
Abstract paper and surveys possible future work. Finally, Section 8

Timing Simulation of Interconnected AUTOSAR Software-Components

Matthias Krause, Oliver Bringmann
FZI Forschungszentrum Informatik

Haid-und-Neu-Strasse 10-14
76131, Karlsruhe, Germany

mkrause@fzi.de, bringmann@fzi.de

Wolfgang Rosentiel
Universität Tübingen

Sand 13
72076, Tübingen, Germany

rosenstiel@fzi.de

André Hergenhan, Gökhan Tabanoglu
Carmeq GmbH
Carnotstrasse 4

10587, Berlin, Germany
andre.hergenhan@carmeq.com

goekhan.tabanoglu@carmeq.com

AUTOSAR is a recent specification initiative which
focuses on a model-driven architecture like methodology for
automotive applications. However, needed engineering
steps, or how-to-come from a logical to a technical architec-
ture respectively implementation, are not well supported by
tools, yet. In contrast, SystemC offers a comprehensive way
to simulate, analyze, and verify software. Furthermore, it is
even able to take the timing behavior of underlying hard-
ware and communication paths into account. Already at a
first glance, there are many similarities with respect to the
modeling structure between the both concepts. Therefore,
this paper discusses approaches on how to use SystemC dur-
ing the design process of AUTOSAR-conform systems.

1 Introduction
During the last years, automotive software-related systems

have been steadily increased with respect to their functional-
ity. Unfortunately, the likewise increased complexity of the
systems caused many problems in terms of stability, error-
proneness, performance, reusability, modularity, processes,
and the like, as well.

Currently, AUTOSAR (automotive open system architec-
ture) [1] tackles the problems. AUTOSAR is an international
development partnership consisting of a multitude of car
manufacturers, suppliers and tool vendors, defining concepts
and workflows, how electronic automotive software-related
systems can be formally specified and processed. Lately,
first specification results of AUTOSAR have been published.
Thus, carmakers, suppliers and tool vendors start to transfer
results into practice. However, only few experiences exist
handling AUTOSAR-like methodology in software develop-
ment. In this context, this paper shall examine on how Sys-
temC can support its implementation.

Regardless of the completeness, Section 2 outlines the
main concepts and methods of AUTOSAR. Similarly, Sec-
tion 3 explains the main concepts of SystemC. Following
this, Section 4 exposes the obvious affinities of both con-
cepts with respect to the inherent modeling patterns. This
leads to studies in Section 5 regarding possible scenarios
using SystemC in the development of AUTOSAR systems.
Section 6 shows an use case and Section 7 concludes the

refers to related work.

2 Concepts of AUTOSAR

2.1 Methodology
AUTOSAR will revolutionize the art of software develop-

ment in automotive application domains. Instead of the cur-
rent state-of-the-art ECU-centric development approach,
AUTOSAR focuses on the entire system. A fundamental fea-
ture is the separation of application and infrastructure which
allows for a model-driven architecture like methodology, i.e.
a platform independent software development of functional-
ity. Applications can exist and communicate independently
of a particular infrastructure and mapping onto ECUs in an
environment called Virtual Functional Bus (VFB).

However, AUTOSAR comprises even more: it specifies
methodologies and workflows on how to come from the sys-
tem living in the VFB to software running onto particular
ECUs and a three-layer ECU architecture.

The ECU architecture consist of an application layer, a
middleware layer, called Run Time Environment (RTE), and
the infrastructure layer, called Basic Software (BSW).
Assuming that the application elements of the application
layer behave exactly the same like in the VFB, then RTE and
BSW implement the VFB for an particular ECU.

2.2 Software Component Template
Properties of AUTOSAR applications are described with a

specific language, called AUTOSAR Software Component
Template (as part of the entire AUTOSAR metamodel). In
general, the AUTOSAR Software Component Template is
arranged into three parts: regarding the structure, the behav-
ior and the implementation of models.

Referring to the structure, applications encapsulate func-
tionalities within software-components, whereas software-
components are available in two flavors: atomic software-
components and compositions. Atomic software-compo-
nents contain single threads of execution, so-called Runna-
bleEntities, and are later-on mapped onto particular ECUs.
Compositions are means to structure atomic software-com-
ponents and can therefore form hierarchies. It is remarkable
that the top-most hierarchy level then represent the entire
system. Components communicate via ports which are typed
by interfaces. General communication paradigms between

* This work has partially been supported by the BMBF project VISION
under grant number 01M 3078.
978-3-9810801-2-4/DATE07 © 2007 EDAA

entities are sender-receiver or client-server communication.
In this sense, interfaces are either described for sender-
receiver or for client-server communication.

The behavioral section contains the aforementioned Run-
nableEntities (RE). RunnableEntities can either be triggered
by so-called RTEEvents1 and will just be executed, or they
can wait (inside) for an RTEEvent. In the first case, they are
referred to as category 1 RunnableEntities; in the latter one
as category 2. Common RTEEvents are TimingEvents (a
cyclic trigger), DataReceivedEvent (a trigger caused by the
reception of data) or OperationInvokedEvent (a trigger
caused by an request for an service).

Beyond, there are concepts for implicit reading and writ-
ing of data, data consistency mechanisms or mode manage-
ments, and others. Please, have a look on the documents
published at [1] for further readings. In addition, [14]
explains the methodology of the definition and generation of
data exchange formats in AUTOSAR.

3 Concepts of SystemC

3.1 SystemC Language
SystemC is a language that bridges hardware and soft-

ware. Essentially, it is a C++ class library that extends C++
with hardware modeling concepts. This includes hardware
related communication, i.e. connecting different modules by
signals or complex communication protocols, as well as a
timing concept. SystemC also provides a simulation kernel
for concurrent hardware simulation.

In SystemC a design is partitioned and encapsulated into
modules. Each module can contain other modules and act as
a hierarchical element, processes that describe the function-
ality, and ports through which a module communicates with
other modules. A process can be suspended by calling a wait
statement with a certain wait condition and is simulated con-
currently to other processes by the SystemC simulation ker-
nel. Interfaces contain a set of operations which are accessed
by a port and implemented within a channel. These commu-
nication operations could be primitive (e.g. signal, fifo) or
complex (e.g. specific communication protocol).

3.2 Methodology
Starting at a high level of abstraction, typically at transac-

tion level, is a key feature of the SystemC based design con-
cept. The OSCI Transaction Level Working Group has
defined different levels of abstraction for transaction-level
modeling. These levels are introduced in [4] and [5]. The
highest level is CP - Communicating Processes. At this level,
the behavior is partitioned into a network of parallel pro-
cesses exchanging data through point-to-point connection.
By introducing timing annotations (CPT - Communicating
Processes with timing), timing behavior can be considered
already at this early stage. The next level, PV - Programmers
View, is much more architecture specific. Bus or NoC mod-

els are instantiated to act as transport mechanisms between
the model components. The models are sequenced but
untimed. PVT - Programmers View with timing is annotated
with estimated multi-cycle timing information. At CC -
Cycle Callable level, the system behavior includes cycle-true
details and communication models are protocol-true.

Figure 1. The Communication and computation refinement
flow in SystemC steps through the different abstraction levels

In [11] and [12] this concept is picked up and an auto-
mated refinement approach is presented that systematically
refines the design from CP down to CC level. Within the
refinement framework computation and communication are
separated from each other. The systematically refinement
starts with the communicating processes and than stepwise
adds further system information like scheduling behavior
and timing behavior of the target architecture. This flow is
represented in Figure 1. The refinement requires information
about the desired target architecture (RTOS, communication
architecture) which is described in XML. The XML descrip-
tion of the communication architecture is conform to IP-
XACT [20].

4 Analogies between AUTOSAR and SystemC
There are a lot of affinities between the AUTOSAR Soft-

ware Component Template and the SystemC language.

Figure 2. Analogy regarding AUTOSAR software-
components or compositions and SystemC modules

In terms of structure, both have entities containing behav-
ioral elements and both can form ordered hierarchies. There-
fore, AUTOSAR software-components can generally be rep-

PV

untimed
structural com.

CDMA

CP

untimed P2P
communication

CC

cycle accurate
communication

CAN

COMMUNICATION REFINEMENT FLOW

CPT

timed P2P
communication

timing approx.
communication

CAN

PVT

CP

untimed
parallel processes

COMPUTATION REFINEMENT FLOW

CC

cycle accurate
computation

CAN

RTOS RTOS
CPU CPU

CPT

timed
parallel processes

scheduled processes
approximate timing

RTOS
CPU

Model

PVTPV

untimed
scheduled processes

RTOS

PV

untimed
structural com.

CDMA

CP

untimed P2P
communication

CC

cycle accurate
communication

CAN

COMMUNICATION REFINEMENT FLOW

CPT

timed P2P
communication

timing approx.
communication

CAN

PVTPV

untimed
structural com.

CDMA

PV

untimed
structural com.

CDMA

untimed
structural com.

CDMACDMA

CP

untimed P2P
communication

CP

untimed P2P
communication

CC

cycle accurate
communication

CAN

CC

cycle accurate
communication

CANCAN

COMMUNICATION REFINEMENT FLOW

CPT

timed P2P
communication

CPT

timed P2P
communication

timing approx.
communication

CAN

PVT

timing approx.
communication

CAN

timing approx.
communication

CANCAN

PVT

CP

untimed
parallel processes

COMPUTATION REFINEMENT FLOW

CC

cycle accurate
computation

CAN

RTOS RTOS
CPU CPU

CPT

timed
parallel processes

scheduled processes
approximate timing

RTOS
CPU

Model

PVTPV

untimed
scheduled processes

RTOS

CP

untimed
parallel processes

CP

untimed
parallel processes

COMPUTATION REFINEMENT FLOW

CC

cycle accurate
computation

CAN

RTOS RTOS
CPU CPU

CC

cycle accurate
computation

CAN

RTOS RTOS
CPU CPU

CAN

RTOS RTOS
CPU CPU

CPT

timed
parallel processes

CPT

timed
parallel processes

scheduled processes
approximate timing

RTOS
CPU

Model

PVT

scheduled processes
approximate timing

RTOS
CPU

Model

PVTPV

untimed
scheduled processes

RTOS

PV

untimed
scheduled processes

RTOS

<<Composition>>

SWC_1

<<Atomic>>
SWC_3

<<Atomic>>
SWC_2 SC_Module_2

SC_Module_1

SC_Module_3

AUTOSAR SystemC

<<Composition>>

SWC_1

<<Atomic>>
SWC_3

<<Atomic>>
SWC_3

<<Atomic>>
SWC_2

<<Atomic>>
SWC_2 SC_Module_2

SC_Module_1

SC_Module_3

AUTOSAR SystemC
resented by SystemC modules (SC_MODULE) as shown in
Figure 2. Since there is no extra hierarchical element in Sys-
temC, AUTOSAR compositions map to SC_MODULE, too.

1 The term might be misleading. In fact, VFBEvent would have been a
better name for it.

Figure 3 shows analogies regarding communication. Both
have the concept of ports: AUTOSAR ports, regardless their
direction (provided or required), have their counterparts in
sc_port. The same holds slightly true for interfaces which
type ports. The marginal difference here is that AUTOSAR
explicit states a specific kind of interface: sender-receiver or
client-server. SystemC, however, hides this detail within the
concept of channels. In both technologies, ports can be
exported throughout the entire hierarchy. AUTOSAR real-
izes this by the concept of delegation connectors, whereas
SystemC provides the specific sc_export construct.

Figure 3. Analogy regarding AUTOSAR ports and interfaces
and SystemC ports, interfaces and channels

Figure 4 depicts the context of the schedulable (trigger-
able) entities. In general, AUTOSAR RunnableEntities can
directly be mapped to SystemC processes. Furthermore,
since AUTOSAR and SystemC distinguish two types of
schedulable entities, a one-to-one mapping of AUTOSAR
RunnableEntites of category 1 to SC_METHODs and of
AUTOSAR RunnableEntities of category 2 to
SC_THREADs is possible. That also means inherently that
both offer the opportunity of triggering schedulable entities
via events and can wait for an trigger.

Figure 4. Analogy regarding AUTOSAR RunnableEntities
(RE) and SystemC methods and threads

5 SystemC within AUTOSAR design process

5.1 Benefit of methodology
To solve the aforementioned problems, AUTOSAR has

specified concepts, infrastructure, and workflows, but does
not consider simulation. System simulation is a required step
to evaluate the system in an early design phase. Early simu-
lation helps to find errors and bottlenecks within the design
resulting in decreasing development time by preventing pos-
sible re-designs. Moreover, simulation should consider tim-

It is true that state-of-the-art tools (e.g. MATLAB/Sim-
ulink [13]) already support simulation, but they only con-
sider single applications and not the entire interconnected
system. Moreover, the timing behavior of the entire infra-
structure including communication architecture can not be
simulated and evaluated by these tools.

In contrast, SystemC tackles the problems. A particular
value of SystemC, with respect to the design at system level,
is the ability to design and model the functionality of embed-
ded distributed systems as well as the required target archi-
tecture and infrastructure within one design language. This
enable simulation and evaluation of a software application
on its underlying target architecture and infrastructure
respectively, both specified in SystemC.

Additionally, SystemC introduces a simulation concept for
the designs and provides a simulation kernel as well. This
concept includes timing notations and timing behavior
which is not part of AUTOSAR. In brief, SystemC offers
those features that are not defined within AUTOSAR or sup-
ported by additional simulation tools.

Therefore, sharing both methodologies will lead to an
increase in value. The benefit is to enable simulation of
interconnected AUTOSAR software-components by inte-
grating timing behavior already at a high level of abstraction
to the communication as well as to the application, and
hence to detect timing caused errors at an early design time.
Figure 5 shows, how the complete flow from the AUTOSAR
environment onto a SystemC virtual prototype looks like. As
a result, simulation and analysis of the entire system is feasi-
ble and the results can influence the AUTOSAR configura-
tion files.

Figure 5. Mapping AUTOSAR software-components onto a
SystemC virtual prototype

To this end, mapping of AUTOSAR software-components
onto the SystemC simulation environment, as discussed in
Section 4, is a necessary step.

Possible scenarios on how SystemC can be used in the
development of AUTOSAR systems are discussed below.

5.2 From AUTOSAR VFB view to SystemC CP
Like in the SystemC-based methodology, also the

AUTOSAR methodology has different views which can be
compared to abstraction levels. Considering applications
independent of a particular infrastructure and mapping onto

AUTOSAR SystemC

RPort S/RPPort S/R

Interface

PPort C/S sc_export

sc_channel
sc_port

sc_interface

AUTOSAR SystemC

RPort S/RPPort S/R

Interface

PPort C/S sc_export

sc_channel
sc_port

sc_interface

<<Atomic>>

SWC
SC_Module

AUTOSAR SystemC

Thread MethodRE Cat 1 RE Cat 2

<<Atomic>>

SWC
SC_Module

AUTOSAR SystemC

Thread MethodRE Cat 1 RE Cat 2

SystemC
Virtual Prototype

Simulation,
Analysis

AUTOSAR
Configuration

AUTOSAR
Environment

SWC SWC SWC

VFB
Timing Behavior

Simulation Kernel

affecting the configuration

internal
refinement

of SystemC
design

SystemC
Virtual Prototype

Simulation,
Analysis

AUTOSAR
Configuration

AUTOSAR
Environment

SWC SWC SWC

VFB
Timing Behavior

Simulation Kernel

affecting the configuration

internal
refinement

of SystemC
design

internal
refinement

of SystemC
design
ing behavior that has a strong impact on the behavior of the
entire system with respect to performance and possible
errors. This is also not specified by AUTOSAR until now.

ECUs is the highest level in AUTOSAR.
Similarly, the SystemC based design approach starts at CP.

Systems modeled at CP level are still architecture and imple-

mentation independent, and there is no arbitration of the data
communication. In contrast to the widespread view of Sys-
temC as a hardware modeling language, this level of abstrac-
tion is completely independent of the partitioning into hard-
ware and software. Communicating processes describe
software processes which are later completely mapped to a
target processor.

As a consequence, an AUTOSAR design can be trans-
formed into an equivalent SystemC design at CP level. At
SystemC CP, the design can be simulated (still untimed) by
the provided simulation kernel, or it can be refined with
additional information to allow a timed simulation. This step
is discussed in Section 5.4.

Please note that in contrast to CP level, the AUTOSAR
VFB view must not contain internal functional behavior.
This is not part of the Software Component Template. How
to handle this within the SystemC simulation environment is
discussed in Section 5.5.

5.3 Transformation after mapping onto ECUs
Mapping AUTOSAR software-components to an ECU

architecture is part of the AUTOSAR workflow. Here, the
Basic Software is connected via the Run Time Environment
to the software-components.

This view is most similar to the SystemC PV level and still
untimed. SystemC PV simulates behavior, which is running
at one processing element, not in parallel but in a sequenced
order by providing scheduling mechanisms. The communi-
cating processes are partitioned to a specified processing ele-
ment, as within AUTOSAR.

Therefore, an AUTOSAR design can be transformed to
SystemC PV. Furthermore, the Basic Software (e.g. RTOS,
device drivers, ...) can be implemented in SystemC to pro-
vide the same services in SystemC as in AUTOSAR.

This transformation step is particularly recommended, if
the implementation of application software already exists.
Then, the cycle accurate behavior of the software can be
evaluated by refinement onto different virtual prototypes of
target architectures, without having built up a real prototyp-
ing platform.

5.4 Integrating timing behavior
The integration of timing behavior in SystemC is done by

refining the communication architecture as well as the com-
putation as already shown in Section 3.2.

From CP as well as from PV, communication can be
refined to PVT or CC respectively, both providing an
approximated or accurate timing behavior of a dedicated
communication architecture. SystemC encapsulates commu-
nication into channels and separates it from the computation.
Thus, channels can easily be swapped, e.g. the channels
implementing the point-to-point communication (that
derives from the VFB) by channels implementing a specific

From CP as well as from PV, computation can be refined
to PVT or CC, on condition that functional behavior of the
application already exists. From CP, the design firstly has to
be mapped to an RTOS model as detailed described in [11].
Then, or by starting at PV, SystemC models of the hardware
architecture can be connected to the application. These mod-
els interpret the timing behavior of the application with
respect to the underlying hardware architecture. Unfortu-
nately, this refinement step is not automated yet.

The required models are already often provided by indus-
try, for example models of microprocessors (e.g. IBM Pow-
erPC [3]) or communication controllers (e.g. Freescale
FlexRay Executable Reference Model [2]). This heavily
eases the development of executable simulation models if
using the provided models.

5.5 Integrating functional behavior
In automotive industry, the functional behavior is in gener-

ally developed by the supplier. Functional behavior is often
developed with behavior modeling tools and then trans-
formed into source code in a programming language, usually
C. AUTOSAR provides infrastructure template for such
functional behavior and specifies integration into the infra-
structure. Of course it is not possible to consider functional
behavior in SystemC, until it is implemented and delivered
by the supplier.

If no functional behavior of the runnables exists, commu-
nication traffic can be generated by cyclic or random trans-
mitting data of the corresponding data type. Cycle periods
must be specified by the designer. This is possible because at
VFB level the communication relationships and data types
as well as RunnableEntities are already specified. In this
case, only refinement of communication is practical, and
only timing behavior of the communication architecture is
considered.

Otherwise, if internal behavior of the runnables exists,
integration into SystemC design is possible. This is sup-
ported by C-code generation. The generated C-function can
directly be added to the SystemC design because the thread
that contains the corresponding function has been generated
from the RunnableEntity. In this case, also computation can
be refined to a timed model by interfacing RTOS models and
processor models.

5.6 Formal transformation rules
The affinities shown in Section 4 are the basis of the trans-

formation from AUTOSAR to SystemC. Basically, the com-
plete semantic of the Software Component Template has to
be mapped to SystemC semantic.

This section presents the formal transformation rules for
the mapping from AUTOSAR VFB to SystemC CP. Table 1
presents some required (but not all) transformation rules.

By using the UML 2 profile for AUTOSAR [22], the

behavior of a communication protocol including its timing
behavior. The application can be left untouched if the same
interface is used as before.

transformation rules are implemented by tool-based map-
ping of XMI onto SystemC. How to map from UML to Sys-
temC can be checked e.g. in [23].

Table 1. Formal transformation rules

6 Use Case
We used the aforementioned methodology to explore

potentials of a given system. The system configuration con-
sist of five ECUs connected via FlexRay [6]. All five ECUs
run legacy software. The behavior of the FlexRay bus (static
as well as dynamic segment) is already known.

and consist of several atomic software-components. It is
assumed that communication between the software-compo-
nents can not be applied to the static segment of the FlexRay
cluster, because all static slots are already configured or
reserved. However, since the traffic sign analysis application
is not safety relevant, it is possible to use the dynamic seg-
ment for potential communication. The load of the dynamic
segment is already known. Thus, we transferred the
AUTOSAR software-components into SystemC. Two com-
municating software-components are mapped onto different
ECUs and their signals are exchanged via a SystemC model
of FlexRay. The application itself is well understood in the
sense that the provided and required data rates are given.
Figure 6 shows the mapping of the software-components
onto different ECUs and an excerpt of the corresponding
SystemC code of the software-components and instances.

Figure 6. Mapping of two SW-Cs to the SystemC virtual
prototype & excerpt of corresponding SystemC code

Our simulation environment allows for calibrating the
application parameters; data rates as well as bus load on the
dynamic segment can be changed. The aim of the simulation
is to determine whether some timing requirements for a spe-
cial component, e.g. latency, will be abide or not.

Figure 7 shows the simulation results. The x-axis repre-
sents the sending date [in cycle] of a FlexRay frame. The y-
axis represents the delay [in cycles] since the host wanted to
send the frame. This figure depicts the results of an ECU,
which has been assigned a minislot with low priority. It is
possible to analyze the message send delay of the FlexRay
frame within the dynamic segment. In this figure, the worst
case message send delay is 44 cycles. In summary, the
designer can validate the timing requirements, which is not
possible in the AUTOSAR environment without SystemC.

Additionally to the timing behavior of the communication,
also the timing behavior of the underlying ECU could be
taken into consideration. By executing the application on a

AUTOSAR SystemC

Virtual Functional Bus

ComponentType abstract class

AtomicSoftwareComponentType SC_MODULE

SensorActuatorSoftwareComponent SC_MODULE

CompositionType (hierarchical) SC_MODULE

ComponentPrototype specific instance of an SC_MODULE

PortPrototype abstract class

PPortPrototype
sc_export if client-server-communication

sc_port if sender-receiver-communication

RPortPrototype sc_port

PortInterface abstract class

SenderReceiverInterface sc_interface impl. sc_channel

ClientServerInterface sc_interface impl. sc_channel

Datatype abstract class

PrimitiveType abstract class

Range abstract class

IntegerType / e.g. uint8 sc_int, sc_uint, int, ... / e.g. uint<8>

RealType float, double

BoolType bool, sc_bit

OpaqueType sc_bv

CharType char

StringType sc_string

ConnectorPrototype abstract class

AssemblyConnectorPrototype
sc_export-sc_port binding (client-server)

sc_port-channel binding(sender-receiver)

DelegationConnectorPrototype
sc_export-sc_export binding

sc_port-sc_port binding

Run Time Environment Level

Internal Behavior
In SystemC an AtomicSoftwareComponent

must only have one internal behavior.

Runnable Entity - category 1 SC_METHOD

Runnable Entity - category 2 SC_THREAD

RTEEvent abstract class

TimingEvent specific instance of sc_event

DataReceivedEvent specific instance of sc_event

DataReceivedErrorEvent specific instance of sc_event

DataSendCompletedEvent specific instance of sc_event

OperationInvokedEvent specific instance of sc_event

AsynchronousServerCallReturnsEvent specific instance of sc_event

ModeSwitchEvent specific instance of sc_event

WaitPoint wait(specific _sc_event)

DataReadAccess implicit data access - specific
implementation of semantic in SystemCDataWriteAccess

DataReceivePoint explicit data access - via sc_export
respectively sc_portDataSendPoint

SC_MODULE (SWC_1) {
sc_port<sc_flexray_if> s_port;
SC_CTOR(SWC_1) {

SC_THREAD(send_data);}
void send_data() {

s_port.write(sdata);}
};

SC_MODULE (SWC_2) {
sc_port<sc_flexray_if> r_port;
SC_CTOR(SWC_2) {

SC_THREAD(receive_data);}
void receive_data() {

rdata = r_port->read();}
};

int sc_main(int arc, char *argv[]) {
sc_flexray_bus_model flexray_bus;
sc_flexray_controller flexray_1;
flexray_1.port_to_bus(flexray_bus);

 sc_flexray_controller flexray_2;
flexray_2.port_to_bus(flexray_bus);

 SWC_1 SWC_1_instance;
 SWC_1_instance.s_port(flexray_1);
 SWC_2 SWC_2_instance;
 SWC_2_instance.r_port(flexray_2);

}

SystemC FlexRay Model

legacy SW legacy SW legacy SW

legacy SW legacy SW

flexray_1 Com. Ctrl. flexray_2

Com. Ctrl.Com. Ctrl.

SWC_1 SWC_2

SystemC Virtual Prototype

AUTOSAR VFB view
Traffic Sign Analysis

SW-C 1 SW-C 2

SystemC FlexRay Model

legacy SW legacy SW legacy SW

legacy SW legacy SW

flexray_1 Com. Ctrl. flexray_2

Com. Ctrl.Com. Ctrl.

SWC_1 SWC_2

SystemC Virtual Prototype

AUTOSAR VFB view
Traffic Sign Analysis

SW-C 1 SW-C 2
In future, additional functionality, namely a traffic sign
analysis, shall be mapped onto the existing ECUs. The appli-
cation has been modeled using the AUTOSAR methodology

SystemC model of a possible ECU architecture (e.g. micro-
controller), it could be evaluated how fast the application can
be executed at the chosen ECU, for example. Of course this

could also influence the communication timing behavior.

Figure 7. Simulation results: send latency of the message

7 Conclusion
This paper presents an AUTOSAR conform methodology

for timing simulation of interconnected AUTOSAR soft-
ware-components. The use case shows that simulation
enables the testing and evaluation of a distributed intercon-
nected system in an early design phase. SystemC offers a
comprehensive methodology for the following reasons: On
the one hand, SystemC enables to completely describe a sys-
tem including its application, underlying hardware architec-
ture, and infrastructure. On the other hand, SystemC pro-
vides a timing concept as well as a simulation kernel.

This paper points out analogies between SystemC and
AUTOSAR but also the fundamental differences. As a con-
sequence, SystemC can be used during the design process of
AUTOSAR-conform systems, resulting in a strong increase
in value by simulating, analyzing, and evaluating the entire
interconnected distributed system at early design time.

Future work will consider the automation of mapping
AUTOSAR software-component descriptions onto SystemC.
The mapping of functional behavior, e.g. from MATLAB/
Simulink, into the SystemC simulation environment is an
additional important topic of further activities. Finally, the
back-annotation of simulation results and analysis respec-
tively the results of the validation can affect the configura-
tion file. This is also the focus of future work.

8 Related work
This paper takes it for granted that the reader is well

acquainted with SystemC and AUTOSAR fundamentals. For
detailed information we recommend further readings. For
detailed information about the AUTOSAR concept please
refer to [1], [8], [9], [14], and [17]. A more detailed exami-
nation of the SystemC language and design methodology
can be found in [4], [5], [7], [16], and [21]. An extended
SystemC based design approach which is briefly introduced
in Section 3 is discussed in [11] and [12]. Generating Sys-

components by using SystemC. The evaluation methods
base on SystemC and are not the topic of this paper. In the
last years, a lot of work has been spent to these topics of sim-
ulating [10] and verifying SystemC based designs e.g. by
performance and communication analysis methods [18],
[19]. Please refer to these papers for further information.

9 References
[1] AUTOSAR: http://www.autosar.org
[2] M. Baumeister, P. Fuhrmann, F. Armbruster: Taking Concept

Models from Standardization to Silicon; In FlexRay Special
Edition, Hanser Automotive Electronics + Systems, 2005.

[3] R. Bergamaschi: Transaction-Level Models for PowerPC and
CoreConnect; 11th European SystemC Users Group Meeting,
Munich, 2005.

[4] A. Donlin: Transaction Level Modeling: Flows and Use
Models; Proceedings of the 2nd IEEE/ACM/IFIP international
conference on hardware/software codesign and system
synthesis, Stockholm, 2004.

[5] A. Donlin, A. Braun, A. Rose: SystemC for Design and
Modeling of Programmable Systems; In Proc. of International
Forum on Specification and Design Languages, Lille, 2004.

[6] FlexRay: http://www.flexray.com/
[7] T. Grötker, S. Liao, G. Martin, S. Swan: System Design with

SystemC; Kluwer, 2002.
[8] H. Heinecke, et al.: AUTOSAR - Current results and

preparations for exploitation; 7th EUROFORUM conference
„Software in the vehicle“ Stuttgart, 2006.

[9] H. Heinecke, et al.: AUTomotive Open System ARchitecture -
An Industry-Wide Initiative to Manage the Complexity of
Emerging Automotive E/E-Architectures; Convergence 2004,
Detroit, 2004.

[10] J. N. Ip, S. Swan: A Tutorial Introduction on the New SystemC
Verification Standard; OSCI SCV Working Group, 2003.

[11] M. Krause, O. Bringmann, W. Rosenstiel: A SystemC-based
Software and Communication Refinement Framework for
Distributed Embedded Systems; Proceedings of the 13th
Workshop on Synthesis And System Integration of Mixed
Information Technologies, Nagoya, 2006.

[12] M. Krause, O. Bringmann, W. Rosenstiel: Target Software
Generation: An Approach for Automatic Mapping of SystemC
Specifications onto Real-Time Operating Systems; Design
Automation for Embedded Systems, Volume 10, Issue 4,
Springer, 2007.

[13] MATLAB/Simulink: http://www.mathworks.com/
[14] M. Pagel, M. Brörkens: Definition and Generation of Data

Exchange Formats in AUTOSAR; Proceedings of the Second
European Conference ECMDA-FA 2006.

[15] P. Pop, P. Eles, Z. Peng: Analysis and Synthesis of Distributed
Real-Time Embedded Systems; Kluwer Academic Publishers,
Boston, 2004.

[16] A. Rose, S. Swan, J. Pierce, J.-M. Fernandez: Transaction
Level Modeling in SystemC; OSCI TLM Working Group, 2005.

[17] T. Scharnhorst, et al.: AUTOSAR - Challenges and
Achievements 2005; Electronic Systems for Vehicles 2005,
VDI Congress, Baden-Baden, 2005.

[18] A. Siebenborn, O. Bringmann, W. Rosenstiel: Communication
Analysis for System on Chip Design; Proc. of the Design
Automation and Test in Europe Conference 2004, Paris, 2004.

[19] A. Siebenborn, O. Bringmann, W. Rosenstiel: Worst-Case
Performance Analysis of Parallel, Communicating Software
Processes; Proceedings of the Tenth International Symposium
on Hardware/Software Codesign 2002, USA, 2002.

[20] SPIRIT Schema Working Group Membership, IP-XACT Users
Guide Version 1.4, 2005.

[21] SystemC: http://www.systemc.org
[22] UML Profile for AUTOSAR Version 1.0.1; AUTOSAR, 2006.
[23] A. Viehl, O. Bringmann, W. Rosenstiel, T. Schönwald: Formal

20 40 60 80 100 120 140

20

25

30

35

40

15

10

5

Latency

Message Send Delay [cycles]

Sending Point [cycles]
20 40 60 80 100 120 140

20

25

30

35

40

15

10

5

Latency

Message Send Delay [cycles]

Sending Point [cycles]
temC from UML has been introduced in [23]. The benefit of
the methodology that is discussed in this paper is the capa-
bility of evaluating interconnected AUTOSAR software-

Performance Analysis and Simulation of UML/SysML Models
for ESL Design; Proceedings of the Design, Automation and
Test in Europe Conference, Munich, 2006.

	Main
	DATE07
	Front Matter
	Table of Contents
	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

