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Abstract 
In this paper we describe a new time-constrained clus-
tering algorithm. It is coupled with a time-constrained 
scheduling algorithm and used for Design-Space-Explo-
ration (DSE) of clustered VLIW processors with heteroge-
neous clusters and heterogeneous functional units. The 
algorithm enables us to reduce the complexity of the DSE, 
because the parameters of the VLIW are derived from the 
clustered schedule of the considered application which is 
produced during a single compilation step. Several com-
pilations of the same application with different VLIW-
parameter settings are not necessary. Our proposed algo-
rithm is integrated into a DSE-Tool in order to explore 
the best parameters of a clustered VLIW processor for 
several basic blocks of signal processing applications. 
The obtained results are compared to the results of 
Lapinskii's work and show, that, for most benchmarks, we 
are able to save ports in the register file of each cluster. 
 

1. Introduction 

In many signal processing applications high performance 
is required, while power and/or area consumption should 
be as low as possible. These requirements may only be 
satisfied by specialised hardware. Furthermore, the sys-
tem should be flexible enough to handle little changes of 
the application in later development stages. Application 
Specific Processors (ASPs) provide a good trade-off be-
tween flexibility, performance and power/area consump-
tion [13]. A widely accepted model for ASPs is the Very 
Long Instruction Word (VLIW) processor model. A proc-
essor of that type uses a single register file and several 
functional units (FU) that operate in parallel. Thus, every 
FU is connected to the register file by two read ports and 
one write port. Every FU contains a certain set of opera-
tors, e.g. adder, multiplier, an so on. We refer to this as 
the type of a FU. In heterogeneous VLIWs FUs may have 
different types. All FUs are controlled by an instruction 
word in every clock cycle, which encodes the operation 
to be performed by each FU. The scheduling of operations 
into instructions is done statically by the compiler. This 
assures high performance while the control logic of a 
VLIW can be kept very simple. However, the single reg-
ister file is the bottleneck of a VLIW. The more parallel-

ism is available the more ports must be provided by it. 
The power and area consumption of the register file 
grows as n3, where n is the number of ports, and its delay 
grows as n3/2 [15]. Clustered VLIW-processors (see figure 
1 for an example) offer a solution to this problem.  
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Figure 1: Two-Cluster-VLIW processor. 

A clustered VLIW uses several register files. A certain 
set of FUs is associated with each of them. Direct access 
to a register file is only given to associated FUs. By this, 
high parallelism is preserved while the number of ports of 
each register file becomes small. There again, a cluster 
interconnection network is required to transfer data from 
one cluster into another one. A data transfer is done by a 
copy operation, which has a certain latency time and must 
be scheduled statically by the compiler. The copy opera-
tions are carried out by copy operators which belong to 
the external cluster. External read and write ports in each 
register file give access to the external cluster.  

Adaptation of ASPs to a given application is typically 
done by a Design-Space-Exploration (DSE). Most of the 
existing approaches use an iterative methodology, which 
modifies the parameter of a (clustered) VLIW in each 
iteration [1, 2, 4, 6, 7]. In every iteration, compiler and 
simulator are adapted to the current architecture. Using 
them, the application is compiled, simulated and profiled. 
Necessary modifications of the architecture may derived 
from the obtained profiling data. This DSE-cycle is re-
peated until the desired performance is reached or a cer-
tain amount of pareto-optimal architectures was found. In 
[4] this cycle takes more than 2 weeks only for determin-
ing the type of five FUs in a non-clustered VLIW. If DSE 
is done for heterogeneous clustered architectures, beside 
the type of each FU also the number of clusters and the 
number of FUs in each cluster must be determined [17]. 
Thus, the design space of a clustered heterogeneous 

978-3-9810801-2-4/DATE07 © 2007 EDAA 

 



VLIW becomes much more larger than the design space 
of a non-clustered VLIW. Therefore, an iterative DSE 
methodology may leads to infeasible long runtimes, be-
cause too much architectures must be considered, even if 
the design space is pruned according to pareto-optimal 
architectures as in [2, 6]. In order to perform a DSE-cycle 
for a clustered VLIW, the compiler must be able to gener-
ate a clustered schedule of the application. Several ap-
proaches for clustering were proposed [3, 5, 8, 10, 11, 14, 
18]. All of them are resource-constrained. This means, the 
available resources in each cluster must be known before 
compilation, and therefore, these clustering algorithms are 
only applicable for iterative DSE-approaches. Our pro-
posed time-constraint clustering algorithm enables us to 
avoid an iterative DSE-approach and thus, helps us to 
reduce the complexity of the DSE. Furthermore, the opti-
misation goal of resource constrained clustering ap-
proaches is to minimise the length of the produced 
schedule. Therefore, most of them avoid to schedule copy 
operations in the critical path of the application. This may 
prohibits to find a better solution because the produced 
schedule may be longer than the critical path, due to other 
resource constraints. Then, copy operations on the critical 
path would not matter. Because our time constrained clus-
tering algorithm, produces a clustering for a given sched-
ule length L we allow to insert copy operations in the 
critical path from the beginning if L is larger than the 
critical path length. 

2. Application Model 

The application for which a DSE should be done is repre-
sented by a set of basic blocks. A basic block 
b = (V, E, type) consists of a set of operation nodes V, a 
set of data dependency edges E ⊆ V × V and a labelling 
function type : V → O, where O is the set of all operation 
types supported by the processor. lat(t) denotes the num-
ber of clock cycles (latency) necessary to execute an op-
eration of type t. A schedule of length L consists of 
exactly L instructions and can be seen as a function 
sc : V → {0, …, L - 1} which associates nodes with the 
number of an instruction in which its execution starts. 
Please note, that an operation v, with lat(type(v)) = l, and 
sc(v) = i is executed in instructions i, …, i + l -1. Further-
more, a schedule sc may be partial, i.e. not every node has 
a start time. sc is called a full schedule if every node has 
a start time. A clustering of a basic block is a function 
cl : V → {0, …, mC} which assigns every node the num-
ber of the cluster in which it is executed. mC is the num-
ber of regular available processor clusters. Please note, 
there is a special external cluster 0, which executes all 
copy operations (see figure 1). If two adjacent nodes are 
assigned to different clusters a copy-operation must be 
executed in order to move the result of the producer op-

eration into the cluster of the consumer operation. In order 
to tread these copy-operations like regular operations dur-
ing the scheduling they are added to the basic block. A 
basic block b together with a clustering cl is said to be a 
clustered basic block. It already contains all necessary 
copy-operations and is denoted by (b, cl). cl also assigns 
all copy operations to cluster 0. In figure 2 an example of 
a basic block and a clustered basic block is given. 
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Figure 2: Basic block and clustered basic block. 

A path p = v1 … vn in a clustered basic block is a se-
quence of adjacent nodes, i.e. (vi, vi+1) ∈ E. The length (or 
latency) of a path p is the sum of the latencies of its 
nodes. Given a certain clustering and scheduling, the set 
of operations, which are executed in cluster c and instruc-
tion i, is denoted by ops(c, i). The number |ops(c, i)| of 
these nodes is called the width of instruction i in cluster 
c. Every instruction i, for which |ops(c, i)| is maximal in c, 
is called a widest instruction in cluster c. The width of a 
cluster is equal to the width of its widest instructions. The 
number of ports of the register file in cluster c imme-
diately depends on its width w and is 3 ⋅ w + ep, where ep 
is the number of external ports, whose number depends on 
the number of simultaneously executed copy operations. 

3. Scheduling algorithm 

Our proposed time-constrained clustering algorithm is 
coupled with a time-constrained scheduling algorithm. 
The clustering algorithm produces a clustered basic block 
(b, cl), which is scheduled by the scheduling algorithm, in 
order to value the quality of the clustering. The schedul-
ing algorithm respects the cluster assignment cl. We 
shortly describe the scheduling algorithm and the used 
objective function. A more detailed description can be 
found in [9]. The objective function reflects the costs of a 
processor, which is required to execute a certain schedule. 
The power and area consumption of a VLIW strongly 
depends on the size of its register files, i.e. the number of 
ports [15]. A register file cost function rfc : N → N is 
given, which returns for a given number of ports the reg-
ister file costs, e.g. in terms of area and power consump-
tion. For a small number of ports, this function may grow 



slowly and for larger numbers it grows cubic and domi-
nates the processor costs [15]. Furthermore, the highest 
possible clock rate of a VLIW depends on the size of its 
largest register file due to wire delay [15]. A clock rate 
function cr : N → N defines the dependency of the clock 
rate on the number of ports.  

The time-constrained scheduling algorithm is similar 
to force-directed-scheduling [12]. For a given schedule 
length L a schedule sc is stepwise constructed. For every 
operation v of (b, cl) a time-frame is determined, regard-
ing to the given schedule length L, in which v can be 
scheduled. In every step an operation v is selected using a 
priority function and scheduled into an instructions i. The 
instruction i is selected by scheduling v on a trial-basis 
into every instruction within its time frame and updating 
the time-frames of all dependent operations. This leads to 
several (maybe partial) trial-schedules sci. For each of 
them an objective value C(sci, cl) is determined. The ob-
jective value is based on an estimation of operator costs 
(TLoad) and register file costs (RBLoad) of each cluster 
and is defined as the sum of RBLoad and TLoad. Fur-
thermore, RBLoad takes into account the limitation of the 
clock rate, which depends on the largest register file of 
the VLIW. For each trial-schedule sci the expected size of 
each register file is estimated by scheduling all unsched-
uled operations in sci, using a list-scheduling-like algo-
rithm. By this, we obtain for each schedule sci an 
estimation schedule esci, which is full scheduled. The 
width |ops(c, i)| of a widest instruction i in esci can be 
determined for each cluster c and gives the number of 
internal read and write ports of the register file in cluster 
c. In order to take the size of the interconnection network 
into account, the number of required external read and 
write ports in each register file is considered. It depends 
on the width of the widest instruction in cluster 0. There-
fore, 

tP(c) = 3 ⋅ |ops(c, i)| + 2 ⋅ |ops(0, i)| 
is the number of ports of the register file of cluster c and  

mP = max{tP(c) | 0 < c < mC} 
is the number of ports of the largest register file of the 
VLIW. Having these values for an estimation schedule 
esci, the objective value RBLoad of the corresponding 
trial-schedule sci is obtained by  

 1 2
1

( , ) ( ( )) ( )
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i
c

RBLoad sc cl rfc tP c cr mPα α
=

= ⋅ − ⋅∑ . 

The first term represents the overall costs of all register 
files and the second term reflects the highest possible 
clock rate, which becomes smaller with growing mP. 
Highest priority is given to the performance degradation 
by weights αi. 

The operator costs of each cluster in sci are estimated 
by a cost function similar to the cost function used in 
force-directed-scheduling. It is based on an estimation of 
the number of parallel executed operations of the same 
type. I.e., for every operation type t, every cluster c and 
every instruction i a load-value ILoad(t, i, c) is computed. 
ILoad(t, i, c) reflects the expected number of operations 
of type t that may be executed in instruction i and cluster 
c. The cluster-load-value of a certain type t 

 { }( , ) max ( , , ) 0CLoad t c ILoad t i c i L= ≤ <  

is the maximal ILoad-value for a given cluster c and type 
t. The operator costs TLoad(sci, cl) of a trial-schedule sci 
and clustering cl are the sum of its cluster-load-values for 
each type t.  

The selected operation v is schedule into instruction i 
for which C(sci, cl) is minimal. If the objective value is 
computed for a full schedule it will reflect the hardware 
costs of the VLIW processor required for its execution. 
However, the objective value may also be computed for 
partial schedules in which no operation is scheduled. This 
is done at several stages of the clustering algorithm in 
order to estimate roughly the quality of the clustering. 

4. Clustering algorithm 

The optimisation goal of our clustering algorithm is to 
produce a clustering cl, so that a full schedule sc of a 
given length L can be generated and the VLIW, necessary 
to execute sc, has minimal hardware costs regarding to the 
objective function C.  

4.1 Clustering scheme 

The clustering algorithm is coupled with scheduling, in 
order to consider dependencies between both tasks which 
arise from inserted copy operations. The iterative pro-
ceeding is shown in figure 3.  

For a given clustering
cl compute schedule

sc for (b, cl).

Determine widest
cluster c in sc.

Has the schedule not
beeing improved for the
N-th successive time?

(1) (3)(2)

Modify clustering cl, in order to reduce register file costs of cluster c,
performing steps (4) to (7) in figure 4.

no

yes

Start with any clustering cl Stop

 
Figure 3: Iterative proceeding during clustering. 

Clustering starts with any initial clustering cl. In step 
(1) a schedule sc for (b, cl) is generated according to the 
algorithm proposed in section 3. It is secured, that in step 
(1) all operations can be scheduled within the given 
length L. I.e., the length of every path of (b, cl) is at most 



L, including all copy operations. In step (3) a widest clus-
ter c is selected regarding to the schedule sc, which was 
produced in step (1). Let w be its width. The register file 
size of c is reduced by moving some operations from c 
into another cluster z, because the register file size has the 
largest impact on cost function C. This is done in steps 
(4)-(7). Therefore, the next iteration, which starts again in 
step (1), uses a modified clustering cl. If the modified cl is 
better than the best clustering bcl which has been pro-
duced so far (i.e. C(cl, sc) < C(bcl, bsc)), bcl is set to be cl 
and bsc is set to be sc. Otherwise, if bcl could not be im-
proved for the N-th time, clustering is finished. The modi-
fied clustering cl is used for the next iteration anyway, 
even if it is worst than the clustering of the previous itera-
tion. By this, local minima could be avoided. A more de-
tailed description of the steps 4 to 7 is given in figure 4.  

Modify clustering cl by selecting a target cluster
z and an operation v which belongs to a widest

instruction in c and move v into z.

Select a longest paths p in (b, cl) and modify cl
by moving some operations on p into z, until

length of p is at most L.

Has every path in
(b,cl) at most length

L?

Is at least one operation
moved from every widest

instruction into z?

no

yes

yes

(4)

(5)(6)

(7)

Perform steps(1) to (3) in figure 3 in order to compute a schedule for
modified clustering cl and decide wether to stop clustering or not.

no

 
Figure 4: Reducing cluster costs. 

The operation v (target node) to be moved from a 
widest instruction in c, as well as the target cluster z in 
which v should be moved, are selected in step (4). The 
problem that occurs, due to moving v into cluster z, is, 
that this may leads to copy operations, which prolong 
some paths of the clustered basic block. If one of these 
paths becomes longer than L, a schedule of length L can-
not be produced in step (1). Therefore these paths must be 
shortened by moving other operations on these paths into 
the target cluster z too (step (6)). These operations "fol-
low" operation v into cluster z. Therefore, some copy op-
erations become needless and can be removed, which 
shortens the path. This proceeding is repeated, until all 
paths have a length of at most L (step (5)). In order to 
reduce the register file size of considered cluster c, at least 
one operation of every widest instruction in c is moved 
into the target cluster z (see step (7)). Therefore, steps (4) 
to (7) are repeated, if there is at least one instruction in c, 
that still has the width w. Furthermore, there is no limit 
how often a node can be moved between different clus-
ters. Thus, previously made assignments of nodes to clus-
ters can be cancelled.  

The proposed clustering scheme is repeated twice and 
both stages differs only in step (6), i.e., how a path is 
shortened: 

• During the first stage whole paths of a basic block are 
moved between different clusters in order to obtain a 
feasible clustering within a short time. 

• During the second stage only sub-paths are moved, in 
order to obtain a better balance of cluster utilisation. 
The first stage starts with an initial clustering, where 

all nodes are assigned to the same cluster. The best clus-
tering bcl, which was generated by the first stage, is used 
as the initial clustering of the second stage.  

4.2 Shortening paths 

The most important step during clustering is shortening of 
all paths that have a length greater than L (steps (5) and 
(6) in figure 4). The length of a path only becomes larger 
than L, if copy operations were inserted. During shorten-
ing a path, the operation v, which was selected in step 4 
and moved into the target cluster z, should stay in cluster 
z. Therefore, other operations on the considered path must 
be moved into cluster z in order to remove copy opera-
tions. In the following it is explained how these opera-
tions are selected. 

A copy operation cp is called a z-cluster-copy opera-
tion, if there exists an operation u with cl(u) = z and 
((u, cp) ∈ E or (cp, u) ∈ E). I.e., cp writes a value into 
cluster z or reads a value from cluster z. A sub-path 
sp = vkvk+1 … vm of a path p = v1 … vn is called a z-cluster-
sub-path, if sp is entirely executed in cluster z and (either 
k = 1 or type(vk-1) = copy) and (either m = n or 
type(vm+1) = copy). In order to shorten a path in step (6), 
we select the longest one. If there are several paths of the 
same length, we select the one which contains the most z-
cluster-copy operations. These copy operations are sig-
nificant positions in the selected path. Either its predeces-
sor belongs to cluster z and its successor not or vice versa. 
In every case the selected path contains at least one z-
cluster-copy operation and is of the form: 

v1…vn–1 vn c vn+1 vn+2…vm, 

where c is a z-cluster-copy operation and vi are nodes of 
arbitrary type. Considering c, the operation, which must 
be moved into cluster z can be determined as follows: 

I. If vn belongs to cluster z, node vn+1 is moved to 
cluster z. We obtain the path 

v1…vn–1 vn vn+1c vn+2…vm. 

II. If vn+1 belongs to cluster z, node vn is moved to 
cluster z. We obtained the path  

v1…vn–1 c vnvn+1vn+2…vm. 

By moving the predecessor or successor of a z-cluster-
copy operation into cluster z the copy operation is "shif-



ted" along the selected path. This will not always reduce 
the length of the path. But in the following cases, it is: 

(a) c is moved according to (II) and type(vn-1) = copy. 
(b) c is moved according to (I) and type(vn+2) = copy. 
(c) c moved according to (II) and vn has no predeces-

sor, i.e. n = 1. 
(d) c is moved according to (I) and vn+1 has no suc-

cessor, i.e. n + 1 = m. 
If in case (a) or (b) vn-1 respectively vn+2 is a z-cluster-
copy operation the path length is reduced by 2 ⋅ lat(copy). 
Otherwise the path length is reduced by lat(copy). A se-
lected z-cluster-copy operation is shifted along the se-
lected path according to the rules (I) and (II) until one of 
the cases (a) to (d) applies. Thus, the length of the consid-
ered path is shortened. However, the length of other paths 
may increased. Figure 5 gives an example. 
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Figure 5: Example of shifting  copy operations. 

Let us assume the basic block in figure 5 should be sched-
uled within four instructions, i.e. L = 4. Operations 1, 4, 5 
and 6 (grey) belongs to the cluster 1. Operation 3 (white) 
belongs to cluster 2. Thus, a copy operation has been in-
serted between operation 3 and 5. Furthermore, let us as-
sume operation 4 is selected in step (4) of figure 4 and 
moved to target cluster 2, as shown in figure 5 (b). There-
fore, the copy operations cp2 and cp3 has been inserted. 
Now the path (1 cp3 4 cp2 6) has a length of 5. Now, either 
operation 1 or 6 must be moved to cluster 2, because op-
eration 4 must remain in cluster 2.  As in figure 5 (c) 
shown, operation 6 has been moved. Now the path 
(1 cp3 4 6) has a length of 4, but the length of path 
3 cp1 5 cp4 6 was increased. Therefore, this path must be 
shortened. Because the assignment to cluster 2 is fix, op-
eration 5 is also moved to cluster 2. This leads to the clus-
tering in figure 5 (d). There, every path has a length of at 
most 4. 
During the first stage of the clustering algorithm all z-
cluster-copy operation nodes of the selected path are re-
moved, which in turns mean, that long operation chains 
are formed in the target cluster and the considered path 

gets a length of at most L. During the second stage only z-
cluster-sub-paths of the selected path are moved to the 
target cluster, until the selected path has a length of at 
most L. By this, it is possible to refine the clustering and 
to obtain a well balanced clustering. In order to select the 
next copy operation, which should be removed from the 
selected path p during the second stage, we select the 
shortest z-cluster-sub-path in p. This sub-path is responsi-
ble for a very short computation chain in the target clus-
ter. Therefore, by moving a z-cluster-copy operation at the 
beginning or end of this sub-path, longer operation chains 
are formed in cluster z. 

4.3 Determining target node and cluster 

So far it was not explained how operation v in step (4) is 
selected. Let cl be the current clustering, BI be the set of 
all widest instructions of cluster c, CL = {1, …, mC} the 
set of available processor clusters and w the width of a 
widest instruction in BI. In step (4) the first instruction 
i ∈ BI is selected. We construct the set of all possible as-
signments A = {(v, z) | v ∈ ops(c, i) and z ∈ CL}. For 
every (v, z) ∈ A cl is modified by moving v into target 
cluster z and performing steps (5) and (6).  The obtained 
clustering is denoted by <v, z> and every path has a 
length of at most L. Let NC be the set of all clusterings 
<v, z>, where (v, z) ∈ A. Then, the clustering <v, z>, for 
which C(s, <v, z>) is minimal is selected. Here s is a 
schedule where no operation is scheduled. Please note, 
that all available clusters mC will only be used by the 
clustering algorithm, if this minimises the objective func-
tion C. If not, some clusters remain empty. Thus, by con-
tinuously increasing mC and performing the clustering 
algorithm the largest number of used clusters can be de-
termined.  

5. Results 

In order to evaluate the quality of our clustering algorithm 
it was integrated in the DSE-Tool DESCOMP [9]. We 
used several basic blocks of typical signal processing ap-
plications from the thesis of Lapinskii [16] as bench-
marks. The largest basic blocks have up to 49 nodes. A 
DSE was done for these benchmarks with DESCOMP 
and varying schedule lengths, in order do determine the 
parameters of well adapted clustered VLIWs for each 
benchmark and each schedule length. The generated 
DESCOMP-architectures were compared to the architec-
tures from Lapinskii’s thesis. In figure 6 the comparison 
of number of ports of the largest register file is shown for 
several number of clusters. The number in parentheses 
behind the benchmark names on top of each table is the 
number of used clusters. In most cases the DESCOMP 



approach leads to better utilisation of the FUs and could 
save register file ports. The number of ports of the largest 
register file could be reduced in average by 20%. The 
total number of ports, which is not shown in figure 6 due 
to a lack of space, could be reduced in average by 26%. 
This means, not only the cost of the largest register file 
could be reduced but also the costs of register files in all 
clusters. Every result was obtained within a few seconds 
up to a few minutes which is comparable to the runtimes 
of Lapinskii’s resource constrained approach. However, 
in contrast to the work of Lapinskii the DESCOMP-
approach allows to combine different operators in a single 
FU, which makes the DSE more complex, because the 
type of each FU must be determined. Thus, we were able 
to consider a larger design space at comparable runtime 
and to save register file ports by this. 

DCT-LEE (2) DCT-DIF (2) DCT-DIT (2) EWF (2) ARF (2) FFT (2)

0

5

10

15

20

25

30

35

10 12 13 16 7 8 9 10 15 7 8 9 10 12 19 15 17 10 11 5 6 7 8 10 14

schedule length

nu
m

be
r 

of
 p

or
ts

Lapinskii-architecture DESCOMP-architecture  

A
M

M
P

 (
4)

E
Q

U
A

K
E

1 
(4

)

SW
IM

1 
(4

)

FF
T

 (
5)

D
C

T
-D

IF
 (3

)

D
C

T
-D

IT
 (

3)

E
W

F 
(3

)

FF
T 

(3
)

D
C

T
-D

IT
 (

4)

FF
T 

(4
)

D
C

T
-L

E
E

 (3
)

0

5

10

15

20

25

30

12 11 8 9 10 13 14 15 5 6 7 8 10 11 7 9 6 5 6 6 6 7 8

schedule length

nu
m

be
r 

of
 p

or
ts

Lapinskii-architecture DESCOMP-architecture  
Figure 6: Benchmark results. 

6. Conclusions 

We have introduced a new time-constrained clustering 
algorithm which is coupled with a time-constrained 
scheduling algorithm. By this, a time consuming DSE-
cycle can be avoided, even for DSE of clustered VLIW 
processors. The results show, that the generated clustered 
schedule saves register file ports, compared to a state-of-
the-art approach. Therefore, area and power consumption 
of the register files is reduced and a higher clock rate can 
be used. 
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