
Automatic Test Pattern Generation for Maximal Circuit Noise in
Multiple Aggressor Crosstalk Faults

Kunal P. Ganeshpure, Sandip Kundu
University of Massachusetts Amherst
{kganeshp, kundu}@ecs.umass.edu

Abstract
Decreasing process geometries and increasing operating

frequencies have made VLSI circuits more susceptible to
signal integrity related failures. Capacitive crosstalk is one
of the causes of such kind of failures. Crosstalk fault results
from switching of neighboring lines that are capacitively
coupled. Long nets are more susceptible to crosstalk faults
because they tend to have a higher coupling capacitance to
overall capacitance ratio. A typical long net has multiple
aggressors. In generating patterns to create maximal
crosstalk noise, it may not be possible to activate all
aggressors at the same time. Therefore, pattern generation
must focus on activating a maximal subset of aggressors
weighted by actual coupling capacitance values. This is a
variant of max-satisfiability problem. Unlike a traditional
max-satisfiability problem, here we must deal with signal
propagation to an observable output. In this paper, we
present a novel solution that combines 0-1 Integer Linear
Program (ILP) with traditional stuck-at fault ATPG. The
maximal aggressor activation is formulated as a linear
programming problem while the fault effect propagation is
treated as an ATPG problem. The problems are separated
by min-cut circuit partitioning technique based on
Kernighan-Lin-Fiduccia-Mattheyses (KLFM) method. This
proposed technique was applied to ISCAS 85 benchmark
circuits. Results indicated that 75-100% of the aggressors
could be switched for generating crosstalk noise while
satisfying requirement of sensitizing a path to the output.

I. Introduction
Increase in the transistor density and switching speed has

led to an increasing number of signal integrity related
failures in VLSI circuits [1]. Capacitive crosstalk is one of
the major sources of signal integrity related failures.
Crosstalk fault results from parasitic coupling between
adjacent signal nets and is more common in nets that have
weaker drivers relative to their adjacent peers [2].

This work was supported in part by grants from the Semiconductor
Research Corporation and from the Intel Corporation.

Crosstalk fault effects can be classified into two types:
crosstalk induced pulses and crosstalk induced delays. In
the first case, the victim line remains in a static state, while
one or more aggressor lines are switching. The amplitude
and the width of the pulse depends, among other factors, on
relative switching time of the aggressors, the amount of
coupling capacitance and the relative transition times of the
aggressors. In the second case of crosstalk faults, both the
aggressor(s) and victim lines have simultaneous or near
simultaneous transitions. If the aggressor and the victim
lines transit in the opposite direction, then there will be an
increase in transition delay for the victim. During crosstalk
ATPG, patterns are chosen carefully to sensitize the victim
node to an observable output. If the increase in transition
delay at the victim node is significant, it can be detected by
observing the output thus sensitized.

Current trends in integrated circuit design indicate that
interconnect sidewall coupling capacitances can be
significant and can create severe design and test problems.
These problems are known to be aggravated by variations
in the fabrication process [1].

If it were not for stringent area and performance
requirements, an error due to crosstalk observed during
validation could be eliminated by resizing drivers, re-
routing signals, shielding interconnect lines with power
distribution lines and other such redesign techniques.
However, redesign may be very expensive in terms of
design effort and its effectiveness may be offset by process
variation. Thus, these problems need to be tested during
manufacturing [6].

Crosstalk faults are observed more frequently for long
nets. A long net may have multiple fan-outs and may be
routed through multiple levels of interconnect metals. Thus,
a typical long net is capacitively coupled with a multiple
aggressors. Due to sharing of logic, it may not be possible
to excite all aggressors while simultaneously sensitizing a
victim net. From an ATPG point of view, the next best
solution is to switch a set of aggressors that maximizes the
switching of the total coupling capacitance. This is the
problem thrust of this paper.

In this paper, we present a novel ATPG technique to
generate patterns that will excite the worst case delay at the
victim by switching maximal set of aggressors.

978-3-9810801-2-4/DATE07 © 2007 EDAA

The rest of the paper is organized as follows: in section
II we review previous work. Section III describes the
problem statement. In section IV, the proposed Crosstalk
ATPG algorithm is explained. This is followed by results
for ISCAS85 benchmark circuits in section V. We conclude
and propose future work in section VI.

II. Previous Work

Crosstalk noise induced errors are a significant source of
signal integrity problems in deep submicron technology [3].
Chen, Gupta and Breuer presented a crosstalk ATPG
solution for single aggressor, single victim scenario [6].
Bai, Dey and Krstic proposed a heuristic solution for
multiple aggressor crosstalk ATPG problem [4]. In their
approach, an implication graph is constructed to determine
a feasible set of aggressors (a set of aggressors that could be
switched to cause maximum crosstalk given the Boolean
constraints of the circuit) and then a modified version of
PODEM is used to determine a pattern pair that satisfies
both feasible aggressor set excitation and fault propagation.
Lee, Nordquist and Abraham presented an ATPG technique
for crosstalk induced glitches but did not consider crosstalk
induced delay [5]. A mixed signal test generator was
proposed by Chen, Gupta and Breuer in [6], which not only
considered static signal values but also dynamic signals like
transitions and glitches as the possible input signals. Timed
test pattern generation for CMOS domino circuits has been
proposed by Kundu and Blanton in [7]. Both [7] and [8]
consider multiple aggressors but employ computationally
expensive circuit level timing simulations. A Genetic
Algorithm based test generation for crosstalk induced faults
has been proposed by Krstic, Liou and Jiang in [9] while
Chen and Keutzer proposed a SAT based method [10]. A
Built in Self Test method to detect crosstalk faults has been
proposed by Shimizu e.t. a.l. in [11].

Kundu e.t. a.l. proposed generalized fault model for
multiple aggressor crosstalk faults in [1] but the ATPG
aspect was not considered.

It can be seen that most of the above techniques do not
consider the effect of multiple aggressors on the victim
node.

III. Problem statement
The problem of generating pattern that results in

maximal noise has two aspects:
Switching aggressor to cause maximal delay at victim:

As the victim net is coupled with multiple aggressors,
switching aggressors to create maximal delay at victim is a
max-satisfiability problem. Max-satisfiability problem is
NP-complete [21]. This is because we need to switch
maximum set of aggressors with cognizance of Boolean
relationship between aggressors.

Propagation of fault effect to the output: In addition to
maximal noise creation, the pattern must propagate the fault
effect at the victim net to an observable output.

It may not always be possible to switch all the aggressors
in a desired fashion and at the same time propagate the fault
effect to an output. So we seek to find the best that can be
achieved.

The following example illustrates the above problems.
Example: In the circuit shown in Figure 1, the gate G0

drives victim net (V) while the coupled aggressor lines A1,
A2, A3 and A4 are driven by gates G1, G2, G3 and G4
respectively. The numbers in the box associated with the
aggressors indicate the coupling weight. Higher the
coupling weight more is the delay impact on the victim.
Total delay introduced is proportional to the sum of the
coupling weights of all the aggressors switching in opposite
direction of the victim (desired direction of switching).

If we follow a greedy approach by applying the pattern
pair {0,0,1,↓,↓,1,1} at the inputs {a,b,c,d,e,f,g}, where the
nodes d and e are transitioning from high to low, to greedily
switch the aggressor A2 (with highest coupling weight of
100), it can be seen that the aggressor A3 (coupling weight
= 20) will also switch in the desired direction producing a
total coupling weight of 120 = (100+20). As both
aggressors A2 and A3 couple to the net connected to the
input of gates G6 and G5, they will experience slow-to-rise
fault. We can then propagate the fault effect via gate G6 by
setting the input g to 1.

Figure 1: Example circuit showing aggressors and
victims

Now consider the second input pattern pair
{↓,1,1,↓,↓,1,1} which switches aggressors A1, A4 and A3
in the desired direction ({A1,A4,A3,V}= {↑,↑,↑,↓}) to
produce a total coupling weight of 130. Thus, a greedy

approach does not result in the maximal aggressor
switching.

For this pattern the input of the gates G5 and G6 will be
delayed. If G6 has large slack, then this pattern will not
propagate the fault effect through G6, while the fault effect
is squashed at gate G5 by a controlling side input. This
example illustrates that the max-satisfiability problem of
switching maximal aggressor weight is also connected to
the propagation problem.

For the pattern {1,0,1,↓,↓,1,1} the aggressors A1, A4 and
A3 switch in desired direction a total ({A2,A3 ,V}={↑,↑,↓})
coupling weight of 120. We can propagate the faulty effect
through both the AND gates G5 and G6 as their side inputs
are 1. Thus this pattern is better than the previous two. This
illustrates the qualitative nature of multiple aggressor
crosstalk fault test generation problem.

IV. Proposed Solution
Max-satisfiability is known to be an intractable problem.

All intractable problems are solved by heuristic techniques.
In this section we present a heuristic solution to our
problem. In the proposed approach max-satisfiability and
fault propagation problems are solved separately. Given a
list of aggressors and victims, the steps that are followed
are described next.

Step 1: Circuit Partitioning
Divide the circuit into two partitions such that the input

logic cones of the aggressors and the victim belong to the
left partition while the output logic cone of the victim
belongs to the right partition.

With these constraints there are multiple ways to cut the
circuit to create left and right partitions. The only
requirement is that cut line should pass through the victim
net. For efficiency reasons which will become apparent in
the subsequent discussion, the cut line should pass through
least number of circuit nodes. The cut-points represent
outputs for the left partition, while they represent inputs for
the right partition. Please note that the victim net itself is an
output of the left partition while it is an input for the right
partition.

Step 2: Fault Effect Propagation
Fault effect propagates through the right partition to a

primary output. In this step, a stuck-at 0 or 1 value is placed
on the victim line and a stuck-at fault ATPG is invoked to
generate an input pattern that specifies requirements for the
cut points.

Step 3: Maximal Noise Generation
In this step the left partition is targeted because it

includes all the aggressors. The constraints derived from
step 2 are placed on the outputs of the left partition. The
aggressor weights are formulated into an ILP equation. It
has been shown in the past that ILP equations can be

formulated to represent Boolean function of logic gates
[22]. Thus, both the logic circuit and the maximal aggressor
weight equations are represented as ILP equations. Next,
we use an ILP solver to solve simultaneous logic
constraints at the outputs of the left partition and the
maximal aggressor switching requirement. This represents
the final test vector pair. The above steps are explained in
more detail below.

A. Circuit Partitioning
The initial partition is obtained by cutting the circuit

along the input to output level of the victim such that all the
nodes with level lower than or equal to that of the victim
belong to the left partition while the nodes with level higher
than the victim are present in the right partition. Next the
aggressors and their input cones that are part of the right
partition are moved to the left partition.

Next the Kernighan-Lin-Fiduccia-Mattheyses (KLFM)
algorithm [17] is applied to the resultant circuit to reduce
the cut size. It has been observed in [16] that KLFM
algorithm with a random initial cut gives fairly good result
as compared to most other types of initial partitioning
techniques. Reducing the cut size reduces the number of
constraints in the ILP formulation which leads to better
solution. In Table II we have compared results obtained
with and without the application of the KLFM algorithm.
Moreover, the table also shows the reduction in the cut size
obtained form the KLFM algorithm.

B. Stuck-at Fault ATPG
Stuck at fault ATPG was performed on the right half of

the circuit using a publicly available ATPG tool,
ATALANTA [19] to determine the input node values of the
right partition that propagate the fault effect to an output.
There may be multiple ways to propagate a fault effect to a
primary output. Slack based heuristics to guide fault
propagation through longest paths have been suggested in
[23]. The input pattern generated by ATPG becomes a
constraint for the left partition. The left partition may not be
able to satisfy these constraints or may satisfy them at the
expense of compromising on maximal aggressor weight.
Thus, a single test vector to constrain the left partition may
not be optimal. Our solution to this problem is heuristic and
the results show that almost always, a single propagation
pattern is satisfied by the left partition with very high
percentage of the total aggressor weight switched in the
desired direction.

C. ILP formulation
In order to obtain the worst case crosstalk condition in

the circuit, ILP formulation is done for the circuit in the left
partition by writing the ILP equations for the logic gates
[22]. The ILP equations of the gates are formed by using
the clausal description of the function of the gates given in

[18]. For example for a AND gate with inputs a, b and
output c, we can describe all 4 input-output combinations as
shown in Figure 2.

ca ⇒ or 1)1(≥−+ ca
cb ⇒ or 1)1(≥−+ cb
cab⇒ or 1)1()1(≥+−+− cba

]1,0[,, ∈cba

Figure 2: ILP equations for an AND gate

a

b

c

d

e

f

Figure 3: Circuit with internal nodes names.

For the circuit shown in Figure 3 above the complete set
of ILP equations are shown in Figure 4 below.

1≥+ fd
1≥+ fe

1)1()1()1(≥−+−+− fed } For NAND gate

1=+ ec For NOT gate
1)1(≥+− da
1)1(≥+− db

1)1(≥−++ dab } For OR gate

]1,0[,,,,, ∈fedcba

Figure 4: ILP equations for circuit in the Figure 3

For the ILP formulation, the circuit is duplicated into
two copies, say A and B, each representing one time frame
corresponding to the first and the second patterns
respectively. All the nodes are renamed by adding the
prefix ‘a’ for the circuit corresponding to the first pattern
and prefix ‘b’ for the one corresponding to the second
pattern. Now ILP equations are formed for each of the
copies of the circuit. ILP equations are only formed for the
nodes in the input logic cones of the aggressors, victims and
the cut nodes that are not assigned don’t care value by the
ATPG.

1) Formation of Objective Function

The delay of the victim net depends on the direction of
the transition of the aggressor net. By using the Elmore
delay equation we can determine the delay [20].

)69.038.0(, Dwwkp RRgCT +=

Where

kpT , is the propagation delay of the victim net.

www lcC = : wc is the capacitance per unit length of the

wire and wl is the wire length

www lrR = ; wr is the resistance per unit length of wire

DR is the equivalent resistance of the driver

g is the correction factor

The correction factor g, which determines the delay
introduced by crosstalk, is a function of the capacitance
ratio wi ccr = and the activities on the wire. Here ic is
the coupling capacitance per unit length. The value of g for
a set of transitions is given in Table I below. Here the
victim vic is capacitively coupled with an aggressor agg.
Table I: Values of g for different transition at aggressor

and victim

vic agg g

Up Up 1
Up No r+1
Up Down r21+

The objective function in the ILP formulation calculates

g depending on the transition on the aggressors and victim
according to the Table I above. The expression for g is of
the form

)1(rkg ∗+=

Where k is an integer constant.
To determine k we define Boolean variables AV and V

for each of the aggressor victim pairs. AV is true if both the
aggressor and victim are switching in the opposite
directions while V is true if the victim is switching while
the aggressor is not switching. The following example
explains how to determine AV and V.

Example: Consider a pair of capacitively coupled nets
having names agg and vic. Net agg is the aggressor and vic
is the victim. After duplication of circuit the nodes agg and
vic are renamed to agga , vica in the copy A for first time

frame and aggb , vicb in the copy B for second time frame.

By definition, AV is true when agg and vic switch in
opposite directions. To make agg and vic switch,

1)(=⊕ agggga ba and 1)(=⊕ vicicv ba must be satisfied.
And for them to switch in opposite direction

1)(=⊕ vicgga ba must be satisfied. Hence AV is:

)()()(vicaggvicvicaggagg bababaAV ⊕•⊕•⊕=

Similarly V is true when vic switches and agg does not.
To make vic switch 1)(=⊕ vicicv ba must be satisfied

while for agg to remain constant 1)(=⊕ agggga ba must be
satisfied. Hence V is:

)()(aggaggvicvic babaV ⊕•⊕=

The XOR, NOT and AND functions in the above
Boolean expressions are converted to the corresponding
ILP equations.

Now from the Table I we can see that:
2=k if agg and vic are switching in opposite direction

1=k if only vic is switching

0=k otherwise
Thus we can represent k in terms of A and AV

)2(VAVk +∗=

The objective function becomes
])2[(1 rVAVObj ∗+∗+=

For n number of aggressors we need to determine the
equations for AVi and Vi for each of the n aggressor victim
pairs. Then the resultant objective function is:

1)])2[(+∗+∗=∑
i

iii rVAVObj

V. Results

The crosstalk ATPG was run on all ISCAS 85
benchmark circuits to obtain the results described below. In
order to run ATPG, a crosstalk fault list is needed. The
crosstalk fault list should be created by RC extraction from
the physical layout. However, for the purpose of this paper
we created the fault list by random selection of nets. The
aggressor and victim nets are selected randomly such that
every node in the circuit has equal probability of getting
selected. The maximum number or aggressors per victim is
limited to 7. Moreover the coupling capacitance ratio ri for
each aggressor is also selected randomly between 1 and 0.
Actual data from RC extraction can be used to create the
fault list; however the focus of this paper is the second half
of this problem, namely the ATPG process so we did not
work on the overall methodology segment of this solution.

The ATPG result is presented in Table II. To illustrate
the efficiency of the solution, it compares the actual weight
that is switched against the maximum possible weight that
could be switched. It can be seen that for most circuits the
proposed solution is able to switch maximum weight.

Table II also compares the results obtained with and
without using KLFM min-cut algorithm. The dashes in the
table represent that no solution was found due to conflicting
requirements between excitation and propagation.

Table II: Results for ISCAS85 benchmarks circuits

Without KLFM With KLFM Ckt.
name

of
aggs

Max.
Case
Wt.

Cut
size

Actual
Wt.

% of
max

Cut
size

Actual
Wt.

% of
max

4 4.35 2 3.25 74.71 2 3.25 74.71
4 5.39 3 4.10 76.06 3 4.10 76.06 C17
2 1.87 3 1.87 100 3 1.87 100
6 5.24 31 4.30 79.33 16 4.75 90.64
6 6.99 57 6.71 96.00 46 6.20 88.68 C432
4 4.57 56 4.57 100 43 3.98 88.8
7 5.98 62 5.71 95.48 62 5.71 95.48
4 5.62 46 5.62 100 44 5.62 100 C499
6 6.17 55 5.86 94.9 44 5.86 94.9
7 5.15 25 5.15 100 14 5.15 100
7 10.89 47 9.93 91.18 36 9.93 91.18 C880
6 5.84 80 5.84 100 55 5.84 100
7 6.42 63 6.29 98.1 42 6.29 98.1
7 6.22 73 - - 53 6.22 100 C1355
7 6.97 74 6.25 89.67 54 6.25 89.67
7 6.09 94 4.69 76.89 60 4.69 76.89
7 7.07 135 5.74 81.18 85 5.74 81.18 C1908
7 8.87 113 8.87 100 71 8.87 100
7 5.42 78 - - 29 5.02 92.62
7 6.98 212 6.98 100 132 6.98 100 C2670
7 6.76 188 6.76 100 92 6.76 100
7 8.17 68 8.17 100 39 8.17 100
7 5.49 139 5.00 100 76 5.00 100 C3540
7 6.10 185 5.38 88.1 117 5.38 88.1
7 7.73 140 7.73 100 68 7.73 100
5 5.25 358 5.25 100 206 5.25 100 C5315
7 5.34 197 4.47 83.70 193 4.47 83.70
7 8.14 70 - - 54 7.41 91.90
7 5.83 156 5.83 100 73 - - C6288
6 5.04 91 - - 56 - -
7 6.61 263 6.61 100 122 6.61 100
7 9.95 424 9.95 100 192 9.95 100 C7552
7 7.16 338 7.16 100 140 7.16 100

The advantage obtained from KLFM algorithm is

evident for the circuits c1355 (row number 2 of c1355
circuit), c2670 (row number 1 of c2670 circuit) and c6288
(row number 1 of c6288 circuit). In all the above cases a
solution is only obtained when KLFM algorithm is used to
reduce the cut size thus reducing the number of constraints.

ATPG was solved using ATLANTA [19] and the ILP
problem was solved using GLPK, a GNU Linear
Programming Kit [24].

To obtain the above results, the crosstalk ATPG was run
on a Dell PowerEdge 2800 server with 2.8GHz Dual Core
Intel Xeon Processor, 2MB L2 cache and 2GB RAM. A
workload consisting of all the circuits excluding c6288 ran
in less than 30 minutes.

For the circuit c6288 the solution could not be found as it
exceeded the 1 hour time limit for the ILP solver. c6288, a
32 bit multiplier, is a known nemesis for many ATPG tools
as it has very large number of re-converging paths.

VI. Conclusion and Future Work
In this paper we presented a novel ATPG technique to

generate a two pattern test for multiple aggressor crosstalk
faults. The problem of maximizing the effect of the
aggressor on the victim is a max-satisfiability problem
which is known to be intractable. All intractable problems
are solved by heuristic techniques. Our heuristic technique
is based on partitioning the circuit into two parts. One
partition is used for fault effect propagation using a
standard ATPG while the other part is solved by an ILP
solver for max-satisfiability. All results are validated using
circuit simulation. The results show that the proposed
approach is highly efficient for multiple aggressor crosstalk
fault ATPG. The results could be improved further by
deploying slack based heuristic solution to propagate fault
effect through a path with least slack. This requires
integration of the solution with static timing analysis.
Moreover, our ATPG does not consider crosstalk induced
glitches. A modification in the ILP formulation will be
required to accommodate crosstalk induced glitches into
our present setup. This is a topic of future investigation.

VII. References
[1] S. T. Zachariah , Y.Chang , S. Kundu , C. Tirumurti, “On

Modeling Crosstalk Faults”, Proceedings of the conference
on Design, Automation and Test in Europe, March 03-07,
2003, p.10490

[2] Y. Chen, S. K. Gupta, and M. A. Breuer, “Analytic models
for crosstalk delay and pulse analysis for non-ideal inputs,”
in Proc. Int. Test Conf., Washington, DC, 1997, pp. 809–
818.

[3] C. Werner, R. Göttsche, A. Wörner, Ulrich Ramacher:
“Crosstalk noise in future digital CMOS circuits” DATE
2001: 331-335

[4] Xiaoliang Bai, Sujit Dey, Angela Krstic, “HyAC: A Hybrid
Structural SAT Based ATPG for Crosstalk.” ITC 2003: 112-
121

[5] K. T. Lee, C. Nordquist and J. A. Abraham “Automatic test
pattern generation for crosstalk glitches in digital circuits”,
Proc. VLSI Test Symposium, 1998, pp. 34-39.

[6] W. Y. Chen, S. K. Gupta and M. A. Breuer, “Test
generation in VLSI circuits for crosstalk noise”, Proc. Int’l
Test Conf., 1998, pp. 641–650.

[7] Rahul Kundu, R. D. (Shawn) Blanton, “Timed Test
Generation Crosstalk Switch Failures in Domino CMOS
Circuits“, VTS 2002: 379-388

[8] Bipul Chandra Paul, Kaushik Roy, “Testing Crosstalk
Induced Delay Faults in Static CMOS Circuits Through
Dynamic Timing Analysis.” ITC 2002: 384-390

[9] Angela Krstic, Jing-Jia Liou, Yi-Min Jiang, Kwang-Ting
Cheng: “Delay testing considering crosstalk-induced
effects.” ITC 2001: 558-567

[10] Pinhong Chen, Kurt Keutzer: “Towards true crosstalk noise
analysis.” ICCAD 1999: 132-138W

[11] Kazuya Shimizu, Noriyoshi Itazaki, Kozo Kinoshita, “Built-
in Self-Test for crosstalk faults in a digital VLSI.” Systems
and Computers in Japan 33(13): 35-47 (2002)

[12] D. S. Gao, A. T. Yang and S. M. Kang, “Modeling and
simulation of interconnection delays and crosstalk in high-
speed integrated circuits”, IEEE Trans. on Circuits and
Systems, Vol. 37, pp.1-9, January 1990.

[13] A. K. Goel and Y. R. Huang, “Modeling of crosstalk among
the GaAs VLSI connections”, IEE Proc. Part G, Vol. 136,
pp.361-368, 1989.

[14] W. Y. Chen, S. K. Gupta and M. A. Breuer, “Test
generation for crosstalk-induced delay in integrated
circuits”, Proc. Int’l Test Conf., 1999, pp. 191-200.

[15] F. Moll and A. Rubio, “Methodology of detection of
spurious signals in VLSI circuits”, Proc. Europe Test
Conference, 1993, pp. 491-496.

[16] S. Hauck, G. Borriello, “An evaluation of bipartitioning
techniques”, Proceedings of the 16th Conference on
Advanced Research in VLSI (ARVLSI’95), p.383, March 27-
29, 1995.

[17] C. M. Fiduccia, R. M. Mattheyses, "A Linear-Time
Heuristic for Improved Network Partitions", Design
Automation Conference, pp. 241-247, 1982.

[18] T. Larrabee, “Test Pattern Generation Using Boolean
Satisfiability”, IEEE Trans. Computer-Aided Design, Vol.
11, No. 1, Jan. 1992, pp. 4-15.

[19] H. K. Lee and D. S. Ha, “Atalanta: an Efficient ATPG for
Combinational Circuits”, Technical Report, 93-12, Dep’t of
Electrical Eng., Virginia Polytechnic Institute and State
University, Blacksburg, Virginia, 1993.

[20] J. M. Rabaey, A. Chandrakasan, B. Nikolic, “Digital
Integrated Circuits: A Design Perspective. 2nd Edition”,
Prentice Hall 2003, pp. 446-452.

[21] M. R. Garey and D. S. Johnson, “Computers and
Intractability: A Guide to the Theory of NP-Completeness”,
New York: W. H. Freeman, 1979.

[22] R. Fortet, “Applications de l'algebre de Boole en recherche
operationelle”, Revue Francaise de Recherche
Operationelle, vol. 4, pp. 17-26, 1960.

[23] W. N. Li, S. M. Reddy, S. K. Sahni, “On path selection in
combinational logic circuits”, IEEE Trans. on CAD of
Integrated Circuits and Systems 8(1): 56-63 (1989)

[24] http://www.gnu.org/software/glpk/

	Main
	DATE07
	Front Matter
	Table of Contents
	Author Index

