 208 19.6 13.4
{1,2,3,4}{5,6,7,8} 102 4.0 12.4

{1,2,3,4} {5,6} {7,8} 120 6.8 28.0
{1,2}{3,4}{5,6}{7,8} 148 9.1 27.9
{1,2}{3,4}{5,6,7,8} 130 6.0 15.4

Table 1. Area, power dissipation and propagation delay

comparison at VDD = 200mV for different supergate

sets of the circuit network shown in Figure 7.

shown in Figure 7. The supergate sets were simulated in SPICE

using the 70nm predictive technology model [13] at a supply volt-

age of 200mV. All circuit nodes (internal and external) were sub-

jected to noise modeled as a Gaussian distribution with mean 0V

and standard deviation 60mV RMS [4]. From the table, it is clear

that the supergate set of {1,2,3,4} and {5,6,7,8} not only requires

the least number of transistors but also has the lowest propaga-

tion delay and has the lowest power consumption. Figure 8 shows

the SPICE simulation of the output node P for a CMOS and MRF

implementation of the circuit network. The MRF circuit imple-

mented using the supergate set of {1,2,3,4} and {5,6,7,8} shows

remarkable noise immunity compared to the regular CMOS im-

plementation.

Figure 8. Voltage at output node P for a CMOS imple

mentation and MRF implementation using supergate set

{1,2,3,4}{5,6,7,8}.

4. Experimental Results

For a given circuit structure, there are numerous possibilities in

generating the candidate supergates. Certain constraints must be

imposed to keep the number of such supergate sets manageable.

Constraints in the number of clique variables (i.e., the number of

inputs/outputs), the total area, and the complexity of the feedback

path of the MRF design were used as metrics for generating the

supergates. The complexity of the feedback element depends not

so much on the variable count but more on the ease of Boolean

factorization of the terms in the clique energy function. If multi-

ple minterms can be combined using factorization, as was shown

in [5], the number of bistable elements can be reduced and the

overall feedback path can be simplified. This in turn generates a

savings in transistor counts. In this work, the number of clique

variables was limited to five and the maximum number of transis-

tors per supergate was limited to 120 to keep the feedback path

complexity to a minimum. Using these constraints on the super-



Circuits Input Outputs Circuit Standard w/o Overhead with Overhead %
depth CMOS supergates (X) supergates (X) improvement

5xp1 7 10 11 532 2724 5.1 2140 4.0 21.4
9sym 9 1 15 988 5040 5.1 3940 4.0 21.8
alu4 14 8 23 5618 28472 5.1 24356 4.3 14.5

apex1 45 45 22 9838 47620 4.8 40100 4.1 15.8
apex2 39 3 26 1732 8152 4.7 6912 4.0 15.2
apex3 54 50 19 8652 42236 4.9 35500 4.1 15.9
apex4 9 19 19 13062 65416 5.0 51442 3.9 21.4
apex5 117 88 14 4876 22220 4.6 18432 3.8 17.0
b12 15 9 8 372 1816 4.9 1376 3.7 24.2
bw 5 28 9 748 3840 5.1 2912 3.9 24.2
clip 9 5 11 714 3544 5.0 2812 3.9 20.7

cordic 23 2 13 358 1712 4.8 928 2.6 45.8
duke2 22 29 21 2590 12192 4.7 10420 4.0 14.5
e64 65 65 10 3664 15292 4.2 13276 3.6 13.2

ex1010 10 10 21 12568 63832 5.1 47550 3.8 25.5
ex5 8 63 12 3264 15824 4.8 11894 3.6 24.8
inc 7 9 11 572 2632 4.6 2124 3.7 19.3

misex1 8 7 8 276 1416 5.1 1108 4.0 21.8
misex2 25 18 7 490 2288 4.7 1920 3.9 16.1
misex3 14 14 22 5948 29236 4.9 24496 4.1 16.2

o64 130 1 8 524 2832 5.4 2732 5.2 3.5
pdc 16 40 24 5626 26032 4.6 20280 3.6 22.1
rd53 5 3 9 242 1252 5.2 800 3.3 36.1
rd73 7 3 13 656 3260 5.0 2360 3.6 27.6
rd84 8 4 13 950 4836 5.1 3188 3.4 34.1
sao2 10 4 11 682 3392 5.0 2468 3.6 27.2
seq 41 35 23 8692 42108 4.8 35936 4.1 14.7
spla 16 46 24 5816 27060 4.7 20626 3.5 23.8

squar5 5 8 7 266 1372 5.2 752 2.8 45.2
t481 16 1 14 354 1544 4.4 1172 3.3 24.1

table3 14 14 24 7678 37880 4.9 32812 4.3 13.4
table5 17 15 23 7088 34216 4.8 29408 4.1 14.1
vg2 25 8 9 828 3636 4.4 3108 3.8 14.5

Z5xp1 7 10 10 798 3972 5.0 2344 2.9 39.2
Z9sym 9 1 12 794 3856 4.9 2760 3.5 28.4
C432 36 7 29 828 3424 4.1 2584 3.1 24.5
C499 41 32 23 1900 10672 5.6 3712 2.0 65.2
C880 60 26 23 1476 7764 5.3 5108 3.5 34.2

C1355 41 32 23 1964 10672 5.4 2632 1.3 75.3
C1908 33 25 31 1900 10176 5.4 3772 2.0 62.9
C2670 233 140 22 2976 14984 5.0 9292 3.1 38.0
C3540 50 22 41 4612 23388 5.1 16644 3.6 28.8
C5315 178 123 41 7138 35348 5.0 21220 3.0 40.0
C6288 32 32 119 9948 54828 5.5 25188 2.5 54.1
C7552 207 108 34 9220 47996 5.2 16904 1.8 64.8

AVERAGE 4.9 3.5 28.2

Table 2. Comparison of transistor count for MRF mapping with and without the use of Supergates

gate complexity, a total of 657 gates (including the basic logic

elements) were generated and used for synthesis.

We now present results obtained from experiments run on the

MCNC and ISCAS combinational benchmark suites synthesized

and mapped with and without the use of supergates. In Table 2, we

show result for 45 different circuits with varying depth and size.

All circuits were synthesized and mapped to gates using the ABC

tool [14]. In columns 2–4 we list the number of inputs, outputs

and circuit depth for each circuit. The depth reported in Table 2

is the maximum number of gates along any path from primary

input to output using a standard CMOS mapping. Column 5 re-

ports the transistor counts for the circuits mapped using a standard

CMOS implementation, while columns 6 and 8 report transistor

counts for the circuits mapped to MRF logic elements without and

with the use of supergates, respectively. To obtain the results re-

ported in column 8, each circuit was synthesized once and then put

through 10 iterations of mapping, where each iteration produced

a functionally equivalent circuit using a different set of supergates

chosen by the ABC tool. The mapping generated by the supergate

set that resulted in the least area measured in terms of transistor

counts was reported in the table.

The MRF implementation without supergates led to a 4.9 fold

area overhead on average over a standard CMOS implementation.

This is similar to what was reported in [5]. By using supergates

during the mapping process, this area overhead was reduced to

3.5X on average relative to the standard CMOS implementation

(see column 9). This translates to a 28% improvement in transistor

count overhead by being able to exploit the supergates in the MRF

mapping. Depending on the particular circuit, supergates may be

used quite effectively to reduce the overall transistor count. In

the best case, circuit C1355 required only a 30% overhead com-

pared to a standard CMOS implementation (i.e., a 75% reduction



over the area-optimal method of [5]). This is a very modest over-

head especially considering a standard CMOS implementation of

C1355 is unlikely to produce reliable signal outputs under such

noisy conditions, as reported in [4]. While area reduction is not

always so impressive (e.g., in the worst case, the overall reduction

in transistor count was only 3.5% for circuit o64), we do show

that for 8 of the 47 circuits, the transistor counts were reduced by

at least 40% compared to an MRF mapping without supergates.

Still, the extent of area reduction greatly depends on the overall

circuit structure and the availability of certain supergate structures

in the library. As future work, enhancements to this tool may in-

clude selective MRF mapping directed in part by circuit structure

to further reduce the area overhead.

Figure 9. Transistor count variation for 10 different su

pergate sets for the C1908 benchmark

The supergate set used in the mapping of a particular bench-

mark circuit is not unique, as illustrated in Section 3.2. Across

the 10 mapping iterations, the total number of transistors can vary

depending on which supergate set was chosen by the ABC tool.

To get a better appreciation of this effect, in Figure 9 we show a

typical example of the variation in transistor counts across the 10

mapping iterations. For this particular circuit (C1908), the varia-

tion ranged from a maximum of 4160 transistors to a minimum of

3772. Across all benchmark circuits, an average of 7% difference

in transistor count was seen between the maximum and minimum

mapping.While certain constraints described earlier in this section

were employed to keep the number of supergates available dur-

ing technology mapping to a manageable number, the choice of

an optimal supergate set during the technology mapping stage is a

complex problem. In this work, a number of iterations were done

and the mapping producing the least area was reported. However,

as was shown in Section 3.2, the optimal supergate set in terms of

area might not necessarily produce the optimal mapping in terms

to delay or power. Our current work focuses on developing an ef-

ficient heuristic for determining the optimal supergate set in terms

of reliability, area, delay and power.

5. Conclusions and Future work

As devices are sized down to the nanoscale and supply volt-

age scales down below 0.5V, circuit designers will need to account

for significant signal noise in order to guarantee reliable compu-

tation. The MRF probabilistic model provides a framework for

designing CMOS circuits that can operate effectively under condi-

tions of ultra-low supply voltage and extreme noise conditions. In

this paper we showed how the area overhead for an MRF imple-

mentation might be reduced by using implied dependence, super-

gates and clique variable sharing. A complex logic function (with

multiple inputs and/or outputs) may have a smaller overhead with

respect to transistor count if implemented using supergates, how-

ever, tradeoffs in delay and power may not make this an optimal

design choice. Our aim in the future is to develop a noise-aware

logic synthesis and technology mapping tool. Given a functional

description of a circuit, the tool will produce an error-tolerant de-

sign that balances area, power, delay, and reliability constraints

when generating the final mapped circuit.

6. References

[1] The latest update to the ITRS is available at

http://www.public.itrs.net.

[2] B. Doris et al. Extreme scaling with ultra-thin SOI channel

MOSFETs. In Technical Digest IEDM, pages 267–270,

2002.

[3] R. I. Bahar, J. Mundy, and J. Chen. A probabilistic-based

design methodology for nanoscale computation. In

Proceedings of International Conference on Computer

Aided Design, Nov. 2003.

[4] K. Nepal, R. I. Bahar, J. Mundy, W. R. Patterson, and

A. Zaslavsky. Designing logic circuits for probabilistic

computation in the presence of noise. In Proceedings of

Design Automation Conference, June 2005.

[5] K. Nepal, R. I. Bahar, J. Mundy, W. R. Patterson, and

A. Zaslavsky. Optimizing noise-immune nanoscale circuits

using principles of Markov random fields. In Proceedings of

Great Lakes Symposium on VLSI, April 2006.

[6] K. Nepal, R. I. Bahar, J. Mundy, W. R. Patterson, and

A. Zaslavsky. MRF Reinforcer: A Probabilistic Element for

Space Redundancy in Nanoscale Circuits. IEEE Micro,

26(5):19–27, Sept-Oct 2006.

[7] K. Nepal, R. I. Bahar, J. Mundy, W. R. Patterson, and

A. Zaslavsky. Designing MRF based error correcting

circuits for memory elements. In Proceedings of Design,

Automation and Test in Europe, March 2006.

[8] J. Besag. Spatial interaction and the statistical analysis of

lattice systems. Journal of the Royal Statistical Society,

Series B, 36(3):192–236, 1994.

[9] J. Yedidia, W. Freeman, and Y. Weiss. Understanding belief

propagation and its generalizations. In International Joint

Conference on AI, 2001. Distinguished Lecture.

[10] J. M. Rabaey, A. Chandrakasan, and B. Nikolic. Digital

Integrated Circuits: A Design Perspective 2nd ed.

Englewood Cliffs, NJ: Prentice- Hall, 2003.

[11] S.C. Seth, L. Pan, and V. D. Agrawal. PREDICT —

probabilistic estimation of digital circuit testability. In

Proceedings of IEEE International Symposium on Fault

Tolerant Computing, pages 220–225, June 1985.

[12] A. Mishchenko, X. Wang, and T. Kam. A new enhanced

constructive decomposition and mapping algorithm. In

Proceedings of Design Automation Conference, pages

143–148, June 2003.

[13] Available at http://www-device.eecs.berkeley.edu/∼ptm/.

[14] Berkeley Logic Synthesis and Verification Group. ABC: A

system for sequential synthesis and verification, release

51205. http://www.eecs.berkeley.edu/∼alanmi/abc/.


	Main
	DATE07
	Front Matter
	Table of Contents
	Author Index




