

Using an innovative SoC-level FMEA methodology
to design in compliance with IEC61508

Riccardo Mariani, Gabriele Boschi, Federico Colucci

YOGITECH SpA

Pisa, Italy
http://www.yogitech.com

Abstract

This paper proposes an innovative methodology to

perform and validate a Failure Mode and Effects
Analysis (FMEA) at System-on-Chip (SoC) level. This is
done in compliance with the IEC 61508, an international
norm for the functional safety of electronic safety-related
systems, of which an overview is given in the paper. The
methodology is based on a theory to decompose a digital
circuit in “sensible zones” and a tool that automatically
extracts these sensible zones from the RTL description. It
includes as well a spreadsheet to compute the metrics
required by the IEC norm such Diagnostic Coverage and
Safe Failure Fraction. The FMEA results are validated
by using another tool suite including a fault injection
environment. The paper explains how to take benefits of
the information provided by such approach and as
example it is described how the methodology has been
applied to design memory sub-systems to be used in fault
robust microcontrollers for automotive applications.
This methodology has been approved by TÜV-SÜD as
the flow to assess and validate the Safe Failure Fraction
of a given SoC in adherence to IEC 61508

1. Introduction
New technologies allow deep system integration in

automotive as well: replacing mechanics with electronics
becomes to be a reality. Therefore, automotive System
on Chip (SoC) are more and more complex: they have a
mix of commodity and safety functions, an increased use
of third-parties IPs and complex interconnection
scenarios. On the other side, as a consequence of such
increased complexity, the population of faults is
increasing as well. These include: modelling uncertainty,
functional verification holes, unforeseen interactions and
misuse, specification misunderstanding, more
electromagnetic susceptibility, soft-errors and malicious
accesses. In particular, hardware faults (systematic or
random) are worsened by: the increased soft-error failure
rates (i.e. cosmic rays); coupling effects and disturbances
are more and more important; and intrinsic uncertainty
due to model inaccuracy is a problem of new
technologies. If we define "robustness" as the ability to
continue mission reliably despite the existence of

systematic, random or malicious faults [1,2], how to
make such systems more robust ?

For automotive, aerospace, biomedical and similar
applications where the human life is concerned, safety is
the driving factor. In such context, fault-oriented quality
metrics (e.g. ppms) are not enough since they mostly
confine the reliability issues to the semiconductor duty.

International norms exist to define requirements for
safety, such the IEC61508 for functional safety of
electrical/electronic/programmable electronic safety-
related systems [3,4] or its “customization” to the
automotive field, the ISO26262, still in the preliminary
definition phase. Therefore, designers of electronic
systems to be used in safety-critical applications should
take into account these requirements and adapt their
architectures. It is worth to note that the IEC61508
introduces also requirements in terms of design flows
and validation criteria, so all the implementation process
– from specs to verification and validation - should be
adapted accordingly.

However, these norms generally refer to complete
system and not to System-On-Chips: even if they contain
also guidelines and requirements for the system
components (including CPUs, memory systems, bus
infrastructure and so on) and even if an extension of
IEC61508 to ASIC is likely to appear in the next
months, nevertheless it doesn’t exist yet a consolidated
methodology to systematically transport at SoC level the
IEC61508 requirements. For instance, it’s not so trivial
to compute the Safe Failure Fraction (SFF, better defined
in the next section) of a SoC and also the extension of
system-level methods such Failure Mode and Effects
Analysis (FMEA) to SoC is still confined to low-
complexity integrated circuits or to basic critical points
such muxing or digital-to-analog interfaces.

This paper shows how to make use of the FMEA at
System-on-Chip (SoC) level as well and how to take
benefits of the information provided by such analysis to
implement a structured approach to increase the
robustness of the SoC. This is done in compliance with
the IEC61508, i.e. taking into account the failure modes
and requirements therein described and it allows
extracting the main metrics required by the norm. It will
be also described how the proposed methodology has
been applied to design memory sub-systems to be used

978-3-9810801-2-4/DATE07 © 2007 EDAA

in fault-robust microcontrollers for automotive
applications.

2. IEC61508 basic concepts
The basic concept of IEC61508 is the definition of

“Safety Integrity Level” (SIL), i.e. the discrete level (one
out of a possible four) for specifying the safety integrity
requirements of the safety functions to be allocated to
the safety-related systems, where safety integrity level 4
has the highest level of safety integrity and safety
integrity level 1 has the lowest [3]. As already said, the
IEC61508 requirements generally are related to complete
systems: however, also for system components it can be
said that the safety integrity level is granted based on the
value of Safe Failure Fraction (SFF) for the given
component. SFF is equal to the ratio between the sum of
safe failures (i.e. failures which don’t have the potential
to put the safety-related system in a hazardous or fail-to-
function state) and detected dangerous failures over the
sum of all the possible failures (safe plus dangerous).

Another important concept is the Hardware Fault
Tolerance (HFT). A system with a HFT of N means that
N+1 faults could cause a loss of the safety function.
With a HFT equal to zero, a SFF equal or greater than
99% is required in order that the system or component
can be granted with SIL3. With a HFT equal to one, the
SFF should be greater than 90%. It is worth to be noted
that SIL3 is the safety integrity level required for x-by-
wire systems or systems with high criticality such active
brake systems.

 The IEC61508 also specifies faults or failures to be
detected during operation or to be analyzed in the
derivation of safe failure fraction: some examples are the
following. For variable memories: DC fault model for
data and addresses; dynamic cross-over for memory
cells; no, wrong or multiple addressing; change of
information caused by soft-errors. For processing units:
DC fault model for data and Addresses for both internal
registers and RAMs; Dynamic cross-over for memory
cells; Wrong coding or wrong execution for coding
execution including flag registers and so on.

The norm also assesses some of the state-of-art
techniques for fault-detection and tolerance respect the
maximum diagnostic coverage (i.e. probability of
detection of dangerous failures) considered achievable:
as example, RAM monitoring with Hamming code or
ECCs or double RAMs with hardware/software
comparison are the ones with the highest value.

The IEC61508 specifies as well which kind of
documentation and design flow should be followed, such
as the release of a Safety Requirements Specification
(SRS) including a detailed FMEA (Failure Mode and
Effects Analysis) of the system or sub-system.

3. Extending FMEA to SoC: the principles
The commonly used way to provide the information

required by SRS is to perform a Failure Modes and
Effects Analysis. This paper presents a way to perform
the FMEA at SoC level with a systematic approach,
supported by a spreadsheet and a tool to extract the
information from the RTL.

In a first step, a set of “sensible zones” are identified
from the RTL description. A sensible zone is one of the
elementary failure points of the SoC in which one or
more faults converge to lead a failure (Figure 1).

Valid definitions of sensible zones are:
• Memory elements such registers, flip-flops or

variables. These sensible zones are points where
many kinds of faults converge. Example: stuck-at
or bridging faults in the combination logic
generating the input of the memory element.

• Primary input and primary outputs of the SoC
• Logical entities that can or cannot directly map to a

memory element. Example: wrong conditional field
of a conditional instruction, where this wrong field
can be caused either by a bit-flip or by a wrong
processing of logic reading opcode from the bus.

• Critical nets such clocks or long nets that could
generate multiple failures.

• Entire sub-blocks, to take more simply into account
bigger cones of logic or to consider all together a
complex block with a small number of outputs.
Example: faults in a coder bringing to a wrong
output value.

Sensible zone

Failure mode

Observation
point

Main Effect

Figure 1: the sensible zone

It is worth noting that electronic circuits, in particular

processing units, are mostly architected as groups of
interconnected Moore machines. In such structures, the
state register has a fundamental role in the functional
behaviour of the machine, so it is worth to consider such
state registers as the best candidates to become sensible
zones.

Another important element of the SoC-level FMEA
is the “Observation point”. The observation point is
either: another sensible zone, a primary output (most of
the cases), a primary function of the SoC (when the
analysis is more high-level) or an alarm of the
diagnostic. The effects of failure modes in a sensible
zone are measured at these observation points.

Failure modes can be of two main types. It can be
directly linked to physical faults. Example: if the
sensible zone is a memory element, it can be a bit-flip in
the register. It can be the end consequence of faults in
the logic cone of the sensible zone. Example: a wrong
value in a register bit due to stuck-at or bridging faults of
the combinational logic in front of the D pin of a
register. Failure modes can be also a temporal sum of
faulty events (such multiple faults hitting a memory
element). The basic failure modes for a given SoC can
be determined from the tables in Appendix of IEC
61508-2 [3].

Concerning the correspondence between failure
modes of sensible zones and HW faults of their
converging cones, it is useful to distinguish three classes
of physical HW faults: local, wide and global HW faults.

We consider “local” the physical HW faults affecting
one or more gates of a logic cone contributing to a single
sensible zone. Each local HW fault or combination of
them occurring in the logic cone in front of the sensible
zone – if not masked by conditions or by other HW
faults - will result in a failure in it.It is worth to note that
if a certain local HW fault is masked so it doesn’t
generate any effect in the sensible zone (e.g. if there is a
transient fault in a gate but this glitch isn’t sampled by
the clock of the register corresponding to its sensible
zone and so on), this fault is not considered as an hazard
since it doesn’t perturb the function to be performed by
such sensible zone. The type of failure that will occur in
the sensible zone depends on the type of occurred
physical faults (e.g stuck-at, bridging fault, etc…).

We consider “wide” the physical HW faults affecting
one or more gates of a logic cone contributing to more
than one sensible zone. Examples of wide physical HW
faults is a single physical HW fault (e.g. a stuck-at at the
output of a gate) generating a failure in two or more
sensible zones, or a single physical HW fault belonging
to a logic cone contributing to two or more sensible
zones but generating a fault only in some of these zones
(see Figure 2). In such a case, we have multiple failures.
It is worth to note that such case also includes situations
like faults in clock or reset buffers affecting multiple
flip-flops. Physical faults like resistive or capacitive
coupling between lines are also included in such model.

Sensible zone

Failure mode

Sensible zoneFailure mode

Observation
point

Observation
point

Main/Secondary
Effect

Main/Secondary
Effect

Figure 2: multiple failures

We consider “global” the physical HW faults

affecting many logic cones and therefore contributing to
more than one sensible zone. Examples of global
physical HW faults are the following: faults in the PLL
or clock generation or first level of clock trees affecting
large number of sensible zones; power supply faults
affecting large areas of the silicon component; thermal
faults making slower consistent region of the SoC.

Concerning the effects of a fault, we define the “main
effect” as the effect that at least will occur as result of
failure mode of the considered sensible zone respect an
observation point, if not masked internally. The
“secondary effects” are the other effects occurring at
other observation points resulting from the migration of

the sensible zone failure through its output logic cone
and from there to other sensible zones till the other
observation points. These are particular important to take
into account the very frequent situation in which a single
local HW fault generates a failure of a single sensible
zone, but the effect manifests itself at different
observation points (see Figure 3).

Sensible zone

Failure mode

Observation
point

Main Effect

Observation
point

Secondary Effect

Figure 3: secondary effects

The extraction of sensible zones and observation

points is automatically performed by a tool based on
commercially available EDA tools such Cadence or
Synopsys, working on the synthesized RTL. Besides to
collect and properly compact the registers, the tool
extracts as well the data needed by the FMEA statistical
model, such the composition of the logic cone in front of
each sensible zone (i.e. gate-count, interconnections and
so forth) and the correlation between each sensible zone
in terms of shared gates and nets.

Starting from the elementary failure in time (FIT) per
gate and per register both for transient and permanent
faults, all the data automatically extracted by the tool are
used to compute the failure rates for each sensible zone.
A spreadsheet contains all these data as also other
information provided by the user, such:

• S and D factors to estimate the Safe fraction and
Dangerous fraction of the possible failures for the
given failure mode in the given sensible zone. Two
types of S and D factors are used: architectural and
applicational. Example of architectural dependent
S/D is a sensible zone always inactive at run-time
because blocked by a set of masking gates.
Example of application dependent S/D is a sensible
zone not used by the given application. Usually
only architectural S/D factors are considered.

• The frequency class F of the given sensible zone,
used to estimate its usage frequencies.

• The lifetime ζ, defined as the time between the
average last read and the write in such zone.

Based on this information, the spreadsheet computes
all the metrics required by the IEC61508, such as the
safe (λS) and dangerous (λD) failure rates for each
sensible zone and for all the SoC. It also delivers a
ranking of sensible zones in terms of their criticality.

The proposed approach is therefore a mix between
analysis performed at different levels, such RTL level
(for the estimation of S, D and F factors) and at gate-
level (for the statistics related to the logic cones of the
sensible zones and so forth): this way guarantees the best
accuracy of the results and offers as well the possibility

to analyze which of different possible implementations is
the more critical in term of safety.

4. Using the FMEA to design diagnostic
The methodology proposed in this paper has the

specific target to evaluate the SoC in order to find the
best strategy for error detection and correction.
Therefore, the two main quantities that have to be
measured are the Diagnostic Coverage and the Safe
Failure Fraction, defined by the following formulas [3]:

SFF = DC =

where λDD is the rate of dangerous detected failures and
λDU is the rate of dangerous undetected failures
(λD=λDD+λDU).

To compute such values, the spreadsheet includes for
each sensible zone the fraction of the dangerous failure
rate associated with each failure mode that is claimed to
be detected by the diagnostic technique, distinguished in
Detected Dangerous Failure fraction (DDF) for
transient/intermittent faults and permanent faults. It is
also distinguished between DDF due to HW and SW
techniques.

These coverage values are computed both based on
the architecture, by the numbers given by the previous
described tool (concerning the interconnections between
sensible zones), by what accepted by the IEC norm
(Annex 2, tables A.2-A.13, where it is specified the
maximum diagnostic coverage considered achievable by
a given technique) and by the estimation of the user. The
FMEA validation flow described in next section must be
executed in order to have the highest level of confidence
in such estimations.

An important step of the FMEA is to span the values
of the assumptions (such the elementary failure rates for
transient and permanent faults or the user assumptions
such S, D and F) in order to measure the sensitivity of
the final DC/SFF to these changes.

5. How to validate the FMEA
A strict and measurable validation flow is rather

important in order to cross check the FMEA. As
recommended by the IEC61508 norm, fault injection has
a crucial role in that. The proposed methodology uses a
validation flow based on a mix of tools which the main
ones are a simulation-based fault injector [8,9] and a
fault simulator like [11]. The fault injector tool is built
on top of a state-of-art functional verification tool [10]
and makes use of a standard verification language [12].
By integrating fault injection with functional
verification, it is possible to set up a fault injection flow
that solves many of the issues that affect most of the
environments presented in literature. Thanks to the
interaction with the functional verification tool,
verification components available on the market can be
easily reused as a workload to inject faults, obtaining at
same time design validation and reliability evaluation.
The use of a standard language enables an easy and
configurable way to model the faults. The engine of the

coverage-driven functional verification tool allows to
uniquely correlating Workload, Operational Profiles,
Fault List, and final measures.

The fault injector is composed by (figure 4):
• Environment builder: this block extracts from the

FMEA all the information related to the
environment for the injection campaign and builds
all the required environment configuration files.

• Operational Profiler, Collapser and Randomiser:
starting from the information extracted by the
Environment Builder, this block extracts the
Operational Profile (OP) from a given workload.
An Operational Profile (OP) is a collection of
information about all relevant fault-free system
activities: traced information items are read/write
activity associated with processor registers, address
bus, data bus, and memory locations in the system
under test, but they may also include other more
high level information like the most probable
expected sets of inputs that the system or
application will receive. The purpose of the OP is
to better understand the situation in which the
system or the application will be used, and then
analyze this information to ensure that only faults
which will produce an error are selected during the
fault list generation process. In this way the
generated fault list is compacted and non trivial. As
mentioned afterwards, the completeness of the
workload is measured in a deterministic way to
check if it complete in terms of its capability to
trigger all the sensible zones of the DUT.

• Fault Injection Manager: this function runs all the
injection campaign based on automatically
generated fault lists and collects all the results.

• Result analyzer: this function collects all the results
generated by the injection campaign and
automatically fills a sheet included in the FMEA
spreadsheet. In particular, S, D, F and DDF are
extracted and compared with the values in the
FMEA. The validation is successful if the
percentages are in line with the estimated values. It
is also extracted a “table of effects” for each
sensible zone, i.e. table of observation points in
which has been measured a deviation respect a
golden simulation without injected faults. This
table is automatically compared with the FMEA to
check if the identification of main/secondary effects
is consistent.

• Monitors and Coverage Collection: this function,
composed by a set of monitors automatically
instantiated by the environment builder, generates
and collects all the information needed to build the
coverage measures for the analysis of fault
injection campaign completeness. In this context,
“coverage” means a measure of the completeness
of the fault injection experiment. It is measured
how many times a fault injection point (SENS) is
triggered by an injection, how many changes
occurred on the observation point (OBSE), how
many mismatches occurred between faulty and
golden DUT, how many times the diagnostic point
(DIAG) changed and so forth. Only when all the

coverage items are covered at 100% we can
consider complete the fault injection experiment.

The validation procedure is the following:
a) it is performed an exhaustive fault injection of

sensible zone failures: based on the failure mode and
condition specified in the FMEA and on the workload
and extraction of operational profile, for each sensible
zone it is injected a certain number of faults. At the end
of this analysis, both the results and the coverage are
cross-checked with FMEA.

b) in parallel, the efficiency of the workload in
covering the HW gates of the gate-level netlist is
measured, for instance by using a toggle count coverage
or a standard fault coverage. If the toggle count
percentage (i.e. nets/gates toggling at least once) or the
fault coverage is greater than a defined value (default
99%), the validation is successful.

c) for critical areas (where the analysis is more
difficult) or where particular HW implementation are
present (asynchronous circuitry and so on), a selective
HW fault injection is performed, injecting local faults
with fault injector. The validation is successful if the
results of such injection confirm the results of the
exhaustive sensible zone failure fault injection.
Otherwise, some new lines should be included in the
FMEA to take into account the newly detected effects.
For these critical areas, the fault simulator can be used to
precisely measure the fault coverage vs permanent faults
respect the workload and the implemented diagnostic.
The validation is successful if the results of such run are
in line with DDF estimated in the FMEA sheet

d) for wide/global HW faults, a selective fault
injection is performed. The validation is successful if the
results of such injection confirm the results of the
exhaustive sensible zone failure fault injection.
Otherwise, some new lines should be included in the
FMEA to take into account the newly detected effects.

Figure 4 : the fault injector

6. Example
To show how this methodology can be successfully

applied to the design of safety-critical SoCs, a proof-of-
concept example is described in the following. It is the

design of a memory sub-system, based on the
architecture already presented in [6,9]. This architecture
is represented in figure 5 and it is mainly composed,
besides the memory controller and the memory array, by
a memory protection IP composed by two different
functional units:

a) F-MEM: it interfaces the memory array and it
hosts the coder/decoder and a “scrubbing” feature, as
also the controller to generate the corresponding alarms.
In a few words, The scrubbing function stores the
locations where an error occurred, in order to repair them
when the memory isn’t used by the system or it can also
perform a background scanning of the memory for fault-
forecasting.

b) MCE: it interface the F-MEM with the memory
controller and with the bus, providing the DMA access
for F-MEM scrubbing feature as also a “distributed
MPU” functionality. This MPU function considers that
the memory is divided in number of pages associated
with attributes and permissions. The MCE block uses
signals from the bus (in such a case a AHB multilayer
bus) to discriminate these attributes and permissions and
in case of faults, proper alarms are generated.

The FMEA methodology has been applied to such
architecture with the goal of achieving a SIL3 memory
sub-system, i.e. with a SFF equal or greater than 99%.

 A first implementation of the memory sub-system
was done. Concerning the coder/decoder, a SEC-DED
algorithm was used with a standard modified Hamming
architecture. This first circuit included a write buffer and
a pipeline stage in the decoder, in order to guarantee the
timing closure and to avoid the degradation of the
memory access time due to the ECC.

At first, the sensible zones have been extracted by
using the previously described tool: about 170 sensible
zones resulted, including the memory controller, the
memory and the F-MEM/MCE blocks. The memory has
been modeled by using a proper fault model as for
instance described in [13-15]. Then, the FMEA
spreadsheet have been completed including S,D, F and
DDF values following the procedure described in the
sections 3 and 4.

The spreadsheet identified the critical zones. Besides
the memory array itself, the most critical blocks were the
BIST control logic, the registers involved in addresses

Golden
DUT

Faulty
DUT

Monitors for
SENS

Monitors for
OBSE

fault
Coverage
Collection

Result
Analyzer

Operational
Profiler

WORKLOAD
(TESTBENCH)

Fault List

Fault Injection
Manager

Randomizer

Environment builder

case of random fault injection

List of
Sensible zones

Collapser

from FMEA

Monitors for
DIAG

Candidate
fault list

GUI

OP

MCE MUX

mem ctrl

Memory

CODER DECODER

E
C

C
_S

H
EL

L

ERROR
CTRL

SCRUBBING

MCE AHBIF

F-
M

E
M

M
C

E
/M

P
U

BUS

ALARMS

MCE
DMA

MPU

MCE MUX

mem ctrl

Memory

CODER DECODER

E
C

C
_S

H
EL

L

ERROR
CTRL

SCRUBBING

MCE AHBIF

F-
M

E
M

M
C

E
/M

P
U

BUS

ALARMS

MCE
DMA

MPU

Figure 5: the memory sub-system

latching, most of the blocks of the decoder, the registers
of the write buffer, some of the blocks of the MCE
handling the interconnections with the bus and so forth.
With the initial implementation, resulting SFF (around
95%) was not enough to reach SIL3. Then, the
architecture was modified by adding the addresses to the
coding (required as well by IEC61508), by adding parity
bits to the write buffer and by deeply modifying the
decoder implementation. In particular, this last action
was really important to increase the SFF:

i) an “error checker” was added immediately after the
“code generator” section of the decoder, in order to
cover also the errors in such coder;

ii) a double-redundant “error checker” was
implemented after the intermediate decoder pipeline
stage, to check the correctness of code and data fields
after the pipeline as also – in case of no errors – directly
connect the decoder output with the memory data. The
spreadsheet shown that this measure was strongly
decreasing the error probability of the second part of the
decoder architecture;

iii) a “distributed” syndrome checking architecture
was implemented to allow a finer error detection (i.e. to
discriminate if an error is in the code field, or in data
field or if it was an addressing error, etc…). As shown in
the FMEA, also this architecture strongly decreased the
error probability. New alarms were generated by these
checking architectures: as shown by the FMEA, by
combining the alarms generated by the error checker
after the decoder’s coder, the redundant error checkers
after the pipeline and the final syndrome checks, it is
possible to cover with a very high level of coverage the
possible error combinations in the decoder.

Moreover, some SW start-up tests were identified for
the memory controller parts not covered by the memory
protection IP. The resulting SFF of this second
implementation was 99,38% and it was very stable as
well, i.e. changes on S,D,F and fault models didn’t
change the result in a sensible way. The previous
described validation flow was run in order to have the
highest confidence on the results, with different
synthesis of the design in order to cross check the
sensitivity to the final implementation.

7. Conclusions

In summary, the methodology proposed in this paper
is a new way to extract useful information from a SoC,
to take into consideration the IEC guidelines about fault
models and failure modes, to compute (following IEC
61508 norm) the Safe Failure Fraction and the
Diagnostic Coverage, to validate the results by means of
a complete flow including a fault-injector. It’s an
innovative and systematic approach to assess the safety
of a circuit, delivering very detailed reports on sensible
zones, fault effects, failure rates, etc… that can be used
for SoC analysis. It allows the identification of critical
part of a circuit and the exploration of possible
implementations for best safety as well.

The methodology has been developed under the
supervision of TÜV-SÜD and it has been approved by
TÜV as the flow to assess and validate the Safe Failure
Fraction of a given SoC in adherence to IEC 61508.

The methodology has been used to certify the
fRMEM product of YOGITECH SpA according IEC
61508. It is currently in use for the final certification of
the other IPs of YOGITECH faultRobust technology and
for the complete analysis of fault-robust microcontrollers
for automotive applications [16,17].

References
[1] J.C Laprie, “Dependable Computing and Fault Tolerance Concepts

and Terminology “, IEEE Computer, 1985
[2] H. Tahne, “Safe and Reliable Computer Control: Systems Concepts

and Methods”, Mech. Lab, Univ. Stock, 1996
[3] CEI International Standard IEC 61508, 1998-2000
[4] S.Brown, “Overview of IEC 61508 Design of

electrical/electronic/programmable electronic safetyrelated
systems”, Computing & Control Engineering Journal February
2000, pages 6-12

[5] R.E. McDermott et al, “The Basic of FMEA”, Quality Resources
Press, 1996

[6] R. Mariani, G. Boschi, “A System Level Approach for Embedded
Memory Robustness” Special Issue: Papers selected from the 1st
International Conference on Memory Technology and Design -
ICMTD’05.

[7] R. Mariani, M. Chiavacci, S. Motto, “Dependable microcontroller,
method for designing a dependable microcontroller and computer
program product therefor”, European Patent, EP1496435

[8] R. Mariani, P. Fuhrmann, B. Vittorelli, “Cost-effective Approach to
Error Detection for an Embedded Automotive Platform”, SAE
2006 World Congress & Exhibition, April 2006, Detroit, MI, USA

[9] www.fr.yogitech.com
[10] http://www.cadence.com/products/functional_ver
[11] http://www.cadence.com/products/digital_ic/encountertest
[12] IEEE standard 1647, http://www.ieee1647.org/
[13] S. Mukherjee et al. “Cache scrubbing in Microprocessors: Mith or

Necessaity?”, 2004
[14] S. Mukherjee et al. “A Systematic Methodology to Compute the

Architectural Vulnerability Factors for a High-Performance
Microprocessor”, 2003

[15] M. Spica, “Do we need anything more than single bit error
correction (ECC)?”, 2004

[16] R. Mariani, “A Platform-based Technology For Fault-robust Soc
Design”, IP/SOC 2006 Conference, December 2006, Grenoble,
France

[17] R. Mariani, P. Fuhrmann, B. Vittorelli, “Fault-Robust
microcontrollers for automotive applications”, 12th IEEE
International On-Line Testing Symposium - 12 July 2006 -
Como,Italy

	Main
	DATE07
	Front Matter
	Table of Contents
	Author Index

