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Abstract 
Decreasing process geometries and increasing operating 

frequencies have made VLSI circuits more susceptible to 
signal integrity related failures. Capacitive crosstalk is one 
of the causes of such kind of failures. Crosstalk fault results 
from switching of neighboring lines that are capacitively 
coupled. Long nets are more susceptible to crosstalk faults 
because they tend to have a higher coupling capacitance to 
overall capacitance ratio. A typical long net has multiple 
aggressors. In generating patterns to create maximal 
crosstalk noise, it may not be possible to activate all 
aggressors at the same time. Therefore, pattern generation 
must focus on activating a maximal subset of aggressors 
weighted by actual coupling capacitance values. This is a 
variant of max-satisfiability problem. Unlike a traditional 
max-satisfiability problem, here we must deal with signal 
propagation to an observable output. In this paper, we 
present a novel solution that combines 0-1 Integer Linear 
Program (ILP) with traditional stuck-at fault ATPG. The 
maximal aggressor activation is formulated as a linear 
programming problem while the fault effect propagation is 
treated as an ATPG problem. The problems are separated 
by min-cut circuit partitioning technique based on 
Kernighan-Lin-Fiduccia-Mattheyses (KLFM) method. This 
proposed technique was applied to ISCAS 85 benchmark 
circuits. Results indicated that 75-100% of the aggressors 
could be switched for generating crosstalk noise while 
satisfying requirement of sensitizing a path to the output. 

 

I. Introduction 
Increase in the transistor density and switching speed has 

led to an increasing number of signal integrity related 
failures in VLSI circuits [1]. Capacitive crosstalk is one of 
the major sources of signal integrity related failures. 
Crosstalk fault results from parasitic coupling between 
adjacent signal nets and is more common in nets that have 
weaker drivers relative to their adjacent peers [2].  
_______________________________________________ 
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Crosstalk fault effects can be classified into two types: 
crosstalk induced pulses and crosstalk induced delays. In 
the first case, the victim line remains in a static state, while 
one or more aggressor lines are switching. The amplitude 
and the width of the pulse depends, among other factors, on 
relative switching time of the aggressors, the amount of 
coupling capacitance and the relative transition times of the 
aggressors. In the second case of crosstalk faults, both the 
aggressor(s) and victim lines have simultaneous or near 
simultaneous transitions. If the aggressor and the victim 
lines transit in the opposite direction, then there will be an 
increase in transition delay for the victim. During crosstalk 
ATPG, patterns are chosen carefully to sensitize the victim 
node to an observable output. If the increase in transition 
delay at the victim node is significant, it can be detected by 
observing the output thus sensitized.  

Current trends in integrated circuit design indicate that 
interconnect sidewall coupling capacitances can be 
significant and can create severe design and test problems. 
These problems are known to be aggravated by variations 
in the fabrication process [1].  

If it were not for stringent area and performance 
requirements, an error due to crosstalk observed during 
validation could be eliminated by resizing drivers, re-
routing signals, shielding interconnect lines with power 
distribution lines and other such redesign techniques. 
However, redesign may be very expensive in terms of 
design effort and its effectiveness may be offset by process 
variation. Thus, these problems need to be tested during 
manufacturing [6]. 

Crosstalk faults are observed more frequently for long 
nets. A long net may have multiple fan-outs and may be 
routed through multiple levels of interconnect metals. Thus, 
a typical long net is capacitively coupled with a multiple 
aggressors. Due to sharing of logic, it may not be possible 
to excite all aggressors while simultaneously sensitizing a 
victim net. From an ATPG point of view, the next best 
solution is to switch a set of aggressors that maximizes the 
switching of the total coupling capacitance. This is the 
problem thrust of this paper. 

In this paper, we present a novel ATPG technique to 
generate patterns that will excite the worst case delay at the 
victim by switching maximal set of aggressors.  
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The rest of the paper is organized as follows: in section 
II we review previous work. Section III describes the 
problem statement. In section IV, the proposed Crosstalk 
ATPG algorithm is explained. This is followed by results 
for ISCAS85 benchmark circuits in section V. We conclude 
and propose future work in section VI. 

II. Previous Work 

Crosstalk noise induced errors are a significant source of 
signal integrity problems in deep submicron technology [3]. 
Chen, Gupta and Breuer presented a crosstalk ATPG 
solution for single aggressor, single victim scenario [6]. 
Bai, Dey and Krstic proposed a heuristic solution for 
multiple aggressor crosstalk ATPG problem [4]. In their 
approach, an implication graph is constructed to determine 
a feasible set of aggressors (a set of aggressors that could be 
switched to cause maximum crosstalk given the Boolean 
constraints of the circuit) and then a modified version of 
PODEM is used to determine a pattern pair that satisfies 
both feasible aggressor set excitation and fault propagation. 
Lee, Nordquist and Abraham presented an ATPG technique 
for crosstalk induced glitches but did not consider crosstalk 
induced delay [5]. A mixed signal test generator was 
proposed by Chen, Gupta and Breuer in [6], which not only 
considered static signal values but also dynamic signals like 
transitions and glitches as the possible input signals. Timed 
test pattern generation for CMOS domino circuits has been 
proposed by Kundu and Blanton in [7]. Both [7] and [8] 
consider multiple aggressors but employ computationally 
expensive circuit level timing simulations. A Genetic 
Algorithm based test generation for crosstalk induced faults 
has been proposed by Krstic, Liou and Jiang in [9] while 
Chen and Keutzer proposed a SAT based method [10]. A 
Built in Self Test method to detect crosstalk faults has been 
proposed by Shimizu e.t. a.l. in [11].  

Kundu e.t. a.l. proposed generalized fault model for 
multiple aggressor crosstalk faults in [1] but the ATPG 
aspect was not considered.  

It can be seen that most of the above techniques do not 
consider the effect of multiple aggressors on the victim 
node.  

III. Problem statement 
The problem of generating pattern that results in 

maximal noise has two aspects: 
Switching aggressor to cause maximal delay at victim: 

As the victim net is coupled with multiple aggressors, 
switching aggressors to create maximal delay at victim is a 
max-satisfiability problem. Max-satisfiability problem is 
NP-complete [21]. This is because we need to switch 
maximum set of aggressors with cognizance of Boolean 
relationship between aggressors. 

Propagation of fault effect to the output: In addition to 
maximal noise creation, the pattern must propagate the fault 
effect at the victim net to an observable output. 

It may not always be possible to switch all the aggressors 
in a desired fashion and at the same time propagate the fault 
effect to an output. So we seek to find the best that can be 
achieved.   

The following example illustrates the above problems. 
Example: In the circuit shown in Figure 1, the gate G0 

drives victim net (V) while the coupled aggressor lines A1, 
A2, A3 and A4 are driven by gates G1, G2, G3 and G4 
respectively. The numbers in the box associated with the 
aggressors indicate the coupling weight. Higher the 
coupling weight more is the delay impact on the victim. 
Total delay introduced is proportional to the sum of the 
coupling weights of all the aggressors switching in opposite 
direction of the victim (desired direction of switching).  

If we follow a greedy approach by applying the pattern 
pair {0,0,1,↓,↓,1,1} at the inputs {a,b,c,d,e,f,g}, where the 
nodes d and e are transitioning from high to low, to greedily 
switch the aggressor A2 (with highest coupling weight of 
100), it can be seen that the aggressor A3 (coupling weight 
= 20) will also switch in the desired direction producing a 
total coupling weight of 120 = (100+20). As both 
aggressors A2 and A3 couple to the net connected to the 
input of gates G6 and G5, they will experience slow-to-rise 
fault. We can then propagate the fault effect via gate G6 by 
setting the input g to 1. 
 

 

 

Figure 1:  Example circuit showing aggressors and 
victims  

Now consider the second input pattern pair 
{↓,1,1,↓,↓,1,1} which switches aggressors A1, A4 and A3 
in the desired direction ({A1,A4,A3,V}= {↑,↑,↑,↓}) to 
produce a total coupling weight of 130. Thus, a greedy 



approach does not result in the maximal aggressor 
switching.   

For this pattern the input of the gates G5 and G6 will be 
delayed. If G6 has large slack, then this pattern will not 
propagate the fault effect through G6, while the fault effect 
is squashed at gate G5 by a controlling side input. This 
example illustrates that the max-satisfiability problem of 
switching maximal aggressor weight is also connected to 
the propagation problem.  

For the pattern {1,0,1,↓,↓,1,1} the aggressors A1, A4 and 
A3 switch in desired direction a total ({A2,A3 ,V}={↑,↑,↓}) 
coupling weight of 120. We can propagate the faulty effect 
through both the AND gates G5 and G6 as their side inputs 
are 1. Thus this pattern is better than the previous two. This 
illustrates the qualitative nature of multiple aggressor 
crosstalk fault test generation problem.                                

IV. Proposed Solution 
Max-satisfiability is known to be an intractable problem. 

All intractable problems are solved by heuristic techniques. 
In this section we present a heuristic solution to our 
problem. In the proposed approach max-satisfiability and 
fault propagation problems are solved separately. Given a 
list of aggressors and victims, the steps that are followed 
are described next. 

Step 1:  Circuit Partitioning 
Divide the circuit into two partitions such that the input 

logic cones of the aggressors and the victim belong to the 
left partition while the output logic cone of the victim 
belongs to the right partition.  

With these constraints there are multiple ways to cut the 
circuit to create left and right partitions. The only 
requirement is that cut line should pass through the victim 
net. For efficiency reasons which will become apparent in 
the subsequent discussion, the cut line should pass through 
least number of circuit nodes. The cut-points represent 
outputs for the left partition, while they represent inputs for 
the right partition. Please note that the victim net itself is an 
output of the left partition while it is an input for the right 
partition. 

Step 2:  Fault Effect Propagation 
Fault effect propagates through the right partition to a 

primary output. In this step, a stuck-at 0 or 1 value is placed 
on the victim line and a stuck-at fault ATPG is invoked to 
generate an input pattern that specifies requirements for the 
cut points. 

Step 3:  Maximal Noise Generation 
In this step the left partition is targeted because it 

includes all the aggressors. The constraints derived from 
step 2 are placed on the outputs of the left partition. The 
aggressor weights are formulated into an ILP equation. It 
has been shown in the past that ILP equations can be 

formulated to represent Boolean function of logic gates 
[22]. Thus, both the logic circuit and the maximal aggressor 
weight equations are represented as ILP equations. Next, 
we use an ILP solver to solve simultaneous logic 
constraints at the outputs of the left partition and the 
maximal aggressor switching requirement. This represents 
the final test vector pair. The above steps are explained in 
more detail below. 

A. Circuit Partitioning  
The initial partition is obtained by cutting the circuit 

along the input to output level of the victim such that all the 
nodes with level lower than or equal to that of the victim 
belong to the left partition while the nodes with level higher 
than the victim are present in the right partition. Next the 
aggressors and their input cones that are part of the right 
partition are moved to the left partition. 

Next the Kernighan-Lin-Fiduccia-Mattheyses (KLFM) 
algorithm [17] is applied to the resultant circuit to reduce 
the cut size. It has been observed in [16] that KLFM 
algorithm with a random initial cut gives fairly good result 
as compared to most other types of initial partitioning 
techniques. Reducing the cut size reduces the number of 
constraints in the ILP formulation which leads to better 
solution. In Table II we have compared results obtained 
with and without the application of the KLFM algorithm.  
Moreover, the table also shows the reduction in the cut size 
obtained form the KLFM algorithm.  

B.  Stuck-at Fault ATPG 
Stuck at fault ATPG was performed on the right half of 

the circuit using a publicly available ATPG tool, 
ATALANTA [19] to determine the input node values of the 
right partition that propagate the fault effect to an output. 
There may be multiple ways to propagate a fault effect to a 
primary output. Slack based heuristics to guide fault 
propagation through longest paths have been suggested in 
[23]. The input pattern generated by ATPG becomes a 
constraint for the left partition. The left partition may not be 
able to satisfy these constraints or may satisfy them at the 
expense of compromising on maximal aggressor weight. 
Thus, a single test vector to constrain the left partition may 
not be optimal. Our solution to this problem is heuristic and 
the results show that almost always, a single propagation 
pattern is satisfied by the left partition with very high 
percentage of the total aggressor weight switched in the 
desired direction. 

C. ILP formulation 
In order to obtain the worst case crosstalk condition in 

the circuit, ILP formulation is done for the circuit in the left 
partition by writing the ILP equations for the logic gates 
[22]. The ILP equations of the gates are formed by using 
the clausal description of the function of the gates given in 



[18]. For example for a AND gate with inputs a, b and 
output c, we can describe all 4 input-output combinations as 
shown in Figure 2.  
 

ca ⇒  or 1)1( ≥−+ ca  
cb ⇒  or 1)1( ≥−+ cb  
cab⇒ or 1)1()1( ≥+−+− cba   

]1,0[,, ∈cba   

Figure 2:  ILP equations for an AND gate 
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Figure 3: Circuit with internal nodes names. 

For the circuit shown in Figure 3 above the complete set 
of ILP equations are shown in Figure 4 below. 
 

1≥+ fd  
1≥+ fe  

1)1()1()1( ≥−+−+− fed   } For NAND gate 

1=+ ec  For NOT gate 
1)1( ≥+− da  
1)1( ≥+− db   

1)1( ≥−++ dab  } For OR gate 

]1,0[,,,,, ∈fedcba  

Figure 4:  ILP equations for circuit in the Figure 3 

For the ILP formulation, the circuit is duplicated into 
two copies, say A and B, each representing one time frame 
corresponding to the first and the second patterns 
respectively. All the nodes are renamed by adding the 
prefix ‘a’ for the circuit corresponding to the first pattern 
and prefix ‘b’ for the one corresponding to the second 
pattern. Now ILP equations are formed for each of the 
copies of the circuit. ILP equations are only formed for the 
nodes in the input logic cones of the aggressors, victims and 
the cut nodes that are not assigned don’t care value by the 
ATPG.   

1) Formation of Objective Function 

The delay of the victim net depends on the direction of 
the transition of the aggressor net. By using the Elmore 
delay equation we can determine the delay [20]. 

)69.038.0(, Dwwkp RRgCT +=  

Where  

kpT ,  is the propagation delay of the victim net. 

www lcC = : wc is the capacitance per unit length of the 

wire and wl  is the wire length 

www lrR = ; wr  is the resistance per unit length of wire 

DR is the equivalent resistance of the driver 

g  is the correction factor  

The correction factor g, which determines the delay 
introduced by crosstalk, is a function of the capacitance 
ratio wi ccr = and the activities on the wire.  Here ic  is 
the coupling capacitance per unit length. The value of g for 
a set of transitions is given in Table I below. Here the 
victim vic is capacitively coupled with an aggressor agg. 
Table I: Values of g for different transition at aggressor 

and victim 

vic  agg  g  

Up Up 1 
Up No r+1  
Up Down r21+  

 
The objective function in the ILP formulation calculates 

g depending on the transition on the aggressors and victim 
according to the Table I above. The expression for g is of 
the form  

)1( rkg ∗+=  

Where k  is an integer constant. 
To determine k we define Boolean variables AV and V 

for each of the aggressor victim pairs. AV is true if both the 
aggressor and victim are switching in the opposite 
directions while V is true if the victim is switching while 
the aggressor is not switching. The following example 
explains how to determine AV and V. 

Example: Consider a pair of capacitively coupled nets 
having names agg and vic. Net agg is the aggressor and vic 
is the victim. After duplication of circuit the nodes agg and 
vic are renamed to agga , vica  in the copy A for first time 

frame and aggb , vicb in the copy B for second time frame.   

By definition, AV is true when agg and vic switch in 
opposite directions. To make agg and vic switch, 

1)( =⊕ agggga ba  and 1)( =⊕ vicicv ba  must be satisfied. 
And for them to switch in opposite direction 

1)( =⊕ vicgga ba  must be satisfied.  Hence AV is: 

)()()( vicaggvicvicaggagg bababaAV ⊕•⊕•⊕=  



Similarly V is true when vic switches and agg does not. 
To make vic switch 1)( =⊕ vicicv ba  must be satisfied 

while for agg to remain constant 1)( =⊕ agggga ba  must be 
satisfied. Hence V is: 

)()( aggaggvicvic babaV ⊕•⊕=  

The XOR, NOT and AND functions in the above 
Boolean expressions are converted to the corresponding 
ILP equations.   

Now from the Table I we can see that: 
2=k  if agg and vic are switching in opposite direction  

1=k  if only vic is switching 

0=k otherwise 
Thus we can represent k in terms of A and AV 

)2( VAVk +∗=  

The objective function becomes 
])2[(1 rVAVObj ∗+∗+=  

For n number of aggressors we need to determine the 
equations for AVi and Vi for each of the n aggressor victim 
pairs.  Then the resultant objective function is:  

1)])2[( +∗+∗=∑
i

iii rVAVObj  

V. Results 

The crosstalk ATPG was run on all ISCAS 85 
benchmark circuits to obtain the results described below.  In 
order to run ATPG, a crosstalk fault list is needed. The 
crosstalk fault list should be created by RC extraction from 
the physical layout. However, for the purpose of this paper 
we created the fault list by random selection of nets. The 
aggressor and victim nets are selected randomly such that 
every node in the circuit has equal probability of getting 
selected.  The maximum number or aggressors per victim is 
limited to 7. Moreover the coupling capacitance ratio ri for 
each aggressor is also selected randomly between 1 and 0. 
Actual data from RC extraction can be used to create the 
fault list; however the focus of this paper is the second half 
of this problem, namely the ATPG process so we did not 
work on the overall methodology segment of this solution.  

The ATPG result is presented in Table II. To illustrate 
the efficiency of the solution, it compares the actual weight 
that is switched against the maximum possible weight that 
could be switched.  It can be seen that for most circuits the 
proposed solution is able to switch maximum weight. 

Table II also compares the results obtained with and 
without using KLFM min-cut algorithm. The dashes in the 
table represent that no solution was found due to conflicting 
requirements between excitation and propagation. 

 

Table II:  Results for ISCAS85 benchmarks circuits 

Without  KLFM With KLFM Ckt. 
name 

# of 
aggs 

Max. 
Case 
Wt. 

Cut 
size 

Actual 
Wt. 

% of 
max 

Cut 
size 

Actual 
Wt. 

% of 
max 

4 4.35 2 3.25 74.71 2 3.25 74.71 
4 5.39 3 4.10 76.06 3 4.10 76.06 C17 
2 1.87 3 1.87 100 3 1.87 100 
6 5.24 31 4.30 79.33 16 4.75 90.64 
6 6.99 57 6.71 96.00 46 6.20 88.68 C432 
4 4.57 56 4.57 100 43 3.98 88.8 
7 5.98 62 5.71 95.48 62 5.71 95.48 
4 5.62 46 5.62 100 44 5.62 100 C499 
6 6.17 55 5.86 94.9 44 5.86 94.9 
7 5.15 25 5.15 100 14 5.15 100 
7 10.89 47 9.93 91.18 36 9.93 91.18 C880 
6 5.84 80 5.84 100 55 5.84 100 
7 6.42 63 6.29 98.1 42 6.29 98.1 
7 6.22 73 - - 53 6.22 100 C1355 
7 6.97 74 6.25 89.67 54 6.25 89.67 
7 6.09 94 4.69 76.89 60 4.69 76.89 
7 7.07 135 5.74 81.18 85 5.74 81.18 C1908 
7 8.87 113 8.87 100 71 8.87 100 
7 5.42 78 - - 29 5.02 92.62 
7 6.98 212 6.98 100 132 6.98 100 C2670 
7 6.76 188 6.76 100 92 6.76 100 
7 8.17 68 8.17 100 39 8.17 100 
7 5.49 139 5.00 100 76 5.00 100 C3540 
7 6.10 185 5.38 88.1 117 5.38 88.1 
7 7.73 140 7.73 100 68 7.73 100 
5 5.25 358 5.25 100 206 5.25 100 C5315 
7 5.34 197 4.47 83.70 193 4.47 83.70 
7 8.14 70 - - 54 7.41 91.90 
7 5.83 156 5.83 100 73 - - C6288 
6 5.04 91 - - 56 - - 
7 6.61 263 6.61 100 122 6.61 100 
7 9.95 424 9.95 100 192 9.95 100 C7552 
7 7.16 338 7.16 100 140 7.16 100 

 
The advantage obtained from KLFM algorithm is 

evident for the circuits c1355 (row number 2 of c1355 
circuit), c2670 (row number 1 of c2670 circuit) and c6288 
(row number 1 of c6288 circuit).  In all the above cases a 
solution is only obtained when KLFM algorithm is used to 
reduce the cut size thus reducing the number of constraints.  

ATPG was solved using ATLANTA [19] and the ILP 
problem was solved using GLPK, a GNU Linear 
Programming Kit [24]. 

To obtain the above results, the crosstalk ATPG was run 
on a Dell PowerEdge 2800 server with 2.8GHz Dual Core 
Intel Xeon Processor, 2MB L2 cache and 2GB RAM. A 
workload consisting of all the circuits excluding c6288 ran 
in less than 30 minutes. 

For the circuit c6288 the solution could not be found as it 
exceeded the 1 hour time limit for the ILP solver. c6288, a 
32 bit multiplier, is a known nemesis for many ATPG tools 
as it has very large number of re-converging paths. 



VI. Conclusion and Future Work 
In this paper we presented a novel ATPG technique to 

generate a two pattern test for multiple aggressor crosstalk 
faults. The problem of maximizing the effect of the 
aggressor on the victim is a max-satisfiability problem 
which is known to be intractable. All intractable problems 
are solved by heuristic techniques. Our heuristic technique 
is based on partitioning the circuit into two parts. One 
partition is used for fault effect propagation using a 
standard ATPG while the other part is solved by an ILP 
solver for max-satisfiability. All results are validated using 
circuit simulation. The results show that the proposed 
approach is highly efficient for multiple aggressor crosstalk 
fault ATPG. The results could be improved further by 
deploying slack based heuristic solution to propagate fault 
effect through a path with least slack. This requires 
integration of the solution with static timing analysis. 
Moreover, our ATPG does not consider crosstalk induced 
glitches. A modification in the ILP formulation will be 
required to accommodate crosstalk induced glitches into 
our present setup. This is a topic of future investigation. 
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