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Abstract 

 
This paper proposes an innovative methodology to 

perform and validate a Failure Mode and Effects 
Analysis (FMEA) at System-on-Chip (SoC) level. This is 
done in compliance with the IEC 61508, an international 
norm for the functional safety of electronic safety-related 
systems, of which an overview is given in the paper. The 
methodology is based on a theory to decompose a digital 
circuit in “sensible zones” and a tool that automatically 
extracts these sensible zones from the RTL description. It 
includes as well a spreadsheet to compute the metrics 
required by the IEC norm such Diagnostic Coverage and 
Safe Failure Fraction. The FMEA results are validated 
by using another tool suite including a fault injection 
environment. The paper explains how to take benefits of 
the information provided by such approach and as 
example it is described how the methodology has been 
applied to design memory sub-systems to be used in fault 
robust microcontrollers for automotive applications. 
This methodology has been approved by TÜV-SÜD as 
the flow to assess and validate the Safe Failure Fraction 
of a given SoC in adherence to IEC 61508 

1. Introduction 
New technologies allow deep system integration in 

automotive as well: replacing mechanics with electronics 
becomes to be a reality. Therefore, automotive System 
on Chip (SoC) are more and more complex: they have a 
mix of commodity and safety functions, an increased use 
of third-parties IPs and complex interconnection 
scenarios. On the other side, as a consequence of such 
increased complexity, the population of faults is 
increasing as well. These include: modelling uncertainty, 
functional verification holes, unforeseen interactions and 
misuse, specification misunderstanding, more 
electromagnetic susceptibility, soft-errors and malicious 
accesses. In particular, hardware faults (systematic or 
random) are worsened by: the increased soft-error failure 
rates (i.e. cosmic rays); coupling effects and disturbances 
are more and more important; and intrinsic uncertainty 
due to model inaccuracy is a problem of new 
technologies. If we define "robustness" as the ability to 
continue mission reliably despite the existence of 

systematic, random or malicious faults [1,2], how to 
make such systems more robust ? 

For automotive, aerospace, biomedical and similar 
applications where the human life is concerned, safety is 
the driving factor. In such context, fault-oriented quality 
metrics (e.g. ppms) are not enough since they mostly 
confine the reliability issues to the semiconductor duty. 

International norms exist to define requirements for 
safety, such the IEC61508 for functional safety of 
electrical/electronic/programmable electronic safety-
related systems [3,4] or its “customization” to the 
automotive field, the ISO26262, still in the preliminary 
definition phase. Therefore, designers of electronic 
systems to be used in safety-critical applications should 
take into account these requirements and adapt their 
architectures. It is worth to note that the IEC61508 
introduces also requirements in terms of design flows 
and validation criteria, so all the implementation process 
– from specs to verification and validation - should be 
adapted accordingly. 

However, these norms generally refer to complete 
system and not to System-On-Chips: even if they contain 
also guidelines and requirements for the system 
components (including CPUs, memory systems, bus 
infrastructure and so on) and even if an extension of 
IEC61508 to ASIC is likely to appear in the next 
months, nevertheless it doesn’t exist yet a consolidated 
methodology to systematically transport at SoC level the 
IEC61508 requirements. For instance, it’s not so trivial 
to compute the Safe Failure Fraction (SFF, better defined 
in the next section) of a SoC and also the extension of 
system-level methods such Failure Mode and Effects 
Analysis (FMEA) to SoC is still confined to low-
complexity integrated circuits or to basic critical points 
such muxing or digital-to-analog interfaces. 

This paper shows how to make use of the FMEA at 
System-on-Chip (SoC) level as well and how to take 
benefits of the information provided by such analysis to 
implement a structured approach to increase the 
robustness of the SoC. This is done in compliance with 
the IEC61508, i.e. taking into account the failure modes 
and requirements therein described and it allows 
extracting the main metrics required by the norm. It will 
be also described how the proposed methodology has 
been applied to design memory sub-systems to be used 
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in fault-robust microcontrollers for automotive 
applications.  

2. IEC61508 basic concepts 
The basic concept of IEC61508 is the definition of 

“Safety Integrity Level” (SIL), i.e. the discrete level (one 
out of a possible four) for specifying the safety integrity 
requirements of the safety functions to be allocated to 
the safety-related systems, where safety integrity level 4 
has the highest level of safety integrity and safety 
integrity level 1 has the lowest [3]. As already said, the 
IEC61508 requirements generally are related to complete 
systems: however, also for system components it can be 
said that the safety integrity level is granted based on the 
value of Safe Failure Fraction (SFF) for the given 
component. SFF is equal to the ratio between the sum of 
safe failures (i.e. failures which don’t have the potential 
to put the safety-related system in a hazardous or fail-to-
function state) and detected dangerous failures over the 
sum of all the possible failures (safe plus dangerous). 

Another important concept is the Hardware Fault 
Tolerance (HFT). A system with a HFT of N means that 
N+1 faults could cause a loss of the safety function. 
With a HFT equal to zero, a SFF equal or greater than 
99% is required in order that the system or component 
can be granted with SIL3. With a HFT equal to one, the 
SFF should be greater than 90%. It is worth to be noted 
that SIL3 is the safety integrity level required for x-by-
wire systems or systems with high criticality such active 
brake systems. 

 The IEC61508 also specifies faults or failures to be 
detected during operation or to be analyzed in the 
derivation of safe failure fraction: some examples are the 
following. For variable memories: DC fault model for 
data and addresses; dynamic cross-over for memory 
cells; no, wrong or multiple addressing; change of 
information caused by soft-errors. For processing units: 
DC fault model for data and Addresses for both internal 
registers and RAMs; Dynamic cross-over for memory 
cells; Wrong coding or wrong execution for coding 
execution including flag registers and so on. 

The norm also assesses some of the state-of-art 
techniques for fault-detection and tolerance respect the 
maximum diagnostic coverage (i.e. probability of 
detection of dangerous failures) considered achievable: 
as example, RAM monitoring with Hamming code or 
ECCs or double RAMs with hardware/software 
comparison are the ones with the highest value. 

The IEC61508 specifies as well which kind of 
documentation and design flow should be followed, such 
as the release of a Safety Requirements Specification 
(SRS) including a detailed FMEA (Failure Mode and 
Effects Analysis) of the system or sub-system. 

3. Extending FMEA to SoC: the principles 
The commonly used way to provide the information 

required by SRS is to perform a Failure Modes and 
Effects Analysis. This paper presents a way to perform 
the FMEA at SoC level with a systematic approach, 
supported by a spreadsheet and a tool to extract the 
information from the RTL. 

In a first step, a set of “sensible zones” are identified 
from the RTL description. A sensible zone is one of the 
elementary failure points of the SoC in which one or 
more faults converge to lead a failure (Figure 1). 

Valid definitions of sensible zones are:  
• Memory elements such registers, flip-flops or 

variables. These sensible zones are points where 
many kinds of faults converge. Example: stuck-at 
or bridging faults in the combination logic 
generating the input of the memory element. 

• Primary input and primary outputs of the SoC 
• Logical entities that can or cannot directly map to a 

memory element. Example: wrong conditional field 
of a conditional instruction, where this wrong field 
can be caused either by a bit-flip or by a wrong 
processing of logic reading opcode from the bus. 

• Critical nets such clocks or long nets that could 
generate multiple failures. 

• Entire sub-blocks, to take more simply into account 
bigger cones of logic or to consider all together a 
complex block with a small number of outputs. 
Example: faults in a coder bringing to a wrong 
output value. 

 
 

Sensible zone

Failure mode

Observation
point

Main Effect

 
Figure 1: the sensible zone 

 
It is worth noting that electronic circuits, in particular 

processing units, are mostly architected as groups of 
interconnected Moore machines. In such structures, the 
state register has a fundamental role in the functional 
behaviour of the machine, so it is worth to consider such 
state registers as the best candidates to become sensible 
zones. 

Another important element of the SoC-level FMEA 
is the “Observation point”. The observation point is 
either: another sensible zone, a primary output (most of 
the cases), a primary function of the SoC (when the 
analysis is more high-level) or an alarm of the 
diagnostic. The effects of failure modes in a sensible 
zone are measured at these observation points. 

Failure modes can be of two main types. It can be 
directly linked to physical faults. Example: if the 
sensible zone is a memory element, it can be a bit-flip in 
the register. It can be the end consequence of faults in 
the logic cone of the sensible zone. Example: a wrong 
value in a register bit due to stuck-at or bridging faults of 
the combinational logic in front of the D pin of a 
register. Failure modes can be also a temporal sum of 
faulty events (such multiple faults hitting a memory 
element). The basic failure modes for a given SoC can 
be determined from the tables in Appendix of IEC 
61508-2 [3]. 



Concerning the correspondence between failure 
modes of sensible zones and HW faults of their 
converging cones, it is useful to distinguish three classes 
of physical HW faults: local, wide and global HW faults. 

We consider “local” the physical HW faults affecting 
one or more gates of a logic cone contributing to a single 
sensible zone. Each local HW fault or combination of 
them occurring in the logic cone in front of the sensible 
zone – if not masked by conditions or by other HW 
faults - will result in a failure in it.It is worth to note that 
if a certain local HW fault is masked so it doesn’t 
generate any effect in the sensible zone (e.g. if there is a 
transient fault in a gate but this glitch isn’t sampled by 
the clock of the register corresponding to its sensible 
zone and so on), this fault is not considered as an hazard 
since it doesn’t perturb the function to be performed by 
such sensible zone. The type of failure that will occur in 
the sensible zone depends on the type of occurred 
physical faults (e.g stuck-at, bridging fault, etc…).  

We consider “wide” the physical HW faults affecting 
one or more gates of a logic cone contributing to more 
than one sensible zone. Examples of wide physical HW 
faults is a single physical HW fault (e.g. a stuck-at at the 
output of a gate) generating a failure in two or more 
sensible zones, or a single physical HW fault belonging 
to a logic cone contributing to two or more sensible 
zones but generating a fault only in some of these zones 
(see Figure 2). In such a case, we have multiple failures. 
It is worth to note that such case also includes situations 
like faults in clock or reset buffers affecting multiple 
flip-flops. Physical faults like resistive or capacitive 
coupling between lines are also included in such model. 
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Figure 2: multiple failures 

 
We consider “global” the physical HW faults 

affecting many logic cones and therefore contributing to 
more than one sensible zone. Examples of global 
physical HW faults are the following: faults in the PLL 
or clock generation or first level of clock trees affecting 
large number of sensible zones; power supply faults 
affecting large areas of the silicon component; thermal 
faults making slower consistent region of the SoC. 

Concerning the effects of a fault, we define the “main 
effect” as the effect that at least will occur as result of 
failure mode of the considered sensible zone respect an 
observation point, if not masked internally. The 
“secondary effects” are the other effects occurring at 
other observation points resulting from the migration of 

the sensible zone failure through its output logic cone 
and from there to other sensible zones till the other 
observation points. These are particular important to take 
into account the very frequent situation in which a single 
local HW fault generates a failure of a single sensible 
zone, but the effect manifests itself at different 
observation points (see Figure 3). 
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Figure 3: secondary effects 

 
The extraction of sensible zones and observation 

points is automatically performed by a tool based on 
commercially available EDA tools such Cadence or 
Synopsys, working on the synthesized RTL. Besides to 
collect and properly compact the registers, the tool 
extracts as well the data needed by the FMEA statistical 
model, such the composition of the logic cone in front of 
each sensible zone (i.e. gate-count, interconnections and 
so forth) and the correlation between each sensible zone 
in terms of shared gates and nets.  

Starting from the elementary failure in time (FIT) per 
gate and per register both for transient and permanent 
faults, all the data automatically extracted by the tool are 
used to compute the failure rates for each sensible zone.  
A spreadsheet contains all these data as also other 
information provided by the user, such: 

• S and D factors to estimate the Safe fraction and 
Dangerous fraction of the possible failures for the 
given failure mode in the given sensible zone. Two 
types of S and D factors are used: architectural and 
applicational. Example of architectural dependent 
S/D is a sensible zone always inactive at run-time 
because blocked by a set of masking gates. 
Example of application dependent S/D is a sensible 
zone not used by the given application. Usually 
only architectural S/D factors are considered. 

• The frequency class F of the given sensible zone, 
used to estimate its usage frequencies. 

• The lifetime ζ, defined as the time between the 
average last read and the write in such zone. 

Based on this information, the spreadsheet computes 
all the metrics required by the IEC61508, such as the 
safe (λS) and dangerous (λD) failure rates for each 
sensible zone and for all the SoC. It also delivers a 
ranking of sensible zones in terms of their criticality. 

The proposed approach is therefore a mix between 
analysis performed at different levels, such RTL level 
(for the estimation of S, D and F factors) and at gate-
level (for the statistics related to the logic cones of the 
sensible zones and so forth): this way guarantees the best 
accuracy of the results and offers as well the possibility 



to analyze which of different possible implementations is 
the more critical in term of safety. 

4. Using the FMEA to design diagnostic 
The methodology proposed in this paper has the 

specific target to evaluate the SoC in order to find the 
best strategy for error detection and correction. 
Therefore, the two main quantities that have to be 
measured are the Diagnostic Coverage and the Safe 
Failure Fraction, defined by the following formulas [3]: 

 

SFF = DC = 
 

 
where λDD is the rate of dangerous detected failures and 
λDU is the rate of dangerous undetected failures 
(λD=λDD+λDU). 

To compute such values, the spreadsheet includes for 
each sensible zone the fraction of the dangerous failure 
rate associated with each failure mode that is claimed to 
be detected by the diagnostic technique, distinguished in 
Detected Dangerous Failure fraction (DDF) for 
transient/intermittent faults and permanent faults. It is 
also distinguished between DDF due to HW and SW 
techniques. 

These coverage values are computed both based on 
the architecture, by the numbers given by the previous 
described tool (concerning the interconnections between 
sensible zones), by what accepted by the IEC norm 
(Annex 2, tables A.2-A.13, where it is specified the 
maximum diagnostic coverage considered achievable by 
a given technique) and by the estimation of the user. The 
FMEA validation flow described in next section must be 
executed in order to have the highest level of confidence 
in such estimations. 

An important step of the FMEA is to span the values 
of the assumptions (such the elementary failure rates for 
transient and permanent faults or the user assumptions 
such S, D and F) in order to measure the sensitivity of 
the final DC/SFF to these changes. 

5. How to validate the FMEA 
A strict and measurable validation flow is rather 

important in order to cross check the FMEA. As 
recommended by the IEC61508 norm, fault injection has 
a crucial role in that. The proposed methodology uses a 
validation flow based on a mix of tools which the main 
ones are a simulation-based fault injector [8,9] and a 
fault simulator like [11]. The fault injector tool is built 
on top of a state-of-art functional verification tool [10] 
and makes use of a standard verification language [12]. 
By integrating fault injection with functional 
verification, it is possible to set up a fault injection flow 
that solves many of the issues that affect most of the 
environments presented in literature. Thanks to the 
interaction with the functional verification tool, 
verification components available on the market can be 
easily reused as a workload to inject faults, obtaining at 
same time design validation and reliability evaluation. 
The use of a standard language enables an easy and 
configurable way to model the faults. The engine of the 

coverage-driven functional verification tool allows to 
uniquely correlating Workload, Operational Profiles, 
Fault List, and final measures.  

The fault injector is composed by (figure 4): 
• Environment builder: this block extracts from the 

FMEA all the information related to the 
environment for the injection campaign and builds 
all the required environment configuration files.  

• Operational Profiler, Collapser and Randomiser:  
starting from the information extracted by the 
Environment Builder, this block extracts the 
Operational Profile (OP) from a given workload. 
An Operational Profile (OP) is a collection of 
information about all relevant fault-free system 
activities: traced information items are read/write 
activity associated with processor registers, address 
bus, data bus, and memory locations in the system 
under test, but they may also include other more 
high level information like the most probable 
expected sets of inputs that the system or 
application will receive. The purpose of the OP is 
to better understand the situation in which the 
system or the application will be used, and then 
analyze this information to ensure that only faults 
which will produce an error are selected during the 
fault list generation process. In this way the 
generated fault list is compacted and non trivial. As 
mentioned afterwards, the completeness of the 
workload is measured in a deterministic way to 
check if it complete in terms of its capability to 
trigger all the sensible zones of the DUT. 

• Fault Injection Manager: this function runs all the 
injection campaign based on automatically 
generated fault lists and collects all the results.  

• Result analyzer: this function collects all the results 
generated by the injection campaign and 
automatically fills a sheet included in the FMEA 
spreadsheet. In particular, S, D, F and DDF are 
extracted and compared with the values in the 
FMEA. The validation is successful if the 
percentages are in line with the estimated values. It 
is also extracted a “table of effects” for each 
sensible zone, i.e. table of observation points in 
which has been measured a deviation respect a 
golden simulation without injected faults. This 
table is automatically compared with the FMEA to 
check if the identification of main/secondary effects 
is consistent. 

• Monitors and Coverage Collection: this function, 
composed by a set of monitors automatically 
instantiated by the environment builder, generates 
and collects all the information needed to build the 
coverage measures for the analysis of fault 
injection campaign completeness. In this context, 
“coverage” means a measure of the completeness 
of the fault injection experiment. It is measured 
how many times a fault injection point (SENS) is 
triggered by an injection, how many changes 
occurred on the observation point (OBSE), how 
many mismatches occurred between faulty and 
golden DUT, how many times the diagnostic point 
(DIAG) changed and so forth. Only when all the 



coverage items are covered at 100% we can 
consider complete the fault injection experiment. 

 
 
The validation procedure is the following: 
a) it is performed an exhaustive fault injection of 

sensible zone failures: based on the failure mode and 
condition specified in the FMEA and on the workload 
and extraction of operational profile, for each sensible 
zone it is injected a certain number of faults. At the end 
of this analysis, both the results and the coverage are 
cross-checked with FMEA. 

b) in parallel, the efficiency of the workload in 
covering the HW gates of the gate-level netlist is 
measured, for instance by using a toggle count coverage 
or a standard fault coverage. If the toggle count 
percentage (i.e. nets/gates toggling at least once) or the 
fault coverage is greater than a defined value (default 
99%), the validation is successful. 

c) for critical areas (where the analysis is more 
difficult) or where particular HW implementation are 
present (asynchronous circuitry and so on), a selective 
HW fault injection is performed, injecting local faults 
with fault injector. The validation is successful if the 
results of such injection confirm the results of the 
exhaustive sensible zone failure fault injection. 
Otherwise, some new lines should be included in the 
FMEA to take into account the newly detected effects. 
For these critical areas, the fault simulator can be used to 
precisely measure the fault coverage vs permanent faults 
respect the workload and the implemented diagnostic. 
The validation is successful if the results of such run are 
in line with DDF estimated in the FMEA sheet 

d) for wide/global HW faults, a selective fault 
injection is performed. The validation is successful if the 
results of such injection confirm the results of the 
exhaustive sensible zone failure fault injection. 
Otherwise, some new lines should be included in the 
FMEA to take into account the newly detected effects. 

 

Figure 4 : the fault injector 

6. Example 
To show how this methodology can be successfully 

applied to the design of safety-critical SoCs, a proof-of-
concept example is described in the following. It is the 

design of a memory sub-system, based on the 
architecture already presented in [6,9]. This architecture 
is represented in figure 5 and it is mainly composed, 
besides the memory controller and the memory array, by 
a memory protection IP composed by two different 
functional units: 

a) F-MEM: it interfaces the memory array and it 
hosts the coder/decoder and a “scrubbing” feature, as 
also the controller to generate the corresponding alarms. 
In a few words, The scrubbing function stores the 
locations where an error occurred, in order to repair them 
when the memory isn’t used by the system or it can also 
perform a background scanning of the memory for fault-
forecasting. 

b) MCE: it interface the F-MEM with the memory 
controller and with the bus, providing the DMA access 
for F-MEM scrubbing feature as also a “distributed 
MPU” functionality. This MPU function considers that 
the memory is divided in number of pages associated 
with attributes and permissions. The MCE block uses 
signals from the bus (in such a case a AHB multilayer 
bus) to discriminate these attributes and permissions and 
in case of faults, proper alarms are generated. 

The FMEA methodology has been applied to such 
architecture with the goal of achieving a SIL3 memory 
sub-system, i.e. with a SFF equal or greater than 99%. 

 A first implementation of the memory sub-system 
was done. Concerning the coder/decoder, a SEC-DED 
algorithm was used with a standard modified Hamming 
architecture. This first circuit included a write buffer and 
a pipeline stage in the decoder, in order to guarantee the 
timing closure and to avoid the degradation of the 
memory access time due to the ECC. 

At first, the sensible zones have been extracted by 
using the previously described tool: about 170 sensible 
zones resulted, including the memory controller, the 
memory and the F-MEM/MCE blocks. The memory has 
been modeled by using a proper fault model as for 
instance described in [13-15]. Then, the FMEA 
spreadsheet have been completed including S,D, F and 
DDF values following the procedure described in the 
sections 3 and 4. 

The spreadsheet identified the critical zones. Besides 
the memory array itself, the most critical blocks were the 
BIST control logic, the registers involved in addresses 
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Figure 5: the memory sub-system 



latching, most of the blocks of the decoder, the registers 
of the write buffer, some of the blocks of the MCE 
handling the interconnections with the bus and so forth. 
With the initial implementation, resulting SFF (around 
95%) was not enough to reach SIL3. Then, the 
architecture was modified by adding the addresses to the 
coding (required as well by IEC61508), by adding parity 
bits to the write buffer and by deeply modifying the 
decoder implementation. In particular, this last action 
was really important to increase the SFF: 

i) an “error checker” was added immediately after the 
“code generator” section of the decoder, in order to 
cover also the errors in such coder; 

ii) a double-redundant “error checker” was 
implemented after the intermediate decoder pipeline 
stage, to check the correctness of code and data fields 
after the pipeline as also – in case of no errors – directly 
connect the decoder output with the memory data. The 
spreadsheet shown that this measure was strongly 
decreasing the error probability of the second part of the 
decoder architecture; 

iii) a “distributed” syndrome checking architecture 
was implemented to allow a finer error detection (i.e. to 
discriminate if an error is in the code field, or in data 
field or if it was an addressing error, etc…). As shown in 
the FMEA, also this architecture strongly decreased the 
error probability. New alarms were generated by these 
checking architectures: as shown by the FMEA, by 
combining the alarms generated by the error checker 
after the decoder’s coder, the redundant error checkers 
after the pipeline and the final syndrome checks, it is 
possible to cover with a very high level of coverage the 
possible error combinations in the decoder. 

Moreover, some SW start-up tests were identified for 
the memory controller parts not covered by the memory 
protection IP. The resulting SFF of this second 
implementation was 99,38% and it was very stable as 
well, i.e. changes on S,D,F and fault models didn’t 
change the result in a sensible way. The previous 
described validation flow was run in order to have the 
highest confidence on the results, with different 
synthesis of the design in order to cross check the 
sensitivity to the final implementation.  

 
7. Conclusions 

In summary, the methodology proposed in this paper 
is a new way to extract useful information from a SoC, 
to take into consideration the IEC guidelines about fault 
models and failure modes, to compute (following IEC 
61508 norm) the Safe Failure Fraction and the 
Diagnostic Coverage, to validate the results by means of 
a complete flow including a fault-injector. It’s an 
innovative and systematic approach to assess the safety 
of a circuit, delivering very detailed reports on sensible 
zones, fault effects, failure rates, etc… that can be used 
for SoC analysis. It allows the identification of critical 
part of a circuit and the exploration of possible 
implementations for best safety as well. 

The methodology has been developed under the 
supervision of TÜV-SÜD and it has been approved by 
TÜV as the flow to assess and validate the Safe Failure 
Fraction of a given SoC in adherence to IEC 61508. 

The methodology has been used to certify the 
fRMEM product of YOGITECH SpA according IEC 
61508. It is currently in use for the final certification of 
the other IPs of YOGITECH faultRobust technology and 
for the complete analysis of fault-robust microcontrollers 
for automotive applications [16,17]. 
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