
On Test Generation by Input Cube Avoidance

Irith Pomeranz1 and Sudhakar M. Reddy2

School of Electrical & Computer Eng. Electrical & Computer Eng. Dept.
Purdue University University of Iowa

W. Lafayette, IN 47907, U.S.A. Iowa City, IA 52242, U.S.A.

Abstract
Test generation procedures attempt to assign values

to the inputs of a circuit so as to detect target faults. We
study a complementary view whereby the goal is to iden-
tify values that should not be assigned to inputs in order
not to prevent faults from being detected. We describe a
procedure for computing input cubes (or incompletely
specified input vectors) that should be avoided during test
generation for target faults. We demonstrate that avoiding
such input cubes leads to the detection of target faults
after the application of limited numbers of random input
vectors. This indicates that explicit test generation is not
necessary once certain input values are precluded. Poten-
tial uses of the computed input cubes are in a test genera-
tion procedure to reduce the search space, and during
built-in test generation to preclude input vectors that will
not lead to the detection of target faults.

1. Introduction
Test generation procedures of all types [1]-[12],

including deterministic [1]-[6] and directed-search test
generation procedures [7]-[12], attempt to assign values to
the inputs of the circuit so as to detect target faults. For
example, deterministic test generation procedures select
appropriate values for the inputs so as to satisfy fault
activation and propagation objectives, which are specified
as values that need to be assigned to circuit lines in order
to detect a target fault.

Some procedures for identifying undetectable and
redundant faults [13]-[18] search for conditions that are
necessary for fault detection, but cannot be satisfied by
any assignment to the primary inputs. For example, if a
circuit line g is such that setting g = 0 and g = 1 both
imply that a line h is set to 0, there is no input assignment
that will set h = 1. Therefore, the fault h stuck-at 0 is
undetectable.

In all these procedures, the focus is on input values
that are needed to detect target faults. In this work we
study a complementary view for test generation. Accord-
ing to this view, the goal of test generation is to identify
values that should not be assigned to inputs in order not to
prevent target faults from being detected. The result of the
������������������
1. Research supported in part by SRC Grant No. 2004-TJ-1244.
2. Research supported in part by SRC Grant No. 2004-TJ-1243.

proposed procedure is input cubes (or incompletely
specified input vectors) that should be avoided during test
generation for certain target faults. Suppose that an input
cube ci is computed, which prevents the detection of a
subset of target faults Fi . During test generation for faults
in Fi , the inputs specified under ci should be assigned
values that are the complements of the values assigned to
them under ci . This restricts the search space during test
generation to inputs that are unspecified under ci . For
deterministic test generation, it reduces the worst-case
complexity of test generation from being proportionate to
2n , where n is the number of inputs, to 2m , where m is the
number of inputs unspecified under ci . For randomized
procedures, instead of having 2n candidate input vectors,
the search can concentrate on 2m candidate vectors when
ci is considered. During built-in test generation, the input
cubes can be used to impose certain values that will
ensure that the detection of target faults is not prevented.

A different application where certain cubes are
avoided is in the generation of pseudo-functional scan-
based tests [19]. In this application, state cubes are
avoided in order to reduce/avoid the use of non-functional
operation conditions during test. In the procedure pro-
posed here, input cubes are avoided in order to
allow/facilitate generation of tests to detect target faults.

SAT-based test generation procedures also use what
are called conflict-induced clauses [20] in order to avoid
assignments that will result in conflicts. However, these
clauses are identified during the test generation process,
and their derivation thus has worst-case exponential time
complexity. The procedure proposed here for deriving
input cubes to be avoided is applied before test generation
starts, it is suitable for structural test generation, and it has
polynomial time complexity. In addition, similar to other
test generation procedures, SAT-based test generation
procedures also focus on assigning values to the inputs of
the circuit so as to detect target faults.

We consider full-scan circuits in this work. We
define input cubes that should be avoided during test gen-
eration for target faults by starting from input cubes where
a single input is specified. Such input cubes are called
basic input cubes. A circuit with n inputs has 2n basic
input cubes (each input can be assigned the value 0 or 1 in
order to define a basic input cube). For every basic cube
ci , we find a set of faults Fi that cannot be detected under

978-3-9810801-2-4/DATE07 © 2007 EDAA

ci . The set Fi is found based on fault activation and fault
propagation conditions that ci prevents from being
satisfied. We combine basic input cubes in order to obtain
input cubes with more specified inputs. The combination
of basic input cubes is guided by considering specific tar-
get faults. For example, for a four-input circuit, if both
0xxx and x0xx prevent the detection of a fault f , 00xx
should be avoided during test generation for f . In this
case, 0xxx and x0xx are combined into 00xx based on f .
The complexity of computing input cubes that need to be
avoided is polynomial in the circuit size. Specifically, the
computation of basic cubes is linear in the circuit size. For
N basic cubes and M faults, at most NM input cube com-
binations are performed.

In the test generation experiment we report to
demonstrate the effectiveness of the computed cubes, for
every input cube ci computed by the proposed procedure,
we apply a limited number of input vectors that avoid the
values specified by ci (these values would have prevented
the target faults in a set Fi from being detected). Inputs
that are unspecified under ci are assigned random values.
The results of this experiment demonstrate that it is
sufficient to avoid the values specified under ci in order to
detect the faults in Fi after a limited number of input vec-
tors are applied. Thus, conventional test generation that
attempts to assign values so as to detect the faults directly
is either unnecessary or has a reduced complexity when ci

is used to avoid certain values.
It is possible to extend this concept to synchronous

sequential circuits by defining primary input vectors that
should be avoided during test generation based on the
ability of input cubes to synchronize state variables of the
circuit. We do not consider this issue in this work.

The paper is organized as follows. The computa-
tion of basic cubes, and the computation of additional
cubes by considering target faults, are described in Sec-
tion 2. In Section 3 we describe a test generation experi-
ment aimed at demonstrating that avoiding the computed
input cubes facilitates the detection of target faults.
Experimental results are presented in Section 4.

2. Computing cubes
In this section we describe the computation of input

cubes that should be avoided during test generation for
target faults. We first describe the computation of basic
input cubes where a single input is specified. We then
describe the computation of additional input cubes from
the basic ones. We denote the number of circuit inputs by
n , and the inputs by a 0,a 1, . . . ,an −1.

2.1. Basic input cubes
A basic input cube is an input cube where one input

is specified to 0 or 1, and the remaining inputs are
unspecified. For example, for a three-input circuit, the

basic cubes are 0xx, 1xx, x0x, x1x, xx0 and xx1, where x
is an unspecified value. We denote the basic input cube
where input aj is specified to the value v by c (aj =v).

We denote by F (aj =v) the set of faults whose
detection will be prevented by c (aj =v). To find F (aj =v),
we apply the following procedure. We assign c (aj =v) to
the inputs of the circuit, and compute the values
throughout the circuit. The fault line g stuck-at w is
prevented from being detected if one of the following con-
ditions is satisfied.
(1) g = w under c (aj =v). In this case, the fault cannot be
activated (activation requires g = w′ in the fault free cir-
cuit).
(2) g = x under c (aj =v), but there is no x-path from g to
an output. An x-path is a path such that all the lines along
the path have unspecified values assigned to them.
Without an x-path to an output, it may be possible to
activate f by assigning g = w′ in the fault free circuit and
g = w in the faulty circuit; however, it is impossible to
propagate the difference to a primary output.

For illustration, we show in Figure 1 a circuit under
the input cube c (a 0=0). The faults a 0 stuck-at 0 and g 1
stuck-at 0 cannot be detected since they cannot be
activated under this cube. The faults a 1 stuck-at 0 and a 1
stuck-at 1 cannot be detected since a 1 does not have an
x-path to the output under this input cube. We obtain a set
F (a 0=0) that consists of the above four faults.

&

&

+

a 0=0

a 1=x

a 2=x

a 3=x

g 1=0

g 2=x

g 3=x

Figure 1: Example of a basic cube
We point out that it may be possible to identify

additional faults as being prevented from detection under
c (aj =v). However, this requires additional analysis of the
circuit, which would be more time consuming. In our
experiments we compute F (aj =v) as above, using only
simple implications of c (aj =v).

For every input aj , where 0 ≤ j < n , and for every
value v , where v ∈ {0,1}, we define a basic input cube
c (aj =v), and we compute the set of faults F (aj =v) whose
detection is prevented under c (aj =v). We include
c (aj =v) in the set of basic cubes denoted by C 1 if
F (aj =v) ≠ φ.

The construction of C 1 is summarized in Procedure
1 next.
Procedure 1: Finding the basic set of cubes C 1

(1) Set C 1 = φ. Let F be the set of target faults.
(2) For every input aj where 0 ≤ j < n and for every

value v ∈ {0,1}:

(a) Let c (aj =v) be the input cube where aj = v
and all the other inputs are unspecified.
Assign c (aj =v) to the inputs of the circuit
and compute the values throughout the cir-
cuit. Find all the lines with x-paths to the pri-
mary outputs.

(b) Set F (aj =v) = φ. For every fault f ∈ F :
Let f be the fault line g stuck-at w . If
g = w , or g = x and there is no x-path
from g to an output, add f to
F (aj =v).

(c) If F (aj =v) ≠ φ, add c (aj =v) to C 1.

2.2. Additional input cubes
Starting from C 1, we generate additional input

cubes based on target faults. We denote the cube com-
puted for a fault f k by c (f k), and the set of cubes com-
puted based on all the target faults by C 2. Although we
compute C 2 by considering all the target faults, it is possi-
ble to consider subsets of faults (or one fault at a time) in
order to avoid storage of the complete set.

We first demonstrate the computation of C 2 using
the example shown in Table 1. The example is based on
ISCAS-89 benchmark circuit s 27. The circuit has seven
inputs and 32 stuck-at faults. Table 1 shows all the basic
cubes that prevent the detection of at least one fault. These
cubes form the set C 1. In every case we show the cube
c (aj =v) and the set of faults F (aj =v) whose detection is
prevented by c (aj =v). We renumber the basic cubes in
C 1 as c 1,c 2, . . . ,c 14. The set of faults whose detection is
prevented by ci is denoted by Fi .

Table 1: Basic cubes for s 27

i ci Fi���������������������������������������
1 0xxxxxx f 7 f 13 f 25 f 28
2 1xxxxxx f 4 f 6 f 12 f 14 f 18 f 19
3 x0xxxxx f 0
4 x1xxxxx f 5 f 8 f 10 f 11
5 xx0xxxx f 1
6 xx1xxxx f 10 f 16
7 xxx0xxx f 2
8 xxx1xxx f 18 f 21
9 xxxx0xx f 3

10 xxxx1xx f 2 f 4 f 11 f 13 f 14 f 15 f 18 f 19
f 20 f 21 f 22 f 23 f 25 f 26 f 31

11 xxxxx0x f 13 f 14 f 18 f 19
12 xxxxx1x f 4
13 xxxxxx0 f 5
14 xxxxxx1 f 0 f 8 f 10 f 11�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

We set C 2 = φ. Considering every target fault, the
cubes described below are added to C 2. All the cubes
added to C 2 are shown in Table 2. They are numbered
c 15,c 16,

The fault f 0 is included in F 3 and F 14. This implies
that c 3 = x0xxxxx and c 14 = xxxxxx1 prevent the detec-
tion of f 0. Combining c 3 and c 14, we obtain the cube
c (f 0) = x0xxxx1 that also prevents the detection of f 0.

We add c (f 0) to C 2 and denote it by c 15. From F 3 ∩ F 14 =
{f 0} we conclude that the detection of other faults in F 3
and F 14 is prevented by c 3 and c 14 separately. For exam-
ple, the remaining faults in F 14 are f 8, f 10 and f 11, and
their detection is prevented by c 14 alone. In order not to
overestimate the values that need to be avoided in order to
detect these faults, we do not count them as prevented
from being detected by c 15. Based on this discussion, we
set F 15 = F 3 ∩ F 14 = {f 0}.

The fault f 1 is included only in F 5. Therefore, no
new cubes are created based on f 1 beyond those already
included in C 1.

For f 2 we obtain c 16 = xxx01xx by combining c 7
and c 10. We obtain F 16 = F 7 ∩ F 10 = {f 2}.

Skipping over several faults, we consider f 8 next.
The fault f 8 is included in F 4 and in F 14. Therefore, both
c 4 = x1xxxxx and c 14 = xxxxxx1 prevent the detection of
f 8. Combining c 4 and c 14, we obtain the cube c (f 8) =
x1xxxx1 that prevents the detection of f 8. We add c (f 8)
to C 2 as c 19. From F 4 ∩ F 14 = {f 8, f 10, f 11} we conclude
that the detection f 10 and f 11 is also prevented by every
value specified under c (f 8). Therefore, these faults should
be included in F 19. The detection of other faults in F 4 and
F 14 is prevented by c 4 and c 14 separately. Therefore, we
do not count these faults as prevented from being detected
by c 19. We obtain F 19 = F 4 ∩ F 14 = {f 8, f 10, f 11}.

The fault f 9 is not included in any set Fi of a cube
ci ∈ C 1. No new cube is generated based on this fault.

The fault f 14 is included in F 2, F 10 and F 11. Com-
bining c 2 = 1xxxxxx, c 10 = xxxx1xx and c 11 = xxxxx0x,
we obtain the cube c (f 14) = 1xxx10x that prevents the
detection of f 14. We add c (f 14) to C 2 as c 23. We set
F 23 = F 2 ∩ F 10 ∩ F 11 = {f 14, f 18, f 19}.

In general, for a fault f k , we compute a cube c (f k)
by combining all the cubes ci ∈ C 1 such that f k ∈ Fi .
We then compute the set of faults whose detection is
prevented by c (f k) as F (f k) = ∩ {Fi :f k ∈ Fi }. If f k

does not appear in any set Fi , we obtain the all-x cube for
c (f k), and we do not add this cube to C 2. If f k appears in
a single set Fi , c (f k) = ci is already included in C 1, and
we do not add it to C 2. Finally, if f k ∈ Fi 1, f k ∈ Fi 2,
and ci 1 and ci 2 assign opposite values to the same input,
f k is undetectable.

In the example of s 27, the set of cubes C 2 obtained
by this process is shown in Table 2.

The procedure for computing C 2 from C 1 is given
next as Procedure 2.
Procedure 2: Finding the set of cubes C 2 from C 1

(1) Set C 2 = φ.
(2) For every target fault f k :

(a) Compute the cube c (f k) obtained by com-
bining all the cubes ci ∈ C 1 such that
f k ∈ Fi .

Table 2: C 2 for s 27

i ci Fi������������������������
15 x0xxxx1 f 0
16 xxx01xx f 2
17 1xxx11x f 4
18 x1xxxx0 f 5
19 x1xxxx1 f 8 f 10 f 11
20 x11xxx1 f 10
21 x1xx1x1 f 11
22 0xxx10x f 13
23 1xxx10x f 14 f 18 f 19
24 1xx110x f 18
25 xxx11xx f 18 f 21
26 0xxx1xx f 13 f 25��

�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�

(b) Compute the set of faults whose detection
will be prevented by c (f k) as
F (f k) = ∩ {Fi :f k ∈ Fi }.

(c) If c (f k) ∈/ C 1 and c (f k) is not the all-x cube,
add c (f k) to C 2.

It is interesting to see the results of Procedures 1
and 2 when applied to a circuit consisting of a single AND
gate with a large number of inputs. Such a circuit is
difficult to test using random input vectors. For example,
consider the stuck-at 1 fault on the first input of an eight-
input AND gate. Its detection is prevented by the cube
1xxxxxxx (which prevents activation of the fault), as well
as by the cubes x0xxxxxx, xx0xxxxx, xxx0xxxx,
xxxx0xxx, xxxxx0xx, xxxxxx0x and xxxxxxx0 (which
block all the x-paths from the fault site to the output).
When these cubes are combined based on the fault, the
cube 1000000 results. The complement cube, 01111111,
is a test for the fault (the rationale for using the comple-
ment is discussed in the next section).

3. Test generation experiment
The cubes in C 1 and C 2 are computed such that

there are target faults whose detection will be prevented
by these cubes. To allow these faults to be detected, each
cube must be prevented from appearing during the test
generation process for the corresponding faults.

A cube ci is prevented from appearing by comple-
menting each specified value in ci . Suppose that ci is
obtained by combining a subset of basic cubes
{c (aj =vj)}. Each assignment aj = vj alone is sufficient
for preventing the detection of the faults in Fi . Therefore,
all the specified inputs of ci must be complemented in
order to allow the faults to be detected. We denote the
cube obtained by complementing every specified bit of ci

by c�i . For example, for c 19 = x1xxxx1 of s 27, we obtain
c�19 = x0xxxx0. During test generation for the faults in
F 19, we must set a 1 = 0 and a 6 = 0 in order to allow the
faults in F 19 to be detected.

Given a set of input cubes C = {c 0,c 1, . . . ,cN −1} to
be avoided, the test generation process we use to demon-
strate the effectiveness of avoiding input cubes in C

proceeds as described next. If C is computed based on a
subset of faults in order to avoid storage of a large set of
cubes, the test generation process should be repeated
using additional sets of cubes for yet-undetected faults.

The test generation process starts from a set of tar-
get faults denoted by F . We apply to the circuit a set
T = {t 0,t 1, . . . ,tR −1} of R random input vectors, for a con-
stant R . We apply each input vector tj ∈ T under a dif-
ferent input cube ci ∈ C . When an input vector tj ∈ T
is applied under a cube ci ∈ C , c�i is imposed on top of tj

in order to allow the faults in Fi to be detected. We rotate
through the cubes in C as the input vectors in T are
applied. For example, for a circuit with four inputs and
R = 10, suppose that the set of random input vectors T
shown in the second column of Table 3 is used. Suppose
that C consists of three input cubes, c 0 = 0xxx, c 1 = x0xx
and c 2 = xx11. We impose c�0 on t 0, c�1 on t 1, c�2 on t 2, c�0
on t 3, and so on. The resulting input vectors are shown in
the three rightmost columns of Table 3. Thus, 1011 is
applied instead of t 0 = 0011 based on c 0, t 1 = 1101 is
applied unmodified based on c 1, 0000 is applied instead of
t 2 = 0010 based on c 2, and so on.

Table 3: Random input vectors

j tj 0xxx x0xx xx11������������������������������
0 0011 1011
1 1101 1101
2 0010 0000
3 0011 1011
4 1110 1110
5 0011 0000
6 1011 1011
7 0001 0101
8 1010 1000
9 0110 1110��

�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�

As input vectors are applied, target faults may be
detected and dropped from the set of target faults F .
When all the faults in Fi , whose detection is prevented by
a cube ci ∈ C , are already detected, it is possible to stop
using ci during the test generation process. In this case,
more input vectors would be applied under the remaining
cubes, enhancing the ability to detect the remaining faults.
For example, suppose that in the example of Table 3, all
the faults in F 0 become detected after t 3 is applied under
c 0. For t 4,t 5, . . . , only c 1 and c 2 are used in this case. The
resulting test set is shown in Table 4.

The random test generation process described above
is summarized in Procedure 3 next.
Procedure 3: Random test generation
(1) Let F be the set of target faults. Let C be a set of

input cubes of size N . Set i = 0 and j = 0.
(2) If Fi ∩ F ≠ φ:

(a) Impose c�i on the random input vector tj and
perform fault simulation of the resulting vec-
tor under F with fault dropping. If F = φ,
stop.

Table 4: Random input vectors with cube dropping

j tj 0xxx x0xx xx11������������������������������
0 0011 1011
1 1101 1101
2 0010 0000
3 0011 1011
4 1110 1110
5 0011 0000
6 1011 1111
7 0001 0000
8 1010 1110
9 0110 0100��

�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�

(b) Set j = j +1. If j = R , stop.
(3) Set i = i +1. If i = N , set i = 0. Go to Step 2.

We define the set of cubes C to be avoided during
test generation as follows. We define a set of cubes C 0
that consists of a single all-x cube, denoted by c 0. When
this cube is used, random input vectors are applied
unmodified to the circuit. We define F 0 = F for this cube
to ensure that it is used throughout the test generation pro-
cess. We use Procedures 1 and 2 to compute C 1 and C 2,
respectively. We then define C = C 0∪C 1∪C 2.

4. Experimental results
We applied the random test generation process

described in Section 3 to the following circuits. (1) A cir-
cuit comprised of an n -input AND gate, for n = 32 and
64. (2) Multi-level implementations of Berkeley PLAs.
(3) Irredundant versions of the combinational logic of
ISCAS-89 benchmark circuits. For all these circuits,
100% fault coverage can be achieved for single stuck-at
faults. For a circuit with n inputs, we use R = 100n ,
500n , 1000n , 2000n and 5000n . We only report the
results when R random input vectors, applied unmodified
for any value of R considered, do not achieve 100% fault
coverage. We stop increasing R when 100% fault cover-
age is achieved by Procedure 3. Using random vectors,
inordinately large numbers of vectors are required to
achieve 100% fault coverage for the circuits considered.

The results are shown in Table 5. After the circuit
name we show the number of inputs and the number of
faults. Under column R we enter the value of R as p .n ,
where p = 100, 500, 1000, 2000 or 5000. Under column
C =C 0 we show the fault coverage achieved by R random
input vectors when they are applied without modification
(C = C 0 in Procedure 3). We also show the number of
input vectors applied until the final fault coverage is
achieved. Under column C =C 0UC 1UC 2, subcolumn
cubes we show the number of cubes in C =
C 0∪C 1∪C 2. Under subcolumn f .c. we show the fault
coverage achieved using the cubes in C = C 0∪C 1∪C 2.
Under subcolumn vect we show the number of input vec-
tors applied until the final fault coverage is achieved.

It can be seen from Table 5 that for most of the cir-
cuits considered, 100% fault coverage is achieved with

R ≤ 5000n when random input vectors are modified so as
to avoid values that prevent target faults from being
detected. Even when increasing R does not improve the
fault coverage achieved by unmodified random input vec-
tors, the additional input vectors applied under the cubes
in C = C 0∪C 1∪C 2 allow the fault coverage to increase.

The number of cubes in C = C 0∪C 1∪C 2 is much
smaller than the number of faults for the larger circuits.

In many cases, the number of input vectors applied
until the fault coverage reaches its final value is smaller
under C = C 0∪C 1∪C 2 than when the input vectors are
applied without modification under C = C 0.

5. Concluding remarks
We described a procedure for computing input

cubes that should be avoided during test generation for
target faults. Such input cubes either prevent a fault from
being activated, or block its propagation by blocking all
the x-paths to the outputs. The input cubes were computed
in polynomial time by first computing basic cubes in
linear time, and then combining basic cubes based on tar-
get faults. The input cubes can be used by a test genera-
tion procedure to reduce the search space, or during built-
in test generation to preclude input vectors that will not
lead to the detection of a target fault. We described an
experiment were the input cubes were used during random
test generation to modify the input vectors applied to the
circuit. The result was 100% fault coverage for most of
the circuits where pure random input vectors achieve a
much lower fault coverage. The faults were detected by
applying limited numbers of input vectors based on every
input cube, indicating that it is sufficient to avoid a situa-
tion where a fault is prevented from being detected in
order to detect a fault, and direct test generation for the
fault can be avoided.

References
[1] P. Goel and B. C. Rosales, "Test Generation and Dynamic

Compaction of Tests", in Proc. Test Conf., 1979 pp. 189-
192.

[2] I. Pomeranz, L. N. Reddy and S. M. Reddy, "COMPAC-
TEST: A Method to Generate Compact Test Sets for
Combinational Circuits", in Proc. Intl. Test Conf., 1991,
pp. 194-203.

[3] J.-S. Chang and C.-S. Lin, "Test Set Compaction for
Combinational Circuits", in Proc. Asian Test Symp.,
1992, pp. 20-25.

[4] Y. Matsunaga, "MINT -An Exact Algorithm for Finding
Minimum Test Sets", IEICE Trans. Fundamentals., vol.
E76-A, No. 10, Oct. 1993, pp. 1652-1658.

[5] S. Kajihara, I. Pomeranz, K. Kinoshita and S. M. Reddy,
"Cost-Effective Generation of Minimal Test Sets for
Stuck-at Faults in Combinational Logic Circuits", IEEE
Trans. on Computer-Aided Design, Dec. 1995, pp. 1496-
1504.

[6] I. Hamazaoglu and J. H. Patel, "Test Set Compaction
Algorithms for Combinational Circuits", in Proc. Intl.

Conf. on Computer-Aided Design, 1998, pp. 283-289.
[7] J. Snethen, "Simulation-Oriented Fault Test Generator",

in Proc. Design Autom. Conf., 1977, pp. 88-93.
[8] V. D. Agrawal, K. T. Cheng, and P. Agrawal, "A Directed

Search Method for Test Generation Using Concurrent
Simulator," IEEE Trans. on Computer-Aided Design,
Feb. 1989, pp. 131-138.

[9] D. G. Saab, Y. G. Saab and J. A. Abraham, "CRIS: A
Test Cultivation Program for Sequential VLSI Circuits,"
in Proc. Intl. Conf. on Computer-Aided Design, 1992, pp.
216-219.

[10] E. M. Rudnick, J. H. Patel, G. S. Greenstein and T. M.
Niermann, "Sequential Circuit Test Generation in a
Genetic Algorithm Framework", in Proc. Design Autom.
Conf., 1994, pp. 698-704.

[11] P. Prinetto, M. Rebaudengo and M. Sonza Reorda, "An
Automatic Test Pattern Generator for Large Sequential
Circuits based on Genetic Algorithms", in Proc. Intl. Test
Conf., 1994, pp. 240-249.

[12] I. Pomeranz and S. M. Reddy, "On Improving Genetic
Optimization based Test Generation", in Proc. European
Design & Test Conf., 1997, pp. 506-511.

[13] M. A. Iyer and M. Abramovici, "Sequentially Untestable
Faults Identified Without Search (Simple Implications
Beat Exhaustive Search!)", in Proc. Intl. Test Conf., 1994,
pp. 457-462.

Table 5: Experimental results
C = C0 C = C0 U C1 U C2

circuit inp faults R f.c. vect cubes f.c. vect���
and32 32 34 100n 2.94 1 98 100.00 98���
and64 64 66 100n 1.52 1 194 100.00 194���
rckl 32 367 100n 39.24 2488 332 99.73 2843
rckl 32 367 500n 51.50 14461 332 100.00 4556���
vg2 25 200 100n 98.00 1404 156 100.00 309���
x1dn 27 198 100n 87.37 1666 159 99.49 574
x1dn 27 198 500n 89.39 7323 159 99.49 574
x1dn 27 198 1000n 90.40 17300 159 100.00 16576���
x9dn 27 225 100n 88.44 1430 156 99.11 466
x9dn 27 225 500n 93.33 9501 156 99.11 466
x9dn 27 225 1000n 94.22 20573 156 99.11 466
x9dn 27 225 2000n 98.67 49680 156 100.00 49680���
s420 35 336 100n 89.58 3111 277 100.00 505���
s641 54 381 100n 97.90 3291 318 100.00 792���
s820 23 684 100n 94.01 2288 577 100.00 617���
s953 45 811 100n 94.08 3903 503 100.00 906���
s1423 91 1126 100n 99.56 4717 555 100.00 4873���
s5378 214 4010 100n 99.58 21017 1544 100.00 8602���
s9234 247 4666 100n 92.88 24589 1686 97.49 24469
s9234 247 4666 500n 96.44 113714 1686 99.38 122635
s9234 247 4666 1000n 96.61 128271 1686 99.81 223786
s9234 247 4666 2000n 96.61 128271 1686 99.96 424136
s9234 247 4666 5000n 96.61 128271 1686 100.00 545479���
s13207 699 8371 100n 99.76 68312 3172 100.00 62136���
s15850 611 9620 100n 96.47 59264 3157 99.77 58449
s15850 611 9620 500n 97.02 125633 3157 100.00 96963���
s38417 1664 25261 100n 98.23 129753 8504 99.51 164487
s38417 1664 25261 500n 98.23 129753 8504 99.76 713186
s38417 1664 25261 1000n 98.23 129753 8504 99.89 1659710
s38417 1664 25261 2000n 98.23 129753 8504 99.98 2288368
s38417 1664 25261 5000n 98.23 129753 8504 99.98 2288368���
s38584 1455 30725 100n 99.83 102554 12024 99.93 122207
s38584 1455 30725 500n 99.83 102554 12024 99.98 368537
s38584 1455 30725 1000n 99.83 102554 12024 99.98 368537
s38584 1455 30725 2000n 99.83 102554 12024 99.98 368537
s38584 1455 30725 5000n 99.83 102554 12024 99.98 368537�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

[14] D. E. Long, M. A. Iyer and M. Abramovici, "Identifying
Sequentially Untestable Faults Using Illegal States", in
Proc. VLSI Test Symp., 1995, pp. 4-11.

[15] M. A. Iyer, D. E. Long, and M. Abramovici, "Identifying
Sequential Redundancies Without Search", in Proc.
Design Autom. Conf., 1996, pp. 457-462.

[16] X. Lin, I. Pomeranz and S. M. Reddy, "On Finding
Undetectable and Redundant Faults in Synchronous
Sequential Circuits", in Proc. Intl. Conf. on Computer
Design, 1998, pp. 498-503.

[17] P. Qiang, M. Abramovici and J. Savir, "MUST:
Multiple-Stem Analysis for Identifying Sequentially
Untestable Faults", in Proc. Intl. Test Conf., 2000, pp.
839-846.

[18] M. Syal and M. S. Hsiao, "Untestable Fault Identification
Using Recurrence Relations and Impossible Value
Assignments", in Proc. VLSI Design Conf., 2004, pp.
481-486.

[19] Y.-C. Lin, F. Lu, K. Yang and K.-T. Cheng, "Constraint
Extraction for Pseudo-Functional Scan-Based Delay Test-
ing", in Proc. Asia and South Pacific Design Autom.
Conf., 2005, pp. 166-171.

[20] J. P. Marques-Silva and K. A. Sakallah, "GRASP: A
Search Algorithm for Propositional Satisfiability", IEEE
Trans. on Computers, May 1999, pp. 506-521.

	Main
	DATE07
	Front Matter
	Table of Contents
	Author Index

