
Time-Constrained Clustering for DSE of Clustered VLIW-ASP

Mario Schölzel
Department of Computer Science at Brandenburg University of Technology at Cottbus, Germany

Abstract
In this paper we describe a new time-constrained clus-
tering algorithm. It is coupled with a time-constrained
scheduling algorithm and used for Design-Space-Explo-
ration (DSE) of clustered VLIW processors with heteroge-
neous clusters and heterogeneous functional units. The
algorithm enables us to reduce the complexity of the DSE,
because the parameters of the VLIW are derived from the
clustered schedule of the considered application which is
produced during a single compilation step. Several com-
pilations of the same application with different VLIW-
parameter settings are not necessary. Our proposed algo-
rithm is integrated into a DSE-Tool in order to explore
the best parameters of a clustered VLIW processor for
several basic blocks of signal processing applications.
The obtained results are compared to the results of
Lapinskii's work and show, that, for most benchmarks, we
are able to save ports in the register file of each cluster.

1. Introduction

In many signal processing applications high performance
is required, while power and/or area consumption should
be as low as possible. These requirements may only be
satisfied by specialised hardware. Furthermore, the sys-
tem should be flexible enough to handle little changes of
the application in later development stages. Application
Specific Processors (ASPs) provide a good trade-off be-
tween flexibility, performance and power/area consump-
tion [13]. A widely accepted model for ASPs is the Very
Long Instruction Word (VLIW) processor model. A proc-
essor of that type uses a single register file and several
functional units (FU) that operate in parallel. Thus, every
FU is connected to the register file by two read ports and
one write port. Every FU contains a certain set of opera-
tors, e.g. adder, multiplier, an so on. We refer to this as
the type of a FU. In heterogeneous VLIWs FUs may have
different types. All FUs are controlled by an instruction
word in every clock cycle, which encodes the operation
to be performed by each FU. The scheduling of operations
into instructions is done statically by the compiler. This
assures high performance while the control logic of a
VLIW can be kept very simple. However, the single reg-
ister file is the bottleneck of a VLIW. The more parallel-

ism is available the more ports must be provided by it.
The power and area consumption of the register file
grows as n3, where n is the number of ports, and its delay
grows as n3/2 [15]. Clustered VLIW-processors (see figure
1 for an example) offer a solution to this problem.

data path

Cluster 2Cluster 1

FU1

External Cluster

register file 1

FU2 FU3

register file 2

FU4Branch 2Branch 1

program memory data memory

control path

control logic

instruction
counter

Figure 1: Two-Cluster-VLIW processor.

A clustered VLIW uses several register files. A certain
set of FUs is associated with each of them. Direct access
to a register file is only given to associated FUs. By this,
high parallelism is preserved while the number of ports of
each register file becomes small. There again, a cluster
interconnection network is required to transfer data from
one cluster into another one. A data transfer is done by a
copy operation, which has a certain latency time and must
be scheduled statically by the compiler. The copy opera-
tions are carried out by copy operators which belong to
the external cluster. External read and write ports in each
register file give access to the external cluster.

Adaptation of ASPs to a given application is typically
done by a Design-Space-Exploration (DSE). Most of the
existing approaches use an iterative methodology, which
modifies the parameter of a (clustered) VLIW in each
iteration [1, 2, 4, 6, 7]. In every iteration, compiler and
simulator are adapted to the current architecture. Using
them, the application is compiled, simulated and profiled.
Necessary modifications of the architecture may derived
from the obtained profiling data. This DSE-cycle is re-
peated until the desired performance is reached or a cer-
tain amount of pareto-optimal architectures was found. In
[4] this cycle takes more than 2 weeks only for determin-
ing the type of five FUs in a non-clustered VLIW. If DSE
is done for heterogeneous clustered architectures, beside
the type of each FU also the number of clusters and the
number of FUs in each cluster must be determined [17].
Thus, the design space of a clustered heterogeneous

978-3-9810801-2-4/DATE07 © 2007 EDAA

VLIW becomes much more larger than the design space
of a non-clustered VLIW. Therefore, an iterative DSE
methodology may leads to infeasible long runtimes, be-
cause too much architectures must be considered, even if
the design space is pruned according to pareto-optimal
architectures as in [2, 6]. In order to perform a DSE-cycle
for a clustered VLIW, the compiler must be able to gener-
ate a clustered schedule of the application. Several ap-
proaches for clustering were proposed [3, 5, 8, 10, 11, 14,
18]. All of them are resource-constrained. This means, the
available resources in each cluster must be known before
compilation, and therefore, these clustering algorithms are
only applicable for iterative DSE-approaches. Our pro-
posed time-constraint clustering algorithm enables us to
avoid an iterative DSE-approach and thus, helps us to
reduce the complexity of the DSE. Furthermore, the opti-
misation goal of resource constrained clustering ap-
proaches is to minimise the length of the produced
schedule. Therefore, most of them avoid to schedule copy
operations in the critical path of the application. This may
prohibits to find a better solution because the produced
schedule may be longer than the critical path, due to other
resource constraints. Then, copy operations on the critical
path would not matter. Because our time constrained clus-
tering algorithm, produces a clustering for a given sched-
ule length L we allow to insert copy operations in the
critical path from the beginning if L is larger than the
critical path length.

2. Application Model

The application for which a DSE should be done is repre-
sented by a set of basic blocks. A basic block
b = (V, E, type) consists of a set of operation nodes V, a
set of data dependency edges E ⊆ V × V and a labelling
function type : V → O, where O is the set of all operation
types supported by the processor. lat(t) denotes the num-
ber of clock cycles (latency) necessary to execute an op-
eration of type t. A schedule of length L consists of
exactly L instructions and can be seen as a function
sc : V → {0, …, L - 1} which associates nodes with the
number of an instruction in which its execution starts.
Please note, that an operation v, with lat(type(v)) = l, and
sc(v) = i is executed in instructions i, …, i + l -1. Further-
more, a schedule sc may be partial, i.e. not every node has
a start time. sc is called a full schedule if every node has
a start time. A clustering of a basic block is a function
cl : V → {0, …, mC} which assigns every node the num-
ber of the cluster in which it is executed. mC is the num-
ber of regular available processor clusters. Please note,
there is a special external cluster 0, which executes all
copy operations (see figure 1). If two adjacent nodes are
assigned to different clusters a copy-operation must be
executed in order to move the result of the producer op-

eration into the cluster of the consumer operation. In order
to tread these copy-operations like regular operations dur-
ing the scheduling they are added to the basic block. A
basic block b together with a clustering cl is said to be a
clustered basic block. It already contains all necessary
copy-operations and is denoted by (b, cl). cl also assigns
all copy operations to cluster 0. In figure 2 an example of
a basic block and a clustered basic block is given.

*

+

* *

+

*

+ +

* * * *

+ +

*

+

* *

+

*

+ +

* * * *

+

+

cpcp

cp

Figure 2: Basic block and clustered basic block.

A path p = v1 … vn in a clustered basic block is a se-
quence of adjacent nodes, i.e. (vi, vi+1) ∈ E. The length (or
latency) of a path p is the sum of the latencies of its
nodes. Given a certain clustering and scheduling, the set
of operations, which are executed in cluster c and instruc-
tion i, is denoted by ops(c, i). The number |ops(c, i)| of
these nodes is called the width of instruction i in cluster
c. Every instruction i, for which |ops(c, i)| is maximal in c,
is called a widest instruction in cluster c. The width of a
cluster is equal to the width of its widest instructions. The
number of ports of the register file in cluster c imme-
diately depends on its width w and is 3 ⋅ w + ep, where ep
is the number of external ports, whose number depends on
the number of simultaneously executed copy operations.

3. Scheduling algorithm

Our proposed time-constrained clustering algorithm is
coupled with a time-constrained scheduling algorithm.
The clustering algorithm produces a clustered basic block
(b, cl), which is scheduled by the scheduling algorithm, in
order to value the quality of the clustering. The schedul-
ing algorithm respects the cluster assignment cl. We
shortly describe the scheduling algorithm and the used
objective function. A more detailed description can be
found in [9]. The objective function reflects the costs of a
processor, which is required to execute a certain schedule.
The power and area consumption of a VLIW strongly
depends on the size of its register files, i.e. the number of
ports [15]. A register file cost function rfc : N → N is
given, which returns for a given number of ports the reg-
ister file costs, e.g. in terms of area and power consump-
tion. For a small number of ports, this function may grow

slowly and for larger numbers it grows cubic and domi-
nates the processor costs [15]. Furthermore, the highest
possible clock rate of a VLIW depends on the size of its
largest register file due to wire delay [15]. A clock rate
function cr : N → N defines the dependency of the clock
rate on the number of ports.

The time-constrained scheduling algorithm is similar
to force-directed-scheduling [12]. For a given schedule
length L a schedule sc is stepwise constructed. For every
operation v of (b, cl) a time-frame is determined, regard-
ing to the given schedule length L, in which v can be
scheduled. In every step an operation v is selected using a
priority function and scheduled into an instructions i. The
instruction i is selected by scheduling v on a trial-basis
into every instruction within its time frame and updating
the time-frames of all dependent operations. This leads to
several (maybe partial) trial-schedules sci. For each of
them an objective value C(sci, cl) is determined. The ob-
jective value is based on an estimation of operator costs
(TLoad) and register file costs (RBLoad) of each cluster
and is defined as the sum of RBLoad and TLoad. Fur-
thermore, RBLoad takes into account the limitation of the
clock rate, which depends on the largest register file of
the VLIW. For each trial-schedule sci the expected size of
each register file is estimated by scheduling all unsched-
uled operations in sci, using a list-scheduling-like algo-
rithm. By this, we obtain for each schedule sci an
estimation schedule esci, which is full scheduled. The
width |ops(c, i)| of a widest instruction i in esci can be
determined for each cluster c and gives the number of
internal read and write ports of the register file in cluster
c. In order to take the size of the interconnection network
into account, the number of required external read and
write ports in each register file is considered. It depends
on the width of the widest instruction in cluster 0. There-
fore,

tP(c) = 3 ⋅ |ops(c, i)| + 2 ⋅ |ops(0, i)|
is the number of ports of the register file of cluster c and

mP = max{tP(c) | 0 < c < mC}
is the number of ports of the largest register file of the
VLIW. Having these values for an estimation schedule
esci, the objective value RBLoad of the corresponding
trial-schedule sci is obtained by

 1 2
1

(,) (()) ()
mC

i
c

RBLoad sc cl rfc tP c cr mPα α
=

= ⋅ − ⋅∑ .

The first term represents the overall costs of all register
files and the second term reflects the highest possible
clock rate, which becomes smaller with growing mP.
Highest priority is given to the performance degradation
by weights αi.

The operator costs of each cluster in sci are estimated
by a cost function similar to the cost function used in
force-directed-scheduling. It is based on an estimation of
the number of parallel executed operations of the same
type. I.e., for every operation type t, every cluster c and
every instruction i a load-value ILoad(t, i, c) is computed.
ILoad(t, i, c) reflects the expected number of operations
of type t that may be executed in instruction i and cluster
c. The cluster-load-value of a certain type t

 { }(,) max (, ,) 0CLoad t c ILoad t i c i L= ≤ <

is the maximal ILoad-value for a given cluster c and type
t. The operator costs TLoad(sci, cl) of a trial-schedule sci
and clustering cl are the sum of its cluster-load-values for
each type t.

The selected operation v is schedule into instruction i
for which C(sci, cl) is minimal. If the objective value is
computed for a full schedule it will reflect the hardware
costs of the VLIW processor required for its execution.
However, the objective value may also be computed for
partial schedules in which no operation is scheduled. This
is done at several stages of the clustering algorithm in
order to estimate roughly the quality of the clustering.

4. Clustering algorithm

The optimisation goal of our clustering algorithm is to
produce a clustering cl, so that a full schedule sc of a
given length L can be generated and the VLIW, necessary
to execute sc, has minimal hardware costs regarding to the
objective function C.

4.1 Clustering scheme

The clustering algorithm is coupled with scheduling, in
order to consider dependencies between both tasks which
arise from inserted copy operations. The iterative pro-
ceeding is shown in figure 3.

For a given clustering
cl compute schedule

sc for (b, cl).

Determine widest
cluster c in sc.

Has the schedule not
beeing improved for the
N-th successive time?

(1) (3)(2)

Modify clustering cl, in order to reduce register file costs of cluster c,
performing steps (4) to (7) in figure 4.

no

yes

Start with any clustering cl Stop

Figure 3: Iterative proceeding during clustering.

Clustering starts with any initial clustering cl. In step
(1) a schedule sc for (b, cl) is generated according to the
algorithm proposed in section 3. It is secured, that in step
(1) all operations can be scheduled within the given
length L. I.e., the length of every path of (b, cl) is at most

L, including all copy operations. In step (3) a widest clus-
ter c is selected regarding to the schedule sc, which was
produced in step (1). Let w be its width. The register file
size of c is reduced by moving some operations from c
into another cluster z, because the register file size has the
largest impact on cost function C. This is done in steps
(4)-(7). Therefore, the next iteration, which starts again in
step (1), uses a modified clustering cl. If the modified cl is
better than the best clustering bcl which has been pro-
duced so far (i.e. C(cl, sc) < C(bcl, bsc)), bcl is set to be cl
and bsc is set to be sc. Otherwise, if bcl could not be im-
proved for the N-th time, clustering is finished. The modi-
fied clustering cl is used for the next iteration anyway,
even if it is worst than the clustering of the previous itera-
tion. By this, local minima could be avoided. A more de-
tailed description of the steps 4 to 7 is given in figure 4.

Modify clustering cl by selecting a target cluster
z and an operation v which belongs to a widest

instruction in c and move v into z.

Select a longest paths p in (b, cl) and modify cl
by moving some operations on p into z, until

length of p is at most L.

Has every path in
(b,cl) at most length

L?

Is at least one operation
moved from every widest

instruction into z?

no

yes

yes

(4)

(5)(6)

(7)

Perform steps(1) to (3) in figure 3 in order to compute a schedule for
modified clustering cl and decide wether to stop clustering or not.

no

Figure 4: Reducing cluster costs.

The operation v (target node) to be moved from a
widest instruction in c, as well as the target cluster z in
which v should be moved, are selected in step (4). The
problem that occurs, due to moving v into cluster z, is,
that this may leads to copy operations, which prolong
some paths of the clustered basic block. If one of these
paths becomes longer than L, a schedule of length L can-
not be produced in step (1). Therefore these paths must be
shortened by moving other operations on these paths into
the target cluster z too (step (6)). These operations "fol-
low" operation v into cluster z. Therefore, some copy op-
erations become needless and can be removed, which
shortens the path. This proceeding is repeated, until all
paths have a length of at most L (step (5)). In order to
reduce the register file size of considered cluster c, at least
one operation of every widest instruction in c is moved
into the target cluster z (see step (7)). Therefore, steps (4)
to (7) are repeated, if there is at least one instruction in c,
that still has the width w. Furthermore, there is no limit
how often a node can be moved between different clus-
ters. Thus, previously made assignments of nodes to clus-
ters can be cancelled.

The proposed clustering scheme is repeated twice and
both stages differs only in step (6), i.e., how a path is
shortened:

• During the first stage whole paths of a basic block are
moved between different clusters in order to obtain a
feasible clustering within a short time.

• During the second stage only sub-paths are moved, in
order to obtain a better balance of cluster utilisation.
The first stage starts with an initial clustering, where

all nodes are assigned to the same cluster. The best clus-
tering bcl, which was generated by the first stage, is used
as the initial clustering of the second stage.

4.2 Shortening paths

The most important step during clustering is shortening of
all paths that have a length greater than L (steps (5) and
(6) in figure 4). The length of a path only becomes larger
than L, if copy operations were inserted. During shorten-
ing a path, the operation v, which was selected in step 4
and moved into the target cluster z, should stay in cluster
z. Therefore, other operations on the considered path must
be moved into cluster z in order to remove copy opera-
tions. In the following it is explained how these opera-
tions are selected.

A copy operation cp is called a z-cluster-copy opera-
tion, if there exists an operation u with cl(u) = z and
((u, cp) ∈ E or (cp, u) ∈ E). I.e., cp writes a value into
cluster z or reads a value from cluster z. A sub-path
sp = vkvk+1 … vm of a path p = v1 … vn is called a z-cluster-
sub-path, if sp is entirely executed in cluster z and (either
k = 1 or type(vk-1) = copy) and (either m = n or
type(vm+1) = copy). In order to shorten a path in step (6),
we select the longest one. If there are several paths of the
same length, we select the one which contains the most z-
cluster-copy operations. These copy operations are sig-
nificant positions in the selected path. Either its predeces-
sor belongs to cluster z and its successor not or vice versa.
In every case the selected path contains at least one z-
cluster-copy operation and is of the form:

v1…vn–1 vn c vn+1 vn+2…vm,

where c is a z-cluster-copy operation and vi are nodes of
arbitrary type. Considering c, the operation, which must
be moved into cluster z can be determined as follows:

I. If vn belongs to cluster z, node vn+1 is moved to
cluster z. We obtain the path

v1…vn–1 vn vn+1c vn+2…vm.

II. If vn+1 belongs to cluster z, node vn is moved to
cluster z. We obtained the path

v1…vn–1 c vnvn+1vn+2…vm.

By moving the predecessor or successor of a z-cluster-
copy operation into cluster z the copy operation is "shif-

ted" along the selected path. This will not always reduce
the length of the path. But in the following cases, it is:

(a) c is moved according to (II) and type(vn-1) = copy.
(b) c is moved according to (I) and type(vn+2) = copy.
(c) c moved according to (II) and vn has no predeces-

sor, i.e. n = 1.
(d) c is moved according to (I) and vn+1 has no suc-

cessor, i.e. n + 1 = m.
If in case (a) or (b) vn-1 respectively vn+2 is a z-cluster-
copy operation the path length is reduced by 2 ⋅ lat(copy).
Otherwise the path length is reduced by lat(copy). A se-
lected z-cluster-copy operation is shifted along the se-
lected path according to the rules (I) and (II) until one of
the cases (a) to (d) applies. Thus, the length of the consid-
ered path is shortened. However, the length of other paths
may increased. Figure 5 gives an example.

3

1

5

4

6

cp1

3

1

5

4

6

cp1

cp2

cp3

3

1

4

6

5

cp1

cp2

cp4

3

1

54

6

cp2

(a) (b) (c) (d)
Figure 5: Example of shifting copy operations.

Let us assume the basic block in figure 5 should be sched-
uled within four instructions, i.e. L = 4. Operations 1, 4, 5
and 6 (grey) belongs to the cluster 1. Operation 3 (white)
belongs to cluster 2. Thus, a copy operation has been in-
serted between operation 3 and 5. Furthermore, let us as-
sume operation 4 is selected in step (4) of figure 4 and
moved to target cluster 2, as shown in figure 5 (b). There-
fore, the copy operations cp2 and cp3 has been inserted.
Now the path (1 cp3 4 cp2 6) has a length of 5. Now, either
operation 1 or 6 must be moved to cluster 2, because op-
eration 4 must remain in cluster 2. As in figure 5 (c)
shown, operation 6 has been moved. Now the path
(1 cp3 4 6) has a length of 4, but the length of path
3 cp1 5 cp4 6 was increased. Therefore, this path must be
shortened. Because the assignment to cluster 2 is fix, op-
eration 5 is also moved to cluster 2. This leads to the clus-
tering in figure 5 (d). There, every path has a length of at
most 4.
During the first stage of the clustering algorithm all z-
cluster-copy operation nodes of the selected path are re-
moved, which in turns mean, that long operation chains
are formed in the target cluster and the considered path

gets a length of at most L. During the second stage only z-
cluster-sub-paths of the selected path are moved to the
target cluster, until the selected path has a length of at
most L. By this, it is possible to refine the clustering and
to obtain a well balanced clustering. In order to select the
next copy operation, which should be removed from the
selected path p during the second stage, we select the
shortest z-cluster-sub-path in p. This sub-path is responsi-
ble for a very short computation chain in the target clus-
ter. Therefore, by moving a z-cluster-copy operation at the
beginning or end of this sub-path, longer operation chains
are formed in cluster z.

4.3 Determining target node and cluster

So far it was not explained how operation v in step (4) is
selected. Let cl be the current clustering, BI be the set of
all widest instructions of cluster c, CL = {1, …, mC} the
set of available processor clusters and w the width of a
widest instruction in BI. In step (4) the first instruction
i ∈ BI is selected. We construct the set of all possible as-
signments A = {(v, z) | v ∈ ops(c, i) and z ∈ CL}. For
every (v, z) ∈ A cl is modified by moving v into target
cluster z and performing steps (5) and (6). The obtained
clustering is denoted by <v, z> and every path has a
length of at most L. Let NC be the set of all clusterings
<v, z>, where (v, z) ∈ A. Then, the clustering <v, z>, for
which C(s, <v, z>) is minimal is selected. Here s is a
schedule where no operation is scheduled. Please note,
that all available clusters mC will only be used by the
clustering algorithm, if this minimises the objective func-
tion C. If not, some clusters remain empty. Thus, by con-
tinuously increasing mC and performing the clustering
algorithm the largest number of used clusters can be de-
termined.

5. Results

In order to evaluate the quality of our clustering algorithm
it was integrated in the DSE-Tool DESCOMP [9]. We
used several basic blocks of typical signal processing ap-
plications from the thesis of Lapinskii [16] as bench-
marks. The largest basic blocks have up to 49 nodes. A
DSE was done for these benchmarks with DESCOMP
and varying schedule lengths, in order do determine the
parameters of well adapted clustered VLIWs for each
benchmark and each schedule length. The generated
DESCOMP-architectures were compared to the architec-
tures from Lapinskii’s thesis. In figure 6 the comparison
of number of ports of the largest register file is shown for
several number of clusters. The number in parentheses
behind the benchmark names on top of each table is the
number of used clusters. In most cases the DESCOMP

approach leads to better utilisation of the FUs and could
save register file ports. The number of ports of the largest
register file could be reduced in average by 20%. The
total number of ports, which is not shown in figure 6 due
to a lack of space, could be reduced in average by 26%.
This means, not only the cost of the largest register file
could be reduced but also the costs of register files in all
clusters. Every result was obtained within a few seconds
up to a few minutes which is comparable to the runtimes
of Lapinskii’s resource constrained approach. However,
in contrast to the work of Lapinskii the DESCOMP-
approach allows to combine different operators in a single
FU, which makes the DSE more complex, because the
type of each FU must be determined. Thus, we were able
to consider a larger design space at comparable runtime
and to save register file ports by this.

DCT-LEE (2) DCT-DIF (2) DCT-DIT (2) EWF (2) ARF (2) FFT (2)

0

5

10

15

20

25

30

35

10 12 13 16 7 8 9 10 15 7 8 9 10 12 19 15 17 10 11 5 6 7 8 10 14

schedule length

nu
m

be
r

of
 p

or
ts

Lapinskii-architecture DESCOMP-architecture

A
M

M
P

 (
4)

E
Q

U
A

K
E

1
(4

)

SW
IM

1
(4

)

FF
T

 (
5)

D
C

T
-D

IF
 (3

)

D
C

T
-D

IT
 (

3)

E
W

F
(3

)

FF
T

(3
)

D
C

T
-D

IT
 (

4)

FF
T

(4
)

D
C

T
-L

E
E

 (3
)

0

5

10

15

20

25

30

12 11 8 9 10 13 14 15 5 6 7 8 10 11 7 9 6 5 6 6 6 7 8

schedule length

nu
m

be
r

of
 p

or
ts

Lapinskii-architecture DESCOMP-architecture
Figure 6: Benchmark results.

6. Conclusions

We have introduced a new time-constrained clustering
algorithm which is coupled with a time-constrained
scheduling algorithm. By this, a time consuming DSE-
cycle can be avoided, even for DSE of clustered VLIW
processors. The results show, that the generated clustered
schedule saves register file ports, compared to a state-of-
the-art approach. Therefore, area and power consumption
of the register files is reduced and a higher clock rate can
be used.

7. REFERENCES

 [1] B.Middha, V.Raj et. al.: A Trimaran Based Framework
for Exploring the Design Space of VLIW ASIPs with
Coarse Grain Functional Units. Proc. of the 15th Inter-
national Symposium on System Sythesis (ISSS'02), pp.
2-7, 2002.

 [2] D.Fischer, J.Teich et. al.: Efficient architecture/compiler
co-exploration for ASIPs. Proc. of the International Con-
ference on Compilers, Architecture and Synthesis for
Embedded Systems (CASES'02), pp. 27-34, 2002.

 [3] E.Özer, S.Banerjia et. al.: Unified Assign and Schedule:
A New Approach to Scheduling for Clustered Register
File Microarchitectures. Proc. of 31th Int. Symposium
on Microarchitecture, pp. 308-315, 1998.

 [4] G.J.Hekstra, G.D.La Hei et. al.: TriMedia CPU64 design
space exploration. Proc. of the IEEE International Con-
ference on Computer Design, pp. 599-606, 1999.

 [5] G. Desoli: Instruction assignment for clustered VLIW
DSP compilers: A new approach. Technical Report, HP
Laboratories Cambridge, HPL-98-13, 1998.

 [6] G.Snider: Spacewalker: Automated Design Space Explo-
ration for Embedded Computer Systems. Technical Re-
port, HP Lab. Palo Alto, HPL-2001-220, 2001.

 [7] H.Corporaal and H.J.M.Mulder: MOVE: a framework
for high-performance processor design. Proc. of the
Conference on Supercomputing, pp. 692-701, 1991.

 [8] J.R.Ellis: Bulldog: A Compiler for VLIW Architectures.
MIT Press, Cambridge, Massachusettes, 1985.

 [9] M.Schölzel and P.Bachmann: DESCOMP: A New De-
sign Space Exploration Approach. Proc. of the 18th Int.
Conference on Architecture of Computing Systems, pp.
178-192, 2005.

 [10] M.L.Chu, K.C.Fan et. al.: Cost-Sensitive Operation Par-
titioning for Synthesizing Custom Multicluster Datapath
Architectures. Proc. 2nd Workshop on Application Spe-
cific Processors, pp. 40-47, 2003.

 [11] M.L.Chu, K.C.Fan et. al.: Region-based Hierarchical
Operation Partitioning for Multicluster Processors.
Proc. of the Conference Programming Languages Design
and Implementation, pp. 300-311, 2003.

 [12] P.G.Paulin and J.P.Knight: Force-directed scheduling in
automatic data path synthesis. Proc. of the 24th Design
Automation Conference, pp. 195-202, 1987.

 [13] P.Faraboschi, G.Brown et. al.: Lx: a technology platform
for customizable VLIW embedded processing. The 27th
Annual International Symposium on Computer Architec-
ture 2000, pp. 203-213, 2000.

 [14] R.Leupers: Instruction Scheduling for Clustered VLIW
DSPs. Proc. of the Conference on Parallel Architectures
and Compilation Techniques, pp. 291-300, 2000.

 [15] S.Rixner, W.J.Dally et. al.: Register Organization for
Media Processing. Proc. of the 6th High-Performance
Computer Architecture, pp. 375-386, 2000.

 [16] V.Lapinskii: Algorithms for Compiler-Assisted Design-
Space-Exploration of Clustered VLIW ASIP Datapaths.
Dissertation, University of Texas at Austin, 2001.

 [17] V.Lapinskii, M.F.Jacome et. al.: Application-Specific
Clustered VLIW-Datapaths: Early Exploration on a Pa-
rameterized Design Space. IEEE Transactions on Com-
puter Aided Design of Integrated Circuits and Systems,
21(8), pp. 889-903, 2002.

 [18] V.Lapinskii, M.F.Jacome et. al.: Cluster Assignment for
High-Performance Embedded VLIW Processors. ACM
Transactions on Design Automation of Electronic Sys-
tems, 7(3), pp. 430-454, 2002.

	Main
	DATE07
	Front Matter
	Table of Contents
	Author Index

