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Abstract

In this paper we show a reconfigurable hardware archi-
tecture for the acceleration of video-based driver assistance
applications in future automotive systems. The concept is
based on a separation of pixel-level operations and high
level application code. Pixel-level operations are acceler-
ated by coprocessors, whereas high level application code
is implemented fully programmable on standard PowerPC
CPU cores to allow flexibility for new algorithms. In addi-
tion, the application code is able to dynamically reconfig-
ure the coprocessors available on the system, allowing for a
much larger set of hardware accelerated functionality than
would normally fit onto a device. This process makes use
of the partial dynamic reconfiguration capabilities of Xilinx
Virtex FPGAs.

1 Introduction

In future automotive systems, video-based driver assis-
tance will help improve security. Video processing for
driver assistance requires real time implementation of com-
plex algorithms. A pure software implementation does
not offer the required real-time processing, based on avail-
able hardware in automotive environments. Therefore hard-
ware acceleration is necessary. Dedicated hardware circuits
(ASICs) can offer the required real time processing, but
they do not offer the necessary flexibility. Video algorithms
for driver assistance are not standardized, and may never
be. Algorithmic research is expected to go on for future
years. So a flexible, programmable hardware acceleration
is needed. Specific driving conditions, e.g. highway, coun-
try side, urban traffic, tunnel, require specific optimized al-
gorithms. Reconfigurable hardware offers high potential
for real time video processing and its adaptability to vari-
ous driving conditions and future algorithms. In this paper
we present the architecture of the Autovision project pri-

marily described superficially in [9]. Today’s systems for
driver assistance offer features such as adaptive cruise con-
trol and lane departure warning. Video cameras and radar
sensors are used to accomplish this. On highways and two-
way primary roads a safe distance to previous cars can be
kept automatically over a broad speed range [7] [8]. Basic
concepts for modeling vehicle movement and vehicle envi-
ronment have been developed by Dickmanns [4]. However,
for complex driving situations and complex environments,
e.g. urban traffic, there are no established and reliable algo-
rithms. This is a topic for future research. Today’s video-
based driver assistance systems are mainly using dedicated
hardware accelerators to achieve real time performance. An
advanced example is the EyeQ chip from Mobileye [1]. The
EyeQ chip contains two ARM cores and four dedicated co-
processors for image classification, object tracking, lane de-
tection, and filtering. EyeQ offers real time support for a set
of applications in driver assistance, but due to its dedicated
coprocessor architectures the flexibility and adaptability to
future algorithms is limited. The following section presents
a typical scenario encountered by driver-assistance applica-
tions, along with the requirements that must be met by the
video processing within such an application. In section 3 we
introduce a system of reconfigurable hardware coprocessors
that can be used to accelerate pixel operations, while keep-
ing high level application code on standard CPU cores for
flexibility. Section 4 describes an example reconfigurable
scenario and its implementation on our target platform. A
representative coprocessor architecture is presented in sec-
tion 5, followed by synthesis results for its implementation
in section 6. Finally in section 7 the paper is concluded.

2 Scenario for driver assistance

A video camera in the front of a car takes black/white
images in VGA resolution. It is the task of the video pro-
cessing to extract as much information as possible from the
camera signal, by efficiently using the available processing
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power. This is done independently from other sensor sig-
nals, such as radar or infrared. Let us look at the following
driving scenario: During the day, a car is driving on a high-
way and entering a tunnel. On the highway other road users
like cars, trucks, bikes, motorbikes or pedestrians have to
be recognized and distinguished. We plan to detect these
traffic participants by their shape or silhouette. The pixel-
level processing can be accelerated by a coprocessor, called
ShapeEngine. In this coprocessor only a subset of the Re-
gion Shape Descriptor necessary to detect e.g. cars should
be implemented. If the road is leading into a tunnel, the tun-
nel entrance will be marked as a Region of Interest (ROI) for
later purposes by the TunnelEngine. A first version of Tun-
nel Entrance Recognition was implemented in Software [3].
However the execution times are far beyond real-time pro-
cessing which necessitates the use of a hardware accelera-
tor. At the tunnel entrance, the luminance varies strongly.
The tunnel entrance itself is rather dark, the surroundings
are bright. The most important area is the road inside
the tunnel, behind the entrance. The tunnel entrance was
marked as a ROI. Due to the dim lighting, it is impossible to
recognize and distinguish road users. Instead, the contrast
in the ROI can be enhanced in order to detect obstacles on
the road inside the tunnel. This can be done in two steps: 1)
Contrast enhancement with motion compensated noise re-
duction. Global motion can be compensated from speed and
steer sensor signals. For noise reduction, the median lumi-
nance values at each pixel position can be taken from a set
of previous ROIs before contrast enhancement. 2) Obstacle
detection using a Sobel Edge Filter. While vertical edges
and vertical luminance structures mainly belong to the road
and to lane markers, horizontal edges mainly belong to ob-
stacles, e.g. vehicles in the lane. The related pixel-level
processing for both steps can be accelerated by a coproces-
sor, called Contrast/EdgeEngine. The ContrastEngine and
the EdgeEngine are currently implemented as two separate
coprocessors. In future they will be combined in the Con-
trast/EdgeEngine. In Addition the EdgeEngine performs a
lane detection using the Hough transformation [7] which
was fully implemented in hardware. Inside the tunnel, due
to the low luminance level, only the taillights of other vehi-
cles can be detected dependable. Headlights, taillights, and
fixed tunnel lights have to be distinguished. This is done by
luminance segmentation, grouping the taillights into pairs
and measurement of position and movement of light areas.
The processing on pixel-level can be accelerated by a co-
processor, called TaillightEngine. Example outputs from
the Engines can be seen in Figure 1.

2.1 Requirements

Representative requirements for video processing in ve-
hicles in our scenario are: a frame rate of 25 frames /sec

Figure 1. Detection of the ROI (upper left)
and Contrast enhancement (upper right). In
the lower left corner Taillight tracking is de-
picted. The lower right picture shows an
edge detection performed by a Sobel filter
and lane tracking through Hough transforma-
tion.

(40 ms per frame), a frame size of 640 x 480 pixels VGA
resolution, black/white, no color and luminance only and
a quantization of 8 bit/pixel. This results in 2.5 Mbit per
frame with a data rate of 62 Mbit/sec. Workload conserving
processing leaves a time budget of 40 ms per frame. As an
estimation for processing requirements, We implemented a
simple function to detect spotlights as High level code run-
ning on one of the PPC CPUs (300 Mhz). Compared to our
coprocessor (3.4 ms) the software solution was more than
175 times slower (around 600 ms). Measured CPU time on
a Pentium 4 Processor was 26 ms, thus more than 7x slower
as when using the coprocessor. If we imagine a more com-
plex operation hardware acceleration is necessary to achieve
real time processing.

3 Architecture Platform

Algorithms for video processing can be grouped into
high level application code and low level pixel operations.
High level application code requires a high degree of flex-
ibility and is therefore well suited for a standard processor
implementation. Pixel manipulation on the other hand re-
quires applying the same operation on many pixels and thus
seems to be a good candidate for hardware acceleration.
The TaillightEngine serves as an example for this. Search-
ing for spotlights, thresholding and transferring lights into a
list together with its pixel coordinates (to reduce the amount
of data) are done in hardware. The CPU only works on this
list. Grouping of light spots, detection of static lights e.g.



tunnel lights, detection of light pairs and license plate recog-
nition can then performed as higher level application code
on the CPU. An architecture platform has to support both
the implementation of high level code on a CPU, and the im-
plementation of low level operations on coprocessors. High
level application code is always implemented on the CPU.
Pixel-level operations can be implemented for test purposes
on the CPU as well, but for real time applications, they are
to be accelerated by a coprocessor (xxxEng).

4 Partial Run-Time Hardware Reconfigura-
tion

In general, a large number of different coprocessors
could be implemented on a System-on-Chip (SoC) in par-
allel. However, this is not resource efficient, as depending
on the application, just a subset of all coprocessors will be
active at any given time. So it would be advantageous to
time share the FPGA resources among several coprocessors.
With hardware reconfiguration, hardware resources can be
used more efficiently. Hand in hand with a software library
for pixel operations, a library for coprocessor configurations
is planned. Coprocessor configurations can be loaded into
the FPGA whenever needed, depending on the application.
In our scenario for driver assistance, the coprocessors are
used as shown in Table 1.

Environment Shape Tunnel Contrast/ Taillight PPC

Engine Engine EdgeEng. Engine

Highway x x x

Tunnelentrance x x x

Tunnel inside x x

Table 1. Usage profiles of coprocessors

Normally, a small set of pixel-level operations is used
in a large variety of algorithms. There is an overlap here
as well, so one algorithm may use various classes of pixel-
level operations [5]. For each class of pixel-level opera-
tions there is a corresponding coprocessor configuration.
Each application uses a set of algorithms and the related
coprocessors. Our target hardware architecture will use a
Xilinx Virtex-II Pro FPGA (XC2VP30) with two embed-
ded PowerPC (PPC) cores on the XUP Development board
from Digilent. An overview of the architecture is given in
Figure 2. One of the PPCs will be used for high level ap-
plication code, the other PPC will be used for control and
management functions. The configurable logic parts of the
FPGA will be used for coprocessors, on-chip bus, data I/O,
and memory interface. On-chip Block RAM (BRAM) will
be used for local memory with the coprocessors. Loading
and replacement of the xxxEngines will be controlled by a
Reconfiguration Manager implemented in one of the PPCs.

Figure 2. Target Architecture with reconfig-
urable coprocessors

4.1 Floorplanning

To establish a secure connection between the area occu-
pied by the engine to be reconfigured and the static area, the
so called base part, busmacros are necessary. Busmacros are
predefined units of logic and wiring that lock the routing be-
tween reconfigurable modules and the base system. Instead
of using tristate buffer based busmacros like recommended
in [11] we utilize LUT-based busmacros which were intro-
duced primarily by Hübner et al. [6]. The coprocessor im-
plementation as described in section 5 requires the use of
an IP Interface (PLB IPIF) [14] to be connected to the Pro-
cessor Local Bus (PLB). It facilitates the connection of user
modules to the PLB. The PLB is part of IBMs CoreConnect
family of data buses and associated infrastructure. It would
make sense to place the busmacro between the PLB and the
PLB IPIF. Thus the PLB IPIF would be part of the reconfig-
urable area and a new coprocessor could be attached to the
PLB whenever needed. However, in our system every co-
processor will use PLB IPIFs of the same type. Hence it is
not reasonable to locate the PLB IPIF in the reconfigurable
area. All signals, except clock signals, have to pass through
a busmacro.

Figure 3. Busmacro Placement: Locating the
PLB IPIF in the base part (right picture) in-
stead of placing it in the reconfigurable mod-
ule (left picture) results in a huge saving of
signals that have to cross the reconfigurable
boundary determined by the busmacros.

In order to reduce the reconfiguration times by keeping
the reconfigurable area as small as possible the PLB IPIF
was moved to the base part of the system. This results in
an additional advantage. If the PLB IPIF is placed in the



reconfigurable area 433 signals between the PLB and the
PLB IPIF have to pass through busmacros. Between the
PLB IPIF and the user logic there are only 273 signals that
have to cross the area boundary. Different options for bus-
macro placement are depicted in Figure 3. The layout of
our first reconfigurable architecture is shown in Figure 4.

Figure 4. Base design on the left side and re-
configurable module (AddressEngine) on the
right side

A coprocessor, the AddressEngine which is introduced
in the following section, is constrained to the right side. The
remainder of the system, the base design, that includes e.g.
the video input and output remains fully operational during
the reconfiguration process. The nets that span the recon-
figurable area to connect the base design to the I/Os on the
right side of the device (left picture of Figure 4) are not
affected by the dynamic partial reconfiguration due to the
glitchless switching capabilities of VirtexII FPGAs. These
nets that cross the reconfigurable (blank) area are not used
in the reconfigurable module. Therefore no busmacros are
needed to span the reconfigurable area. The future archi-
tecture will have the ability to run and reconfigure two sep-
arate coprocessors in parallel to be conform with the sce-
nario shown in Table 1. We are working on processes to
keep the reconfiguration times as short as possible. In that
context we introduced our Combitgen Tool [2] that is used
for filtering out the different frames between all possible
coprocessor configurations. Combitgen then combines only
these frames that are necessary to change the functionality
of one coprocessor to any other coprocessor configuration
in partial bitstreams. As the number of frames in a partial
bitstream is directly proportional to the reconfiguration time
a reduced number of frames in configuration bitstreams re-
sults in shorter reconfiguration times. Considering a frame
rate of 25 frames/sec results in 40 ms to process one image.

If the image processing can be done in e.g. 35 ms and the
reconfiguration of a coprocessor can be done in 5 ms then
no frame has to be dropped. Thus we are interested in ac-
celerating the reconfiguration process as much as possible.
A partial bitstream for a representative coprocessor is al-
most 300 Kbyte in size. If we could achieve a throughput of
configuration data around 100 KBytes/ms (100 Mhz ICAP
clock and 8-bit ICAP input width) the reconfiguration could
be done in 3 ms. This part of our future work.

5 Coprocessor Implementation

The first coprocessor that was implemented is the Ad-
dressEngine (AE), a general purpose engine that can be
used for a large variety of pixel-level operations. A prelim-
inary version of this coprocessor has previously been pre-
sented in [10]. Despite its generic nature, the AE serves
as a good representation of the functionality found within
other coprocessors, and can indeed be used to emulate most
other coprocessor configurations. The driving idea behind
the AE is that pixel addressing is a very repetitive pro-
cess, yet can actually require more processing time than
the pixel calculation itself. Thus it makes sense to ac-
celerate the addressing requirements of a pixel processing
function using a hardware coprocessor. In addition to pro-
viding faster address calculations, this approach allows for
hardware acceleration of the processing function by imple-
menting the addressing code as a wrapper around a small,
user-configurable pixel operation. This user-defined func-
tion then receives individual pixels in the correct order, and
can focus solely on the processing required by that one
pixel, making the hardware implementation of such a func-
tion fairly straightforward. This user-defined function de-
termines whether it is a TaillightEngine, a ShapeEngine or
any other XXXEngine.

Figure 5. Pixel addressing schemes: Inter
(left), Intra (middle), and Segment (right) ad-
dressing. Arrows indicate the direction of
pixel processing

There are three basic types of pixel addressing as de-
picted in Figure 5. Inter-addressing is used to concur-
rently process pixels from multiple source images, needed
for example to calculate the difference between two im-
ages. Intra-addressing provides a neighborhood of pixels
surrounding the pixel of interest, useful for most filtering



applications. Finally, segment addressing is used to traverse
an image not row by row but instead according to a set of
homogeneity criteria. This allows for the detection of con-
tiguous regions, especially useful for object identification.
The AE currently supports both inter- and intra-addressing,
leaving segment addressing as a candidate for future expan-
sion.

Figure 6. Architecture overview of the Ad-
dressEngine. Note the configuration regis-
ters (top) and processing pipeline (right)

Figure 6 shows a block diagram of the AE, which is com-
posed of two parts: a processing pipeline responsible for
addressing pixels and carrying out the requested pixel op-
erations, and a set of configuration registers used to store
all processing parameters and other runtime configurable
settings. These registers fall into one of three categories.
The first is the set of registers that are used to parameter-
ize the operation of the AE itself. The second category
of registers is a set of global variables that can be used
to provide additional application-specific parameters to the
user defined pixel operation, and are not otherwise used
by the AE. Finally, the processing pipeline requires a few
secondary parameters derived directly from those supplied
by the user. The configuration registers unit is responsi-
ble for generating these additional values, and for distribut-
ing them to the system along with all other registers. All
user-defined pixel operations are executed in the processing
pipeline, along with the addressing required to retrieve pix-
els from memory. The input transport works in conjunction
with the pixel matrix to perform these address calculations
and write the complete processing window into the local
memory of the AE. In addition to iterating across all pixels
within an image, the input transport is responsible for scal-
ing of the image, adjusting addresses for an origin offset,
generating default values for pixels outside of the source
image, and providing pixel data from multiple images when
required for inter-addressing. Since accessing pixels from
memory is relatively slow, a local memory is used as in-
termediate storage for all pixels currently required by the
processing function. This prevents the same pixel being
accessed multiple times from external memory, enhancing

performance especially during intra-addressing with large
neighborhoods, where a single pixel can be required many
times during the processing of surrounding pixels. Storing
the pixels in a local memory also allows the neighborhood
matrix to access an entire column of pixels perpendicular
to the scan direction simultaneously. This makes it possible
to shift the matrix one pixel horizontally in only a single
clock cycle. Other parts of the processing pipeline include
a simple FIFO used as temporary storage for result pixels
until they can be written to the main memory. The memory
arbiter is responsible for scheduling all transactions across
the PLB IPIF [14] to the Processor Local Bus (PLB). It ac-
cepts any incoming requests from external devices to read
or write configuration registers, and also initiates memory
transactions when requested by blocks within the process-
ing pipeline. Finally, the user defined pixel operation is
responsible for actually calculating a result from the pixel
neighborhood provided by the matrix. The overall design
of the AE, with configuration registers used to parameter-
ize a pixel processing pipeline, can also be applied to most
other designs. Indeed, by removing unneeded support for
the highly parameterized addressing schemes found within
the AE, portions of its pixel pipeline code can be reused to
satisfy the pixel addressing demands of other coprocessors.
Due to its user-configurable pixel operations, the AE can
satisfy the requirements of a large number of image pro-
cessing algorithms. It cannot always be used in place of
other coprocessors, however, since a coprocessor dedicated
to a certain pixel operation can be optimized specifically for
that operation, which generally reduces both the required
chip area and processing time. Thus there may be multiple
coprocessors that are useable for a certain operation, which
makes a common setup of function parameters for different
coprocessors desirable.

6 Synthesis Results

The AddressEngine has been implemented as a device
on the Processor Local Bus (PLB) of a Xilinx Virtex II Pro.

Number of Slices: 1523 out of 13696 11%

Number of Slice Flip Flops: 1346 out of 27392 4%

Number of 4 input LUTs: 2710 out of 27392 9%

Number of bonded IOBs: 273 out of 556 49%

Number of BRAMs: 9 out of 136 6%

Minimum period: 9.370ns (Max. Freq: 106.724MHz)

Table 2. Device Utilization and timing sum-
mary of the AddressEngine

The synthesis results for a typical AE configuration are
shown in Table 2. Only a single pixel operation was imple-
mented in this case, namely a 8-bit, 3x3 sobel filter. Gener-



ally it is possible to have many more operations supported
by a single instance of the AE, though multiple pixel oper-
ations will of course increase the required chip area. The
width of each individual pixel also has a profound impact
on the area requirements of the AE, especially for the large
array of pixel values that make up the matrix. Despite em-
ploying a local memory to minimize the number of memory
transactions, the bottleneck of the system still lies in fetch-
ing and storing pixels from the main image memory. While
a fairly simple pixel operation (such as the 3x3 median filter
used here) takes only a single clock cycle to process each
pixel, retrieving a single pixel from memory can take up-
wards of ten clock cycles. All of the Engines developed and
implemented so far are able to run at the PLB clock fre-
quency of 100 MHz or even above. Other engines like the
TaillightEngine occupy 20% of the slice resources and 13%
of the BRAM blocks. This should serve as benchmark for a
typical Coprocessor implementation.

7 Conclusion and further work

This paper has introduced a flexible hardware design for
accelerating the processing required by future video-based
driver assistance systems. By using hardware coprocessors
to accelerate individual pixel operations, the software based
high-level application code remains flexible and adaptable
to future algorithms. In addition, multiple algorithms re-
quiring the same pixel operation can share a coprocessor to
minimize the necessary chip area. We presented our tar-
get architecture with two embedded CPU cores and a set of
FPGA-based, reconfigurable accelerator engines. Finally,
the Address-Engine has been introduced as a representative
coprocessor architecture, along with some of the hurdles
that had to be overcome during its development. Further
work includes extending the functionality of this coproces-
sor; adding further coprocessor configurations to the library,
i.e. ShapeEngine or a separate lane detection engine to de-
tect curved roads; and evaluating the dynamic reconfigura-
tion behavior of all the coprocessors. In addition we plan
to implement a novel PLB Controller for the Internal Con-
figuration Access Port (ICAP) that should enable on-chip
reconfiguration and achieve a data throughput near the the-
oretical boundary of 100 Kbyte/ms (ICAP’s input width is
1 byte, ICAP frequency is 100 Mhz). Information about
ICAP can be found in [12], [13] and [15].
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