On Test Generation by Input Cube Avoidance

and

Irith Pomeranz¹ School of Electrical & Computer Eng. Purdue University W. Lafayette, IN 47907, U.S.A. Sudhakar M. Reddy² Electrical & Computer Eng. Dept. University of Iowa Iowa City, IA 52242, U.S.A.

Abstract

Test generation procedures attempt to assign values to the inputs of a circuit so as to detect target faults. We study a complementary view whereby the goal is to identify values that should not be assigned to inputs in order not to prevent faults from being detected. We describe a procedure for computing input cubes (or incompletely specified input vectors) that should be avoided during test generation for target faults. We demonstrate that avoiding such input cubes leads to the detection of target faults after the application of limited numbers of random input vectors. This indicates that explicit test generation is not necessary once certain input values are precluded. Potential uses of the computed input cubes are in a test generation procedure to reduce the search space, and during built-in test generation to preclude input vectors that will not lead to the detection of target faults.

1. Introduction

Test generation procedures of all types [1]-[12], including deterministic [1]-[6] and directed-search test generation procedures [7]-[12], attempt to assign values to the inputs of the circuit so as to detect target faults. For example, deterministic test generation procedures select appropriate values for the inputs so as to satisfy fault activation and propagation objectives, which are specified as values that need to be assigned to circuit lines in order to detect a target fault.

Some procedures for identifying undetectable and redundant faults [13]-[18] search for conditions that are necessary for fault detection, but cannot be satisfied by any assignment to the primary inputs. For example, if a circuit line g is such that setting g = 0 and g = 1 both imply that a line h is set to 0, there is no input assignment that will set h = 1. Therefore, the fault h stuck-at 0 is undetectable.

In all these procedures, the focus is on input values that are needed to detect target faults. In this work we study a complementary view for test generation. According to this view, the goal of test generation is to identify values that *should not* be assigned to inputs in order *not to prevent* target faults from being detected. The result of the

proposed procedure is input cubes (or incompletely specified input vectors) that should be avoided during test generation for certain target faults. Suppose that an input cube c_i is computed, which prevents the detection of a subset of target faults F_i . During test generation for faults in F_i , the inputs specified under c_i should be assigned values that are the complements of the values assigned to them under c_i . This restricts the search space during test generation to inputs that are unspecified under c_i . For deterministic test generation, it reduces the worst-case complexity of test generation from being proportionate to 2^n , where *n* is the number of inputs, to 2^m , where *m* is the number of inputs unspecified under c_i . For randomized procedures, instead of having 2^n candidate input vectors, the search can concentrate on 2^m candidate vectors when c_i is considered. During built-in test generation, the input cubes can be used to impose certain values that will ensure that the detection of target faults is not prevented.

A different application where certain cubes are avoided is in the generation of pseudo-functional scanbased tests [19]. In this application, state cubes are avoided in order to reduce/avoid the use of non-functional operation conditions during test. In the procedure proposed here, input cubes are avoided in order to allow/facilitate generation of tests to detect target faults.

SAT-based test generation procedures also use what are called conflict-induced clauses [20] in order to avoid assignments that will result in conflicts. However, these clauses are identified during the test generation process, and their derivation thus has worst-case exponential time complexity. The procedure proposed here for deriving input cubes to be avoided is applied before test generation starts, it is suitable for structural test generation, and it has polynomial time complexity. In addition, similar to other test generation procedures, SAT-based test generation procedures also focus on assigning values to the inputs of the circuit so as to detect target faults.

We consider full-scan circuits in this work. We define input cubes that should be avoided during test generation for target faults by starting from input cubes where a single input is specified. Such input cubes are called *basic* input cubes. A circuit with *n* inputs has 2n basic input cubes (each input can be assigned the value 0 or 1 in order to define a basic input cube). For every basic cube c_i , we find a set of faults F_i that cannot be detected under

^{1.} Research supported in part by SRC Grant No. 2004-TJ-1244.

^{2.} Research supported in part by SRC Grant No. 2004-TJ-1243.

 c_i . The set F_i is found based on fault activation and fault propagation conditions that c_i prevents from being satisfied. We combine basic input cubes in order to obtain input cubes with more specified inputs. The combination of basic input cubes is guided by considering specific target faults. For example, for a four-input circuit, if both 0xxx and x0xx prevent the detection of a fault f, 00xx should be avoided during test generation for f. In this case, 0xxx and x0xx are combined into 00xx based on f. The complexity of computing input cubes that need to be avoided is polynomial in the circuit size. Specifically, the computation of basic cubes is linear in the circuit size. For N basic cubes and M faults, at most NM input cube combinations are performed.

In the test generation experiment we report to demonstrate the effectiveness of the computed cubes, for every input cube c_i computed by the proposed procedure, we apply a limited number of input vectors that avoid the values specified by c_i (these values would have prevented the target faults in a set F_i from being detected). Inputs that are unspecified under c_i are assigned random values. The results of this experiment demonstrate that it is sufficient to avoid the values specified under c_i in order to detect the faults in F_i after a limited number of input vectors are applied. Thus, conventional test generation that attempts to assign values so as to detect the faults directly is either unnecessary or has a reduced complexity when c_i is used to avoid certain values.

It is possible to extend this concept to synchronous sequential circuits by defining primary input vectors that should be avoided during test generation based on the ability of input cubes to synchronize state variables of the circuit. We do not consider this issue in this work.

The paper is organized as follows. The computation of basic cubes, and the computation of additional cubes by considering target faults, are described in Section 2. In Section 3 we describe a test generation experiment aimed at demonstrating that avoiding the computed input cubes facilitates the detection of target faults. Experimental results are presented in Section 4.

2. Computing cubes

In this section we describe the computation of input cubes that should be avoided during test generation for target faults. We first describe the computation of basic input cubes where a single input is specified. We then describe the computation of additional input cubes from the basic ones. We denote the number of circuit inputs by n, and the inputs by a_0, a_1, \dots, a_{n-1} .

2.1. Basic input cubes

A basic input cube is an input cube where one input is specified to 0 or 1, and the remaining inputs are unspecified. For example, for a three-input circuit, the basic cubes are 0xx, 1xx, x0x, x1x, xx0 and xx1, where x is an unspecified value. We denote the basic input cube where input a_i is specified to the value v by $c(a_i=v)$.

We denote by $F(a_j=v)$ the set of faults whose detection will be prevented by $c(a_j=v)$. To find $F(a_j=v)$, we apply the following procedure. We assign $c(a_j=v)$ to the inputs of the circuit, and compute the values throughout the circuit. The fault line g stuck-at w is prevented from being detected if one of the following conditions is satisfied.

(1) g = w under $c(a_j = v)$. In this case, the fault cannot be activated (activation requires g = w' in the fault free circuit).

(2) g = x under $c(a_j = v)$, but there is no x-path from g to an output. An x-path is a path such that all the lines along the path have unspecified values assigned to them. Without an x-path to an output, it may be possible to activate f by assigning g = w' in the fault free circuit and g = w in the faulty circuit; however, it is impossible to propagate the difference to a primary output.

For illustration, we show in Figure 1 a circuit under the input cube $c(a_0=0)$. The faults a_0 stuck-at 0 and g_1 stuck-at 0 cannot be detected since they cannot be activated under this cube. The faults a_1 stuck-at 0 and a_1 stuck-at 1 cannot be detected since a_1 does not have an x-path to the output under this input cube. We obtain a set $F(a_0=0)$ that consists of the above four faults.

Figure 1: Example of a basic cube

We point out that it may be possible to identify additional faults as being prevented from detection under $c(a_j=v)$. However, this requires additional analysis of the circuit, which would be more time consuming. In our experiments we compute $F(a_j=v)$ as above, using only simple implications of $c(a_i=v)$.

For every input a_j , where $0 \le j < n$, and for every value v, where $v \in \{0,1\}$, we define a basic input cube $c(a_j=v)$, and we compute the set of faults $F(a_j=v)$ whose detection is prevented under $c(a_j=v)$. We include $c(a_j=v)$ in the set of basic cubes denoted by C_1 if $F(a_i=v) \ne \phi$.

The construction of C_1 is summarized in Procedure 1 next.

Procedure 1: Finding the basic set of cubes C_1

- (1) Set $C_1 = \phi$. Let F be the set of target faults.
- (2) For every input a_j where $0 \le j < n$ and for every value $v \in \{0,1\}$:

- (a) Let c (a_j=v) be the input cube where a_j = v and all the other inputs are unspecified. Assign c (a_j=v) to the inputs of the circuit and compute the values throughout the circuit. Find all the lines with x-paths to the primary outputs.
- (b) Set $F(a_j=v) = \phi$. For every fault $f \in F$: Let f be the fault line g stuck-at w. If g = w, or g = x and there is no x-path from g to an output, add f to $F(a_j=v)$.
- (c) If $F(a_j = v) \neq \phi$, add $c(a_j = v)$ to C_1 .

2.2. Additional input cubes

Starting from C_1 , we generate additional input cubes based on target faults. We denote the cube computed for a fault f_k by $c(f_k)$, and the set of cubes computed based on all the target faults by C_2 . Although we compute C_2 by considering all the target faults, it is possible to consider subsets of faults (or one fault at a time) in order to avoid storage of the complete set.

We first demonstrate the computation of C_2 using the example shown in Table 1. The example is based on ISCAS-89 benchmark circuit *s* 27. The circuit has seven inputs and 32 stuck-at faults. Table 1 shows all the basic cubes that prevent the detection of at least one fault. These cubes form the set C_1 . In every case we show the cube $c(a_j=v)$ and the set of faults $F(a_j=v)$ whose detection is prevented by $c(a_j=v)$. We renumber the basic cubes in C_1 as c_1, c_2, \dots, c_{14} . The set of faults whose detection is prevented by c_i is denoted by F_i .

Table	1:	Basic	cubes	for	s 27
-------	----	-------	-------	-----	------

i	C _i	F_i
1	Oxxxxxx	$f_7 f_{13} f_{25} f_{28}$
2	1xxxxxx	$f_4 f_6 f_{12} f_{14} f_{18} f_{19}$
3	x0xxxxx	f_0
4	x1xxxxx	$f_5 f_8 f_{10} f_{11}$
5	xx0xxxx	f_1
6	xx1xxxx	$f_{10}f_{16}$
7	xxx0xxx	f_2
8	xxx1xxx	$f_{18}f_{21}$
9	xxxx0xx	f_3
10	xxxx1xx	$f_2 f_4 f_{11} f_{13} f_{14} f_{15} f_{18} f_{19}$
		$f_{20}f_{21}f_{22}f_{23}f_{25}f_{26}f_{31}$
11	xxxxx0x	$f_{13}f_{14}f_{18}f_{19}$
12	xxxxx1x	f_4
13	xxxxxx0	f_5
14	xxxxxx1	$f_0 f_8 f_{10} f_{11}$

We set $C_2 = \phi$. Considering every target fault, the cubes described below are added to C_2 . All the cubes added to C_2 are shown in Table 2. They are numbered c_{15}, c_{16}, \cdots .

The fault f_0 is included in F_3 and F_{14} . This implies that $c_3 = x0xxxx$ and $c_{14} = xxxxx1$ prevent the detection of f_0 . Combining c_3 and c_{14} , we obtain the cube $c(f_0) = x0xxx1$ that also prevents the detection of f_0 . We add $c(f_0)$ to C_2 and denote it by c_{15} . From $F_3 \cap F_{14} = \{f_0\}$ we conclude that the detection of other faults in F_3 and F_{14} is prevented by c_3 and c_{14} separately. For example, the remaining faults in F_{14} are f_8 , f_{10} and f_{11} , and their detection is prevented by c_{14} alone. In order not to overestimate the values that need to be avoided in order to detect these faults, we do not count them as prevented from being detected by c_{15} . Based on this discussion, we set $F_{15} = F_3 \cap F_{14} = \{f_0\}$.

The fault f_1 is included only in F_5 . Therefore, no new cubes are created based on f_1 beyond those already included in C_1 .

For f_2 we obtain $c_{16} = xxx01xx$ by combining c_7 and c_{10} . We obtain $F_{16} = F_7 \cap F_{10} = \{f_2\}$.

Skipping over several faults, we consider f_8 next. The fault f_8 is included in F_4 and in F_{14} . Therefore, both $c_4 = x1xxxx$ and $c_{14} = xxxxx1$ prevent the detection of f_8 . Combining c_4 and c_{14} , we obtain the cube $c(f_8) = x1xxxx1$ that prevents the detection of f_8 . We add $c(f_8)$ to C_2 as c_{19} . From $F_4 \cap F_{14} = \{f_8, f_{10}, f_{11}\}$ we conclude that the detection f_{10} and f_{11} is also prevented by every value specified under $c(f_8)$. Therefore, these faults should be included in F_{19} . The detection of other faults in F_4 and F_{14} is prevented by c_4 and c_{14} separately. Therefore, we do not count these faults as prevented from being detected by c_{19} . We obtain $F_{19} = F_4 \cap F_{14} = \{f_8, f_{10}, f_{11}\}$.

The fault f_9 is not included in any set F_i of a cube $c_i \in C_1$. No new cube is generated based on this fault.

The fault f_{14} is included in F_2 , F_{10} and F_{11} . Combining $c_2 = 1xxxxx$, $c_{10} = xxxx1xx$ and $c_{11} = xxxx0x$, we obtain the cube $c(f_{14}) = 1xxx10x$ that prevents the detection of f_{14} . We add $c(f_{14})$ to C_2 as c_{23} . We set $F_{23} = F_2 \cap F_{10} \cap F_{11} = \{f_{14}, f_{18}, f_{19}\}.$

In general, for a fault f_k , we compute a cube $c(f_k)$ by combining all the cubes $c_i \in C_1$ such that $f_k \in F_i$. We then compute the set of faults whose detection is prevented by $c(f_k)$ as $F(f_k) = \bigcap \{F_i: f_k \in F_i\}$. If f_k does not appear in any set F_i , we obtain the all-x cube for $c(f_k)$, and we do not add this cube to C_2 . If f_k appears in a single set F_i , $c(f_k) = c_i$ is already included in C_1 , and we do not add it to C_2 . Finally, if $f_k \in F_{i1}$, $f_k \in F_{i2}$, and c_{i1} and c_{i2} assign opposite values to the same input, f_k is undetectable.

In the example of s 27, the set of cubes C_2 obtained by this process is shown in Table 2.

The procedure for computing C_2 from C_1 is given next as Procedure 2.

Procedure 2: Finding the set of cubes C_2 from C_1

- (1) Set $C_2 = \phi$.
- (2) For every target fault f_k :
 - (a) Compute the cube $c(f_k)$ obtained by combining all the cubes $c_i \in C_1$ such that $f_k \in F_i$.

Table 2: C ₂ for <i>s</i> 27			
i	C_i	F_i	
15	x0xxxx1	f_0	
16	xxx01xx	f_2	
17	1xxx11x	f_4	
18	x1xxxx0	f_5	
19	x1xxxx1	$f_8 f_{10} f_{11}$	
20	x11xxx1	f_{10}	
21	x1xx1x1	f_{11}	
22	0xxx10x	f_{13}	
23	1xxx10x	$f_{14}f_{18}f_{19}$	
24	1xx110x	f_{18}	
25	xxx11xx	$f_{18}f_{21}$	
26	0xxx1xx	$f_{13}f_{25}$	

- (b) Compute the set of faults whose detection will be prevented by $c(f_k)$ as $F(f_k) = \cap \{F_i: f_k \in F_i\}.$
- (c) If $c(f_k) \notin C_1$ and $c(f_k)$ is not the all-x cube, add $c(f_k)$ to C_2 .

It is interesting to see the results of Procedures 1 and 2 when applied to a circuit consisting of a single AND gate with a large number of inputs. Such a circuit is difficult to test using random input vectors. For example, consider the stuck-at 1 fault on the first input of an eightinput AND gate. Its detection is prevented by the cube 1xxxxxx (which prevents activation of the fault), as well as by the cubes x0xxxxx, xx0xxxxx, xxx0xxxx, xxxx0xxx, xxxx0xx, xxxxx0x and xxxxxx0 (which block all the x-paths from the fault site to the output). When these cubes are combined based on the fault, the cube 1000000 results. The complement cube, 01111111, is a test for the fault (the rationale for using the complement is discussed in the next section).

3. Test generation experiment

The cubes in C_1 and C_2 are computed such that there are target faults whose detection will be prevented by these cubes. To allow these faults to be detected, each cube must be prevented from appearing during the test generation process for the corresponding faults.

A cube c_i is prevented from appearing by complementing each specified value in c_i . Suppose that c_i is obtained by combining a subset of basic cubes $\{c(a_j=v_j)\}$. Each assignment $a_j = v_j$ alone is sufficient for preventing the detection of the faults in F_i . Therefore, all the specified inputs of c_i must be complemented in order to allow the faults to be detected. We denote the cube obtained by complementing every specified bit of c_i by c_i . For example, for $c_{19} = x1xxx1$ of s 27, we obtain $\sigma_{19} = x0xxx0$. During test generation for the faults in F_{19} , we must set $a_1 = 0$ and $a_6 = 0$ in order to allow the faults in F_{19} to be detected.

Given a set of input cubes $C = \{c_0, c_1, \dots, c_{N-1}\}$ to be avoided, the test generation process we use to demonstrate the effectiveness of avoiding input cubes in *C* proceeds as described next. If C is computed based on a subset of faults in order to avoid storage of a large set of cubes, the test generation process should be repeated using additional sets of cubes for yet-undetected faults.

The test generation process starts from a set of target faults denoted by F. We apply to the circuit a set $T = \{t_0, t_1, \dots, t_{R-1}\}$ of *R* random input vectors, for a constant *R*. We apply each input vector $t_i \in T$ under a different input cube $c_i \in C$. When an input vector $t_i \in T$ is applied under a cube $c_i \in C$, $\overline{c_i}$ is imposed on top of t_i in order to allow the faults in F_i to be detected. We rotate through the cubes in C as the input vectors in T are applied. For example, for a circuit with four inputs and R = 10, suppose that the set of random input vectors T shown in the second column of Table 3 is used. Suppose that C consists of three input cubes, $c_0 = 0xxx$, $c_1 = x0xx$ and $c_2 = xx11$. We impose \overline{c}_0 on t_0 , \overline{c}_1 on t_1 , \overline{c}_2 on t_2 , \overline{c}_0 on t_3 , and so on. The resulting input vectors are shown in the three rightmost columns of Table 3. Thus, 1011 is applied instead of $t_0 = 0011$ based on c_0 , $t_1 = 1101$ is applied unmodified based on c_1 , 0000 is applied instead of $t_2 = 0010$ based on c_2 , and so on.

Table 3: Random input vectors

j	t_j	0xxx	x0xx	xx11
0	0011	1011		
1	1101		1101	
2	0010			0000
3	0011	1011		
4	1110		1110	
5	0011			0000
6	1011	1011		
7	0001		0101	
8	1010			1000
9	0110	1110		

As input vectors are applied, target faults may be detected and dropped from the set of target faults F. When all the faults in F_i , whose detection is prevented by a cube $c_i \in C$, are already detected, it is possible to stop using c_i during the test generation process. In this case, more input vectors would be applied under the remaining faults. For example, suppose that in the example of Table 3, all the faults in F_0 become detected after t_3 is applied under c_0 . For t_4, t_5, \cdots , only c_1 and c_2 are used in this case. The resulting test set is shown in Table 4.

The random test generation process described above is summarized in Procedure 3 next.

Procedure 3: Random test generation

(1) Let *F* be the set of target faults. Let *C* be a set of input cubes of size *N*. Set i = 0 and j = 0.

(2) If $F_i \cap F \neq \phi$:

(a) Impose $\overline{c_i}$ on the random input vector t_j and perform fault simulation of the resulting vector under *F* with fault dropping. If $F = \phi$, stop.

j	t_j	0xxx	x0xx	xx11
$\overline{0}$	0011	1011		
1	1101		1101	
2	0010			0000
3	0011	1011		
4	1110		1110	
5	0011			0000
6	1011		1111	
7	0001			0000
8	1010		1110	
9	0110			0100

Table 4: Random input vectors with cube dropping

(b) Set j = j+1. If j = R, stop.

(3) Set i = i+1. If i = N, set i = 0. Go to Step 2.

We define the set of cubes *C* to be avoided during test generation as follows. We define a set of cubes C_0 that consists of a single all-x cube, denoted by c_0 . When this cube is used, random input vectors are applied unmodified to the circuit. We define $F_0 = F$ for this cube to ensure that it is used throughout the test generation process. We use Procedures 1 and 2 to compute C_1 and C_2 , respectively. We then define $C = C_0 \bigcup C_1 \bigcup C_2$.

4. Experimental results

We applied the random test generation process described in Section 3 to the following circuits. (1) A circuit comprised of an *n*-input AND gate, for n = 32 and 64. (2) Multi-level implementations of Berkeley PLAs. (3) Irredundant versions of the combinational logic of ISCAS-89 benchmark circuits. For all these circuits, 100% fault coverage can be achieved for single stuck-at faults. For a circuit with *n* inputs, we use R = 100n, 500*n*, 1000*n*, 2000*n* and 5000*n*. We only report the results when *R* random input vectors, applied unmodified for any value of *R* considered, do not achieve 100% fault coverage is achieved by Procedure 3. Using random vectors, inordinately large numbers of vectors are required to achieve 100% fault coverage for the circuits considered.

The results are shown in Table 5. After the circuit name we show the number of inputs and the number of faults. Under column *R* we enter the value of *R* as $p \cdot n$, where p = 100, 500, 1000, 2000 or 5000. Under column C=C0 we show the fault coverage achieved by *R* random input vectors when they are applied without modification $(C = C_0$ in Procedure 3). We also show the number of input vectors applied until the final fault coverage is achieved. Under column C=C0UC1UC2, subcolumn *cubes* we show the number of cubes in $C = C_0 \cup C_1 \cup C_2$. Under subcolumn *f.c.* we show the fault coverage achieved using the cubes in $C = C_0 \cup C_1 \cup C_2$. Under subcolumn *vect* we show the number of input vectors applied until the final fault coverage is achieved.

It can be seen from Table 5 that for most of the circuits considered, 100% fault coverage is achieved with

 $R \leq 5000n$ when random input vectors are modified so as to avoid values that prevent target faults from being detected. Even when increasing *R* does not improve the fault coverage achieved by unmodified random input vectors, the additional input vectors applied under the cubes in $C = C_0 \bigcup C_1 \bigcup C_2$ allow the fault coverage to increase.

The number of cubes in $C = C_0 \bigcup C_1 \bigcup C_2$ is much smaller than the number of faults for the larger circuits.

In many cases, the number of input vectors applied until the fault coverage reaches its final value is smaller under $C = C_0 \bigcup C_1 \bigcup C_2$ than when the input vectors are applied without modification under $C = C_0$.

5. Concluding remarks

We described a procedure for computing input cubes that should be avoided during test generation for target faults. Such input cubes either prevent a fault from being activated, or block its propagation by blocking all the x-paths to the outputs. The input cubes were computed in polynomial time by first computing basic cubes in linear time, and then combining basic cubes based on target faults. The input cubes can be used by a test generation procedure to reduce the search space, or during builtin test generation to preclude input vectors that will not lead to the detection of a target fault. We described an experiment were the input cubes were used during random test generation to modify the input vectors applied to the circuit. The result was 100% fault coverage for most of the circuits where pure random input vectors achieve a much lower fault coverage. The faults were detected by applying limited numbers of input vectors based on every input cube, indicating that it is sufficient to avoid a situation where a fault is prevented from being detected in order to detect a fault, and direct test generation for the fault can be avoided.

References

- P. Goel and B. C. Rosales, "Test Generation and Dynamic Compaction of Tests", in Proc. Test Conf., 1979 pp. 189-192.
- [2] I. Pomeranz, L. N. Reddy and S. M. Reddy, "COMPAC-TEST: A Method to Generate Compact Test Sets for Combinational Circuits", in Proc. Intl. Test Conf., 1991, pp. 194-203.
- [3] J.-S. Chang and C.-S. Lin, "Test Set Compaction for Combinational Circuits", in Proc. Asian Test Symp., 1992, pp. 20-25.
- [4] Y. Matsunaga, "MINT -An Exact Algorithm for Finding Minimum Test Sets", IEICE Trans. Fundamentals., vol. E76-A, No. 10, Oct. 1993, pp. 1652-1658.
- [5] S. Kajihara, I. Pomeranz, K. Kinoshita and S. M. Reddy, "Cost-Effective Generation of Minimal Test Sets for Stuck-at Faults in Combinational Logic Circuits", IEEE Trans. on Computer-Aided Design, Dec. 1995, pp. 1496-1504.
- [6] I. Hamazaoglu and J. H. Patel, "Test Set Compaction Algorithms for Combinational Circuits", in Proc. Intl.

Conf. on Computer-Aided Design, 1998, pp. 283-289.

- J. Snethen, "Simulation-Oriented Fault Test Generator", [7] in Proc. Design Autom. Conf., 1977, pp. 88-93.
- V. D. Agrawal, K. T. Cheng, and P. Agrawal, "A Directed [8] Search Method for Test Generation Using Concurrent Simulator," IEEE Trans. on Computer-Aided Design, Feb. 1989, pp. 131-138.
- [9] D. G. Saab, Y. G. Saab and J. A. Abraham, "CRIS: A Test Cultivation Program for Sequential VLSI Circuits," in Proc. Intl. Conf. on Computer-Aided Design, 1992, pp. 216-219.
- [10] E. M. Rudnick, J. H. Patel, G. S. Greenstein and T. M. Niermann, "Sequential Circuit Test Generation in a Genetic Algorithm Framework", in Proc. Design Autom. Conf., 1994, pp. 698-704.
- P. Prinetto, M. Rebaudengo and M. Sonza Reorda, "An [11] Automatic Test Pattern Generator for Large Sequential Circuits based on Genetic Algorithms", in Proc. Intl. Test Conf., 1994, pp. 240-249.
- I. Pomeranz and S. M. Reddy, "On Improving Genetic [12] Optimization based Test Generation", in Proc. European Design & Test Conf., 1997, pp. 506-511.
- M. A. Iyer and M. Abramovici, "Sequentially Untestable [13] Faults Identified Without Search (Simple Implications Beat Exhaustive Search!)", in Proc. Intl. Test Conf., 1994, pp. 457-462.

Table 5: Experimental results

C = C0C = C0 U C1 U C2R circuit inp faults f.c. vect cubes f.c. vect 32 34 100n 2.94 98 100.00 98 and32 1 and64 64 66 100n 1.52 1 194 100.00 194 39.24 2488 332 99.73 2843 rckl 32 367 100n rckl 32 367 500n 51.50 14461 332 100.00 4556 vg2 25 200 100n 98.00 1404 156 100.00 309 27 198 87.37 1666 159 99.49 574 x1dn 100n 27 89.39 159 99.49 x1dn 198 7323 574 500n x1dn 27 198 1000n 90.40 17300 159 100.00 16576 27 225 x9dn 88 44 1430 156 99.11 466 100n 27 225 93.33 9501 99.11 x9dn 500n 156 466 27 225 1000n 94.22 20573 99.11 x9dn 156 466 x9dn 27 225 2000n 98.67 49680 156 100.00 49680 s420 35 336 100n 89.58 3111 277 100.00 505 s641 54 381 97.90 3291 318 100.00 792 100n 23 2288 s820 684 100n 94.01 577 100.00 617 s953 45 94.08 3903 503 100.00 906 811 100n 4717 555 4873 s1423 91 1126 100n 99.56 100.00 s5378 214 4010 100n 99.58 21017 1544 100.00 8602 s9234 100n 92.88 24589 97.49 24469 247 1686 4666 s9234 247 4666 500n 96.44 113714 1686 99.38 122635 s9234 247 4666 1000n 96.61 128271 1686 99.81 223786 s9234 247 4666 2000n 96.61 128271 1686 99.96 424136 s9234 247 128271 100.00 4666 5000n 96.61 1686 545479 s13207 699 8371 100n 99.76 68312 3172 100.00 62136 s15850 611 9620 100n 96.47 59264 3157 99.77 58449 s15850 611 9620 500n 97.02 125633 3157 100.00 96963 s38417 1664 25261 100n 98.23 129753 8504 99.51 164487 s38417 1664 25261 500n 98.23 129753 8504 99.76 713186 98.23 129753 8504 s38417 1664 25261 1000n 99.89 1659710 25261 98.23 129753 8504 2288368 s38417 1664 2000n 99.98 129753 99.98 s38417 1664 25261 5000n 98 23 8504 2288368 102554 s38584 1455 30725 100n 99.83 12024 99.93 122207 s38584 30725 99.83 102554 12024 99.98 368537 1455 500n s38584 1455 30725 1000n 99.83 102554 12024 99.98 368537 s38584 1455 30725 99.83 102554 12024 99.98 368537 2000n s38584 1455 30725 5000n 99.83 102554 12024 99.98 368537

- [14] D. E. Long, M. A. Iyer and M. Abramovici, "Identifying Sequentially Untestable Faults Using Illegal States", in Proc. VLSI Test Symp., 1995, pp. 4-11.
- [15] M. A. Iyer, D. E. Long, and M. Abramovici, "Identifying Sequential Redundancies Without Search", in Proc. Design Autom. Conf., 1996, pp. 457-462.
- [16] X. Lin, I. Pomeranz and S. M. Reddy, "On Finding Undetectable and Redundant Faults in Synchronous Sequential Circuits", in Proc. Intl. Conf. on Computer Design, 1998, pp. 498-503.
- [17] P. Qiang, M. Abramovici and J. Savir, "MUST: Multiple-Stem Analysis for Identifying Sequentially Untestable Faults", in Proc. Intl. Test Conf., 2000, pp. 839-846.
- [18] M. Syal and M. S. Hsiao, "Untestable Fault Identification Using Recurrence Relations and Impossible Value Assignments", in Proc. VLSI Design Conf., 2004, pp. 481-486.
- Y.-C. Lin, F. Lu, K. Yang and K.-T. Cheng, "Constraint [19] Extraction for Pseudo-Functional Scan-Based Delay Testing", in Proc. Asia and South Pacific Design Autom. Conf., 2005, pp. 166-171.
- J. P. Marques-Silva and K. A. Sakallah, "GRASP: A [20] Search Algorithm for Propositional Satisfiability", IEEE Trans. on Computers, May 1999, pp. 506-521.