Reversible Circuit Technology Mapping from Non-reversible Specifications

Zeljko Zilic, Katarzyna Radecka ¥

and Ali Kazamiphur”

McGill University, Concordia University”
zeljko.zilic@mcgill.ca

Abstract

This paper considers the synthesis of reversible circuits
directly from an irreversible specification, with no need
for producing a reversible embedding first. We present a
feasible methodology for realizing the networks of
reversible gates, in a manner that builds on the classical
technology mapping. We do not restrict ourselves to the
restricted notion of realizing permutation functions, and
construct reversible implementations where extraneous
signals are efficiently reused for overcoming the inherent
fanout limitation.

1. Introduction

Reversible circuits are of fundamental interest due to their
capability of restoring consumed energy [1]. They are
also required in quantum computing, and are of use in
cryptographic and some other classical circuits [2]. To
realize a reversible implementation of an arbitrary logic
function, traditionally one first has to produce a reversible
embedding onto a suitable reversible function. Only then,
the synthesis of the resulting reversible specification can
take place.

In this paper, we propose a reversible circuit synthesis
methodology that is undertaken without finding a
reversible embedding first. We will show that it suffices
to start with a classical, irreversible logic circuit that is
already mapped onto a library of 2-input gates using
classical methods, and then apply the reversible mapping
using a library of reversible logic cells.

There are two pressing problems with any reversible
synthesis that have to be addressed from the outset. First,
we need to be efficient with adding extraneous I/O signals
that are required for reversible operation of the circuit.
Second, the synthesis must account for the inability to fan
out the signal in a network, which is another fundamental
limitation of the reversible logic. The technique proposed
here will deal with both issues in a way that actually
exploits the existence of extraneous bits to route the
signals that need to be replicated in a fanout.

The paper is organized as follows. In Section 2, we
provide the background on reversible computing and the
reversible logic synthesis. Section 3 addresses design
issues of reversible library cells. Section 4 presents the
key insight to facilitating the reversible technology
mapping by a library of reversible cells. Section 5

978-3-9810801-2-4/DATEQ07 © 2007 EDAA

provides the results of experiments designed to
demonstrate the impact of the cell library design, the
technology mapping choices and the optimization steps
by which double gates can be packed in a single cell.

2. Background

A circuit is reversible if it realizes a bijective mapping of
inputs to outputs. Hence, the number of inputs and
outputs must be the same. Further, all signals must have a
fanout of 1. We say that a reversible gate is universal if
any reversible function can be realized by a circuit built
solely with such a gate. It is known that the smallest
universal gates are three input, three output (3x3) gates,
while 2x2 gates can implement only linear mappings [9].

Reversible synthesis of an arbitrary irreversible multi-
output Boolean function finvariably produces a reversible
embedding function f,. For such an embedding, it suffices
that f. is reversible, and that its restriction to primary
inputs and outputs of f is equivalent to f. Reversible
embeddings can produce additional number of extraneous
inputs and outputs. In some contexts, additional inputs are
referred to as ancilla bits, while extraneous outputs are
called garbage bits. Hence, in addition to minimizing the
cost of logic gates, in reversible synthesis, the number of
these extraneous pins should be kept to a minimum.

The number of required extraneous bits can be derived
from the maximum repetition count, f;,,., among output
bit combinations. It is easy to prove [5] that the minimum
number of added output bits G equals the ceiling of the
logarithm of the identical output values, [log, (fiame)
Further, the number of added inputs 4 must be such that
the total number of inputs and outputs is always equal:

#inputs + A = #outputs + G 1)

Most work on reversible synthesis is restricted to
permutation mappings by which input bit combinations
simply get permuted at the outputs. These are clearly not
all reversible functions. Consider, for example, a
reversible mapping from a pair of bits (a, b) to (a, a®b).
While inputs can be always restored from outputs, this
mapping is not a permutation of inputs.

A formulation of the permutation mapping
optimization problem was given in [2], together with an
exact algorithm that is double exponential in the number
of inputs. Synthesis of permutation mappings where the
number of extraneous bits is kept to a minimum was
considered in [5]. A heuristic is developed that changes

gates until the Hamming distance to the desired function
disappears. A body of work employs rewrite rule-based
template synthesis of permutation mappings (see, e.g.
[6]). The work in [7] presents somewhat wider scope than
the permutation mapping optimization, and uses the Reed-
Muller transform to algebraically express functions in a
form suitable for finding common terms. While this
method apparently scales better, it is still capable of
synthesizing relatively small circuits that are already
reversibly embedded.

Recent work [11] on quantum circuit synthesis has
reduced the problem to the classical multiple-valued logic
synthesis and reachability analysis. In this case, the
reversible gates are non-binary and are not necessarily
only permutation mappings. While offering a promise of
mapping the irreversible specifications to a reversible cell
library, it still applies only to permutation mappings.

The goal of synthesizing reversible circuits directly
from irreversible specification, similar to the classical
technology mapping, has been considered since the study
by Toffoli [1], but so far it has not been achieved. In
classical technology mapping [3], i.e., the covering a
Boolean network with library cells (usually single-output
Boolean functions), one often uses the fact that the
dynamic programming is known to produce optimal
results for trees, or that the network-flow based
algorithms can be optimal for programmable logic blocks.

2.1. Common Reversible Gates

Reversible logic synthesis has relied on gates such as
Toffoli gate. Using classical logic gates, the operation of
the three smallest Toffoli gates is described in Figure 1.a).

TOF1(A) TOF2(A,B) TOF3(A,B,C)
P=A
— P=A
P=A _ Q=B
Q=ABE R=AB®C
A P
A P
A D oP Bﬁ_Q
e LR
a)
NOT CNOT A TOFFOLI p
control-———-
controf - A ,-.|\ P B Q
target A @ P = T Q & R
b)

Figure 1: Family of Toffoli Gates

Toffoli gates with 1 and 2 inputs are commonly
referred to as the NOT and CNOT gates. The usual
symbols for Toffoli gates in Figure 1.b) indicate that the
Toffoli target output is inverted if all the control bits are
set to 1. Bidirectional signal flow is possible in reversible
circuits; our use of Boolean gates to describe gates as in
Figure 1.a) does not preclude bidirectionality.

The 3x3 Tofolli gate is universal, i.e., any reversible
circuit can be built by employing only this gate. As

evident from Figure 1, by selecting appropriate
combinations of input control lines, Toffoli gate output
R(4, B, C), can realize AND, NOT and XOR functions:

AND: R (4, B, 0) =4B,
NOT: R (4, 1,0)=A,
XOR:R(1,B,C)=B®CorR(4,1,C)= ADC.
While Toffoli gate is a controlled inverter, the widely
considered Fredkin gate is a controlled swap gate in
which all control signals need to be 1 to swap the two
target bits. Also considered is the Kerntopf gate, with
three outputs, P, Q and R, defined as:
P(A,B,C)=1®A®B®C ® AB,
Q(A,B,C)=1® AB®B® C ®BC,
R(A,B,C)=1®A®B® AC.

The simultaneous availability of many functions (there
are 18 different cofactors!) at the outputs of the Kerntopf
gate offers a lot of flexibility for synthesis and for
implementing various adders [8]. However, there are no
known inexpensive realizations [9], so it is believed to be
significantly more costly than Toffoli and Fredkin gates.

2.2. Universal And/Or Reversible Gate

We refer to the gate proposed in [10], Figure 2.a), as a
Universal AND/OR Reversible Gate. The gate can be
realized with just two CNOT and one TOFFOLI gates,
Figure 2.b). Hence, it is more area-efficient than the
Kerntopf gate. Additionally, as input signals pass through
less logic, the proposed gate is inherently faster than
Kerntopf gate.

A P A P

; el B0
c SIS)

a) b)
Figure 2: Universal AND/OR Reversible Gate
The gate outputs, expressed as AND, OR, NAND,
NOR, etc. functions of inputs 4 and B, and control C, are:
F(A,B,C)={P(A,B,C),0(A,B,C),R(A,B,C)} =
[P(A,B)=A, QABD=A+B, R(A,B1)=AB];
[P(A,B,0)=A, Q(A,B,0)=A+B, R(A,B,0)=AB].
Hence, this universal reversible gate provides an
inexpensive block that packs together an AND and OR
logic functions, whose polarity can be programmed. It

reduces the number of output garbage bits by 1 since it
implements two Boolean functions at its outputs.

Ny

3. Cell Library for Reversible Mapping

To design a library of cells useful for reversible logic
synthesis, we rely on the well-known fact that any two-
input classical gate can be embedded onto a 3x3
reversible gate. Since there are the universal reversible

gates with three inputs (and three outputs), we deduce that
in order to produce a reversible cell library adequate for
reversible logic synthesis it is sufficient to consider 2-
input classical gates and their reversible embeddings. To
realize such a minimum reversible cell library, we need to
select a reversible embedding for all 2-input Boolean
functions. Armed with such a library, we can then
undertake the reversible technology mapping to cover the
originally irreversible logic network by reversible cells.

3.1. Reversible Library Creation

By enumerating all 16 2-input Boolean functions and
discarding the input permutations and output polarity (i.e.,
by enumerating their NP-equivalent classes [1]), one
needs to realize the following:

- 2 constant functions (1 and 0),

- 2 buffer functions (BUF, INV),

- 2 XOR functions (XOR, XNOR),

- 5 AND functions (AND, NAND, one input inversion),
- 5 OR functions (OR, NOR and a single input inverse).

To have a complete reversible cell library, it suffices
to realize the library of reversible embeddings for each of
the above equivalence classes. For instance, for a two-
input AND gate, Figure 3 shows two simple reversible
embeddings. Since AND and OR functions produce
identical output function values in three cases (fiume =3),
the number of added (garbage) bits is |—log2 3]=2.

In the most straightforward embedding of AND,
Figure 3.a), two primary inputs get repeated at the output,
from which they can always be recovered. The third,
ancilla input is a constant (0). A more flexible embedding
is by the Toffoli gate, Figure 3.b), where the additional
control input C changes the polarity of R. Here, the same
reversible gate acts as both AND and NAND gate,
covering both output polarities of the same function
equivalence class.

A P A P
B | Q Bl Q
o) -

a) b)

Figure 3: Simple Embeddings for AND Gate

Please note that each such embedding can naturally be
done in the optimal way with respect to the total number
of gate ports. For AND and OR function classes, these
would be implemented by 3x3 blocks, for XOR class, 2x2
reversible gates would suffice, while for BUF/INV, the
1x1 gates would be used.

The reversible cell library can also have more
powerful and flexible reversible embeddings, including
cells that realize two distinct functions at their outputs.
For a two-input AND gate, Figure 4 shows five single-
and multi-output embeddings. Figure 4.c) contains a dual
AND/OR gate, while in Figure 4.d) the polarity of one of
the outputs is controlled by the input C. Finally, Figure

4.¢) has both polarities controlled. Note that the cell ¢) is
a special case of both d) and e), where C is assigned 0.

A p A P A P
5 G B Q B Q
1 a) b) D_ 1 c)

A P A P
B

B
o2 IDW_LDjDE °
c 2 R
d) e) }
Figure 4: Reversible Cells for AND Gate

Table 1 compares the five proposed reversible
embeddings of the AND gate. While cases c¢)-e) provide
two output functions in the same cell, they can fan out

only one input (pass one input to the output). Cells b), d)
and e) further provide programmable output inversion.

Table 1: Comparing Embeddings of AND Gate

Cell in Figure 4 a) b) 9) d) e)
Output functions 1 1 2 2 2
Output polarities 1 2 1 2 2
Input passed to out 2 2 1 1 1

4. Reversible Technology Mapping

We now present a method of building the reversible
implementations of circuits in a manner equivalent to the
classical technology mapping, where a Boolean network
is to be covered by a network of gates in a manner that the
overall network is reversible. The key benefit of this
approach is that there is no need for finding a reversible
embedding prior to the synthesis, and for undertaking
costly permutation mapping optimizations [5], [7]. In
consequence, much larger circuits (in terms of input
count) can be created.

In reversible technology mapping considered here, the
goal is to map a non-reversible circuit into a network of
reversible cells, such that the overall network is
reversible. This goal requires the following:

1. Network mapping using the classical minimization
methods and classical, irreversible cell library /,

2. Realizing reversible embedding library /. of I, (the
library can be reused for mappings of other circuits).

3. Covering (reversible mapping of) the irreversible
network from Step | by a reversible cell network /,.

During the actual reversible mapping, there is a choice
in selecting the cells, as any reversible cell realizing the
given function from / can be applied. For example, any of
the 5 cells in Figure 4 can be used for mapping an AND
function. The OR function can be implemented in a
reversible form by cells in Figure 4.c-e), XOR function
can be achieved by cells in Figure 4.b and -Figure 4, d-¢).
A better XOR embedding, however, is a 2x2 Toffoli gate,
Figure 1, performing mapping (a,b) > (a, a®b).

In Step 3 above (covering process), the first concern is
to ensure that a resulting network is a reversible function
itself. Towards this goal, we prove the following property
of the networks composed of reversible gates.

Lemma 1: An acyclic network N of reversible cells is
itself a reversible logic function if:
-(Fanout-free) Fanout of all nodes is kept at 1.
-(Connectedness) There is a path between all network
signals to both primary inputs and outputs of N.

Proof: Consider the primary outputs of a network N.
Since all gates of N are reversible, the inputs to those
gates can be recovered fully from the outputs. The process
starts with the primary outputs of N, and continues
through the backward traversal, using the fact that each
internal signal line (including extraneous bits added in
reversible synthesis) is on a path from the outputs.
Further, as there is no fanout to eventually require
conflicting values, and no cycles in N, this means that one
can always traverse the whole network N from any
location toward the primary inputs, and, in consequence,
recover the values of the primary inputs. Hence, the
network is reversible. [

Lemma 1 can be directly applied to realize a reversible
technology mapping from an irreversible network that is
mapped onto an acyclic network of gates from the cell
library /. All that is required is to replace in topological
order, the library cells by their reversible version from /..
Each replacement must naturally maintain the
connectedness and fanout conditions from Lemma 1.

The extraneous bits can actually be used to provide the
fanout, as required by the original irreversible network.
For example of AND function, the garbage outputs
(signals P and Q, Figure 4.a-b), can be used to fan out the
inputs which are unaltered inputs to the gate, or even
some logic function of inputs to the gate (signal Q in
Figure 4.c-e)). If these bits, however, cannot be reused
elsewhere, then they automatically create extra garbage
outputs of the overall circuit.

With extraneous input bits, the situation is somewhat
different. While there still need to be a dedicated path
from primary inputs to each such extraneous bit, in this
case, Lemma 1 simply implies that no such input is left
detached from the augmented set of primary inputs.

b) e
Figure 5: Reversible Mapping Example

Example 1: Consider an irreversible circuit in Figure
5.a). In the construction of a reversible mapping, Figure
5.b), each original gate i is replaced with a reversible
library cell (dashed box around the corresponding gate i).

The cells are interconnected such that the fanout is kept at
1. For three higher-fanout nodes, the input a and the
output of node 3 is replicated through a reversible
implementation of the AND gate 1, while input b with
fanout 3 needs to be replicated twice through a cascade of
two reversible gates — AND gate 1 and XOR gate 3. The
extraneous inputs are also added to each AND and OR
gate. Usually these would be the control inputs, however,
when they are assigned a fixed value, it is denoted in
Figure 5.b) by a grounded “0”. The garbage outputs g;
(in grey color) are all reversible gate outputs that do not
get used in the network. By counting the number of input,
output and extraneous signals upon reversible technology
mapping, we note that Eq. 1 holds, with A=4, G=5.

4.1. Assessing Number of Extraneous Bits

With the proposed reversible technology mapping, we

can provably know the number of extraneous bits
generated. First, there is a relation regarding the number
of extraneous bits and the type of the cells employed in
the technology mapping.
Lemma 2: The total number of extraneous input bits A
added by the reversible technology mapping for 2-input
irreversible library | is equal to the number of reversible
cells for AND or OR functions:

A =#(AND/OR)

Proof: Among all irreversible 2-variable function NP
classes, only the AND/OR function class gates require 1
extraneous input bit during a reversible embedding. M
We can bring more relations between the extraneous
bits and the irrreversible gate count in the original
network. Applying previous lemma to identity from Eq. 1
proves the following relation.
Lemma 3: The total number of output garbage bits G is

G = (#inputs)+ (#[AND/OR)) — (# outputs).

From this, we conclude that the added cost of both
ancilla input bits and garbage output bits is due to the use
of reversible library cells that represent AND or OR gates
(including their inversions and input permutations). The
number of extraneous signals can be reduced if the
classical irreversible technology mapping can avoid AND
and OR gates, and instead use XOR gates. We will further
show in Section 4.3 that the choice of reversible cells can
also reduce the extraneous signal count through packing
of multiple AND and OR functions.

4.2. Solution to the Fanout Problem

The most obvious obstacle in designing any reversible
circuit lies in the inability to fan out (i.e., distribute) the
node outputs in the network as traditionally understood,
Figure 6.a). The solution to the fanout problem should be
the least costly in terms of additional gates and
ancilla/garbage bits. With our reversible cells approach,
the inputs that are replicated at the cell outputs as garbage

bits are a vehicle to provide an increased signal fanout.
When such signals are fed to a reversible cell
downstream, then, up to some limitations discussed
shortly, we obtain their copy free of charge for further use
in the network, Figure 6.b). To distribute (fan out) signal
x, we then construct a cascade of reversible gates. Logic
function of each gate in the cascade is arbitrary; however,
each gate must be capable of distributing further x.

fang,
—
fan,, | X | X X] | X
[—r—~"n r—"

a) b)

Figure 6: Fanout: a) Traditional, b) Cascade

For all single-function AND/OR cells in Figure 4
(including Toffoli gate), this approach can fan out both
signal inputs to the next cell, while for multi-function, as
well as XOR/XNOR gates, only one input can be
distributed in this way. When both primary inputs need to
be replicated, it is critical to devise a mechanism to drive
both such inputs in the fanout cascades. There are two
cases to consider in enlarging the number of inputs to be
replicated.
Case 1): A packed, two-function, AND/OR cell is
replaced by a cascade of two simpler cells, one for AND
and one OR, with the primary inputs to the second cell in
the cascade being provided by outputs of the first one,
which can now fan out both inputs. In this case, the
optimization of packing two functions, AND and OR, in a
single cell cannot be applied.
Case 2) XOR cell provides only one garbage bit to be
used as a fanout of one of XOR gate inputs. To allow both
inputs to be fan out, we construct a XOR “fanout gadget”,
Figure 7, where the additional reversible XOR gate is
inserted to recover and fan out the second output from the
XOR gate. This is the only case in which an extra gate is
added to provide the fanout.

reversible @ gate fanout
a7 X
1 N
b_ — a®b a®b
1
-
T ! {optional
T f 1 icascade }
|—. 1] i for a@b
“““ o |

Figure 7: XOR Fanout Gadget

Lemma 4: The length of the cascade l.5caqe Yequired for
providing fanout for a single-function node i, is lower-
bounded by its fanout, and upper bounded by the fanout
plus the number of XOR gates in its fanout.

fanout; <1 fanout i +# (XOR) y0,

<
cascade =

and the total length of all fanout cascades is bounded by

fanout; <Total .l <

cascade =

fanout;+# (XOR)

Proof: Among reversible library cell elements, when
AND/OR gates pass both signal inputs to the outputs, the
passed signals can be used again through a fanout
cascade. If, however, the library cell passes only one input
to the output, a longer cascade might be needed. Only in
the case of a XOR cell, a new fanout gate (XOR gadget)
might be added, hence the upper bounds. [

The upper bound on the length of the cascades is
reached only when we need to fan out both inputs to all
XOR gates. The synthesis can exploit this fact, to place
the XOR nodes at the end of the fanout cascades.

One special case to consider is when an inverter INV
is used in one of the fanout branches. Since INV is
reversible by itself, it has only one output, the fanin signal
cannot be distributed beyond reaching an inverter. The
inverter is then either used at the very end of the fanout
cascade, or it gets subsumed in the logic downstream.

4.3. Gate Packing Optimization

With the availability of the cells that realize multiple
functions, such as AND and OR, the reversible
technology mapping can perform another optimization,
i.e., packing two functions into a single reversible library
cell. This operation reduces the total number of gates, as
well as and the number of garbage bits. One downside is
that if more than one input to the gate needs to be fan out,
packing will disable this possibility, and should not be
applied in that case, as explained in previous section.

We express the conditions for gate packing in Table 2.
The two logic functions f; and f; are described with their
ON-set cubes where a, b is either 0 or 1, while “- stands
for “don’t care”. The case in the first row can be packed
in the Universal AND/OR Reversible Gate, while the
second case can be fit in the same cell plus an inverter, or,
even better, into a cell in Figure 4.d). If the reversible
library contains an AND/OR cell in which only one input
to an AND gate is inverted, then the last two cases fit into
one such cell.

Table 2: Packing Two Functions - Cube Rules

S f
Direct packing (cell in in a- ab
Figure 4.¢) -b
Invert out (De Morgan rule) a-— a’-
(cell in Figure 4.d) -b -b
Invert input (cell with a-— ab
inverter before AND gate) -b
Invert input/output (cell a-— a-
with two inverters) -b -b

5. Experimental Results

The methods described in this paper have been
implemented as a software add-on to the technology

mapper map of the Berkeley SIS program. We used
MCNC benchmarks, for which the synthesis has
completed in seconds for all but two multi-level
benchmarks on a 450MHz Sun Ultra 80 workstation.

Since the algorithm operates on irreversible networks
and apparently can process larger networks than other
reversible synthesis algorithms, a direct comparison is not
possible. The purpose of the experiments was to assess
the significance of the reversible cell library selection, the
impact of the initial irreversible technology mapping and
that of packing an AND and OR gate (and its single-input
inverted and permuted versions) into a single library cell.

The technology mapping results in Table 3 are
reported in terms of the number of reversible library
gates, including inverters. The reversible circuit cost of
the proposed library cells has not been assumed, as this is
technology dependent and the object of further studies
[12]. We also performed the classical technology mapping
aware of the fanout limitations in reversible circuits.

The first column (label s) reports the total cell usage
using a small cell library, consisting of NOT, AND, OR
and XOR gates with non-inverted inputs. In this case, as
the inversions of individual inputs are not provided,
inverters need to be inserted by technology mapping. The
added use of universal AND/OR gate, by which the And
and OR gates can be packed is reported in the third
column (Spack). The next two columns report the resource
usage in the case of fanout restriction (SIS technology
mapping with a —f'0 option), considered with and without
the gate packing. The penultimate column reports the use
of a larger (L) cell library that includes the gates for all
individual input inversions. Again, the packing impact is
reported in L,y In this case, the input inversions create
additional instances where packing can happen.

Table 3: Mapping of MCNC Benchmarks

Circuit | s Spack | SO 80pack | L L
apex6 | 717 715 741 738 591 587
C1355 | 326 271 450 384 246 212
C2670 | 617 582 742 687 547 514
C3540 | 1037 | 1007 | 1051 | 1014 | 928 895
C5315 | 1478 | 1401 | 1601 | 1482 | 1306 | 1221
C6288 | 2555 | 2216 | 2795 | 2359 | 2138 | 1899
C7552 | 1848 | 1830 | 1979 | 1752 | 1630 | 1470
il0 2175 | 2100 | 2243 | 2144 | 1851 | 1778
pair 1447 | 1389 | 1483 | 1399 | 1260 | 1213
x3 732 730 755 749 603 601

6. Conclusions and Future Work

The work presented in this paper provides techniques for
synthesizing reversibly the circuits of sizeable complexity
by mapping the original irreversible circuit specification
into a library of reversible cells. Up to our best
knowledge, this is the first technique that allows the
reversible synthesis of circuits such as multi-level MCNC

benchmarks in compute time that is comparable to that of
the classical technology mapping.

To achieve this goal, we have identified the rules for
creating reversible library and the technology mapping
producing a reversible implementation of any irreversible
netlist. Created reversible cell libraries include universal
cells capable of packing two irreversible gates into a
single reversible library cell. We have proven the
conditions for mapping the irreversible netlist into a
network of reversible gates, such that the result is a
reversible netlist that overcomes the inherent fanout
limitation by using efficiently the extraneous pins.

It is further shown how the irreversible technology
mapping using the classical cell library can impact the
result. To reduce the number of extraneous pins, the
technology mapping should prefer XOR gates. On the
other hand, to reduce the length of the fan out, the
mapping should favor AND/OR gates, or XOR gates by
which only one input needs to be further distributed.

In future, scalable and robust technology mapping
techniques could address closer the interaction between
gate packing and fanout cascade use, as well as the
extraneous bits. Other circuit features, such as the speed
and reversible gate cost should be considered as well.

7. References

[1] T. Toffoli, “Reversible Computing”,
MIT/LCS/TM-151, Boston, 1980.

[2] V. Shende, A. Prasad, I. Markov and J. Hayes, “Synthesis of
Reversible Logic Circuits”, IEEE Trans. CAD of Integrated
Circuits and Systems, Vol. 22, No. 6, Jun. 2003, pp. 710-722.

[3] G. De Micheli. Synthesis and Optimization of Digital
Circuits, Mc-Graw Hill, 1994.

[4] M.A. Nielsen and LL. Chuang, Quantum Computation and
Quantum Information, Cambridge University Press, 2000

[5] D. Maslov and G. Dueck, “Reversible Cascades with Minimal
Garbage”, [EEE Trans. CAD of Integrated Circuits and
Systems, Vol. 23, No. 11, Nov. 2004, pp. 1497-1509.

[6] D. Maslov, G. Dueck and D. M. Miller, “Toffoli Network
Synthesis with Templates”, IEEE Trans. CAD of Integrated
Circuits and Systems, Vol. 24, No. 6, Jun. 2005, pp. 807-817.

[71 P. Gupta, A. Agrawal and N. Jha, “An Algorithm for
Synthesis of Reversible Logic Circuits”, IEEE Transactions
on CAD of Integrated Circuits and Systems, to appear, 2006

[8] P. Kerntopf, “Synthesis of Multipurpose Reversible Logic
Gates”, Proc. Euromicro Symposium, Sep. 2002, pp. 259-266.

[91 M. Perkowski, P. Kerntopf, “Regular Reversible Lates”, Proc
Euromicro Symposium, Sep. 2001 pp. 245 — 252.

[10] A. Khazamipur and K. Radecka, “Adiabatic Implementation
of Reversible Logic”, Proc. Midwest Intl. Symposium on
Circuits and Systems, pp. 291-294, ,2005.

[11] W. Hung, X. Song, G. Yang, J. Yang and M. Perkowski,
“Optimal Synthesis of Multiple Output Boolean Functions
using a Set of Quantum Gates by Symbolic Reachability”,
IEEE Trans. CAD, to appear.

[12] D. Maslov and M. D. Miller, “Comparison of the Cost
Metrics for Reversible and Quantum Logic Synthesis, Quant-
Physics Preprint, http://arxiv.org/pdf/quant-ph/0511008.

Technical Memo,

	Main
	DATE07
	Front Matter
	Table of Contents
	Author Index

