
Area Optimization of Multi-Cycle Operators in High-Level Synthesis*

M. C. Molina, R. Ruiz-Sautua, J. M. Mendías, R. Hermida
Dpto. Arquitectura de Computadores y Automática

Universidad Complutense de Madrid
{cmolinap, mendias, rhermida}@dacya.ucm.es, rsautua@fdi.ucm.es

* This work was supported by Spanish Government under grant CYCIT TIN 2005-5619

Abstract
Conventional high-level synthesis algorithms usually
employ multi-cycle operators to reduce the cycle length in
order to improve the circuit performance. These operators
need several cycles to execute one operation, but the
entire functional unit is not used in any cycle.
Additionally, the execution of operations over wider
multi-cycle operators is unfeasible if their results must be
available in a smaller number of cycles than the
functional unit delay. This obliges to add new functional
resources to the datapath even if multi-cycle operators
are idle when the execution of the operation begins.
In this paper a new design technique to overcome the
restricted reusability of multi-cycle operators is
presented. It reduces the area of these functional units
allowing their internal reuse when executing one
operation. It also expands the possibilities of common
hardware sharing as it allows the partial use of multi-
cycle operators to calculate narrower operations faster
than the functional unit delay. This technique is applied as
an optimization phase at the end of the high-level
synthesis process, and can optimize the circuits
synthesized by any high-level synthesis tool.

1. Introduction
A High–Level Synthesis (HLS) process transforms the

behavioural description of a circuit into a Register-
Transfer-Level (RTL) implementation. It involves three
major tasks: scheduling, allocation, and binding.
Scheduling selects the number of clock cycles and their
duration, and assigns operations of the behavioural
description to them. Allocation selects a set of resources
to execute the specified behaviour, and binding assigns
operations to functional units (FUs), variables to storage
elements, and data transfers to routing resources.

Many efforts in high-level scheduling have been
concentrated on improving circuit performance (time
required to execute all the specification operations).
Traditionally, pipelining has been the preferred technique
although it does not reduce the circuit latency [1-2]. Most

scheduling algorithms have improved circuit performance
with chaining [3-5] and multi-cycle [5-6] techniques.
Chaining helps to reduce the number of clock cycles
through the execution of several data-dependent
operations in the same cycle. This technique requires
more FUs as chained operations cannot share HW
resources. Multi-cycle reduces the cycle duration through
the execution of long operations across several
consecutive cycles. Here, the results produced need
several cycles to be available. Also, the reusability of
multi-cycle operators is quite limited. A multi-cycle FU
can execute as many specification operations as the circuit
latency divided by the number of cycles needed to
perform the calculus. But even in the best case, when the
multi-cycle FU executes this maximum number of
operations, it is only partially used in each cycle. Then,
the best use of multi-cycle operators implies some HW
waste that can be translated as redundant area.

In order to minimize the datapath area most allocation
algorithms bind operations to wider FUs. Here, the time
required to calculate the operation result is equivalent to
the FU delay. In particular, the execution of one operation
over a wider multi-cycle FU requires the same number of
cycles as the FU, even if the operation could be calculated
faster. This makes the execution of operations over wider
multi-cycle operators impossible if they must finish in a
smaller number of cycles than the FU delay.

In this paper, we propose an optimization technique
that minimizes the HW waste in multi-cycle operators
increasing their internal reuse. It reduces the area of the
multi-cycle FUs without affecting their delays, and allows
the execution of smaller operations faster than the
operator delay. The proposed technique is applied as an
optimization phase after the HLS process. Other
optimization phases have been previously added at the
end of the HLS process with successful results [7-10]. The
post-synthesis optimizations can be applied to the RTL
circuits synthesized by any HLS algorithm, and thus can
benefit from future improvements in HLS tools.

978-3-9810801-2-4/DATE07 © 2007 EDAA

2. Motivational example
This section provides the insight into the internal reuse

of multi-cycle operators, and the new possibilities of HW
sharing provided by the proposed technique. Its
underlying idea is the substitution of every multi-cycle
operator for the minimum HW necessary to execute the
part of the operation calculated in every cycle, reusing as
much as possible the same FUs in all the cycles. The
following paragraphs introduce the proposed technique
with the aid of a simple example.

Figure 1 a) shows a scheduled data flow graph (DFG)
of a behavioural description formed by 4 multiplications.
A conventional implementation using multi-cycle
operators is illustrated in fig. 1 b). The datapath is formed
by two FUs: one multi-cycle 128×64 multiplier, and one
64×64 multiplier. The 128×64 multiplier calculates a×b
across cycles 1 and 2, and the 64×64 multiplier computes
d×e, f×g, and h×i in cycles 1, 2, and 3, respectively. In the
best case, a multi-cycle operator performs the same
number of calculi in every execution cycle, in order to
minimize the slack times wasted. Then, we can assume

that the 128×64 multiplier calculates the 96 least
significant bits (LSB) of the result in cycle 1, and the 96
most significant bits (MSB) in cycle 2, and the time spent
performing the calculations coincides in both cycles.
Figure 1 c) shows the calculus matrix of a 128×64
multiplication, and the vertical line divides the part of the
multiplication computed in cycles 1 and 2. Inside every
operation fragment we can identify the calculus matrix of
one 32×64 multiplication, shown in grey colour. This
means that we can use a 32×64 multiplier to execute
a31..0×b63..0 in cycle 1 and a127..96×b63..0 in cycle 2. Then, the
internal reuse of a 32×64 multiplier implies a 25%
reduction of the FU area. In addition to the two new
multiplications, we find two other new operations in the
calculus matrix of a 128×64 multiplication. These new
operations perform the calculus included inside an
isosceles right-angled triangle. TUp is the operation
included in the triangle with the right angle on the top,
and TDown the one included in the triangle with the right
angle on the bottom. In [11] a possible implementation of
these operations based on adders and AND gates is
presented. The multi-cycle multiplier is then decomposed

Figure 1. a) Scheduled DFG, b) conventional implementation, c) calculus matrix of a 128×64 multiplication in 2 cycles, d)
availability of the new FUs, and e) binding of the operations executed over the 64×64 multiplier.

 a) b)

c)

cycle 1

cycle 2

cycle 3 ×

i

f g

32 32

64

m
128

h

d e

32 32

64

×

×

128

c

a b

64

192

×
cycle 1

cycle 2

cycle 3 ×

i

f g

32 32

64

m
128

h

d ed e

32 32

64

×

×

128

c

a b

64

192

×
×

128×64

a b
128 64

192

c

×
128×64

a b
128 64

192

c

×
64×64

6464 64

128 0h (cycle 1)
0i (cycle 2)
0m (cycle 3)

64

0d0d 0f0f
64

hh
64 64

0e0e 0g
64

ii
64

a0b2

a0b1a1b1

a0b0a1b0a2b0

a0b2

a0b1a1b1

a0b0a1b0a2b0

a0b63

a0b62a1b62
a0b63

a0b62a1b62

a31b0a32b0

a 32
b 63

a31b63

a95b0

a95b1

a33b63

a34b62
a95b63a96b63a127b63

a127b0 a96b0

cycle 1cycle 2

32×64
multiplier

32×64
multiplier

TUp

TDown

a95..33, b63..1TDown
a95..32, b63..0TUp

a127..96×b63..0a31..0×b63..032×64 multiplier
Cycle 3Cycle 2Cycle 1

a95..33, b63..1TDown
a95..32, b63..0TUp

a127..96×b63..0a31..0×b63..032×64 multiplier
Cycle 3Cycle 2Cycle 1

d)

h63..1, i63..1a95..33, b63..1d31..0030..0,e31..0030..0TDown
h63..0, i63..0031..0d31..0,031..0e31..0a95..32, b63..0TUp

a127..96×b63..0a31..0×b63..032×64 multiplier
Cycle 3Cycle 2Cycle 1

h63..1, i63..1a95..33, b63..1d31..0030..0,e31..0030..0TDown
h63..0, i63..0031..0d31..0,031..0e31..0a95..32, b63..0TUp

a127..96×b63..0a31..0×b63..032×64 multiplier
Cycle 3Cycle 2Cycle 1

e)

into one 32×64 multiplier, one TUp operator, one TDown
operator and one adder used in cycles 1 and 2 to sum up
the partial results. These additions do not increment the
cycle length due to the rippling effect of the operations
considered in the example.

In addition to the internal reuse of the adder and the
32×64 multiplier, it is possible to use the new FUs to
execute other specification operations. In the example, if
we are able to allocate all the operations bound to the
64×64 multiplier to the new FUs, then the 64×64
multiplier can be removed from the datapath. Figure 1 d)
shows the availability of the new FUs, the grey cells
correspond to the cycles where the FUs are idle. In order
to remove the 64×64 multiplier, d×e must be executed
over the TDown operator (the only one without allocated
operations in cycle 1), f×g over TUp, and h×i over any of
the FUs obtained from the decomposition of the multi-
cycle multiplier.

Inside both the TUp and TDown operators it is possible
to identify the calculus matrix of several smaller
multiplications. In general, the execution of an m×m
multiplication over an n bits TUp or TDown operator is
possible if nm ≤−12 . Operations d×e and f×g satisfy this
equation and then can be executed over the idle FUs.
Figure 1 e) shows the execution of both multiplications
over the TDown and TUp FUs. In both cases, the
multiplications do not occupy the overall operator and it is
necessary to extend the operands to invalidate some of the
calculus performed by the FU to obtain the correct result.
Note that the TUp and TDown operators linked as shown
in fig. 1 c) constitute one 64×64 multiplier. Thus, h×i can
be executed in cycle 3 distributed over these two FUs.
The operands supplied to every FU are shown in fig. 1 e).
The results produced by the TUp and TDown FUs are
summed up in the same adder used in cycles 1 and 2 to
perform the 128×64 multiplication.

The optimized datapath is finally formed by one 32×64
multiplier, one 64 bits TUp operator, one 63 bits TDown
operator and one adder. Table I shows the area and time
results of both implementations measured by Synopsys
Design Compiler after logic synthesis. The area values
include the area of FUs, storage and routing resources and
the controller. As shown in the table, the overall area has
been significantly decreased, around 30%. As expected,
the execution times coincide in both cases. Note that this
technique requires the storage of the partial results
calculated by the multi-cycle operator until, at least, the
end of the operation. However, the new storage needs do
not waste the area reductions achieved because, in most
cases, the storage elements present in the original datapath
are used inside the new multi-cycle operator.

3. Proposed algorithm
The proposed technique is integrated into an automatic

algorithm to optimize the circuit synthesized by a
conventional HLS algorithm. The algorithm progressively
transforms the synthesized implementation across two
phases: decomposition of multi-cycle operators and
removal of some datapath FUs. The first phase is executed
only once, and the second one until the datapath satisfies
some conditions. In the first phase every multi-cycle FU is
substituted for a set of smaller FUs. Some of these new
resources are used in several cycles of the multi-cycle
operator (internal HW reuse). In the second phase some of
the mono-cycle operations are bound to the new FUs with
the aim of removing some of the FUs of the original
datapth. The following subsections detail both phases.

3.1 Decomposition of multi-cycle operators
The synthesized datapath is transformed substituting

every multi-cycle operator for a set of smaller FUs that
are used in one or several cycles of the multi-cycle FU.
The decompositions performed try to maximize the
internal reuse of the smaller FUs, and thus to minimize
the operator area. We have tried to find the largest
common operation included in the fragments calculated in
every execution cycle of the multi-cycle operator.

In the present version of the optimization algorithm we
have considered multi-cycle multipliers that have been
decomposed into mono-cycle multipliers, adders, and the
two new operators TUp and TDown. These two new FUs
compute the operations included in one isosceles right-
angled triangle extracted from the calculus matrix of a
multiplication. In [11] some implementations of both FUs
are presented. In order to balance the set of calculations
performed by the multi-cycle FU in every cycle, we have
divided the FU to get the same number of result bits in
every execution cycle. These partitions allow the
fragments of the multi-cycle operator to share bigger FUs.
3.1.1 Decomposition of 2-cycles multipliers. The
decomposition of one 2-cycles multiplier of m×n bits is
performed fragmenting vertically the calculus matrix of
the multiplication to get the  2/)(nm + LSB of the result
in the first cycle and the remaining ones in the second. We
have distinguished the following two cases:
1) m×m multiplication. The multi-cycle FU is substituted
for one mono-cycle multiplication of  2/m ×  2/m bits
that is used in cycles 1 and 2, two TUp FUs of  2/m bits
used in cycle 1, and two TDown FUs of  2/m -1 bits
used in cycle 2. If m is an odd number, then it is necessary
to insert a column of zeros between the two fragments
obtained in the decomposition of the operator in order to
have the cited set of FUs. The additional column in the
calculus matrix of the operation does not increment its
execution time because it does not enlarge the chain of
carry propagations. Figure 2 a) illustrates this
decomposition, the multiplier in grey colour is used in

 Table I. Comparison of implementations
 Area (gates) Cycle length (ns)

Original datapath 109668 39.592
Optimized datapath 77920 39.596

cycles 1 and 2 (internal reuse). As shown in the figure,
this decomposition reduces 25% the operator area (one of
the multipliers in grey is removed).
2) m×n multiplication, being m≠n. The multi-cycle FU is
substituted for one mono-cycle multiplication of
  nnnm ×−−+)1(2/)(bits that is used in cycles 1 and
2, one TUp FU of n-1 bits used in cycle 1, and one
TDown FU used in cycle 2. If m+n is an even number,
then the width of the TDown operator becomes n-2 bits,
and in this case it is also necessary to insert a column of
zeros between both operator fragments. If m+n is an odd
number, then the width of the TDown operator is n-1 bits.
Figure 2 b) shows this decomposition, with the multiplier
in grey colour used in cycles 1 and 2. It also reduces 25%
the operator area (one of the multipliers is removed).
3.1.2 Decomposition of 3-cycles multipliers. The
decomposition of one 3-cycles multiplier of m×n bits is
performed fragmenting vertically the calculus matrix of
the multiplication to obtain the  3/)(nm + LSB of the
result in the first cycle, and the  3/)(nm + MSB in the
third one. Two different cases appear:
1) m×m multiplication. The multi-cycle FU is
substituted for one TUp FU of  3/2m bits used in cycles
1 and 2, and one TDown FU of  3/2m bits used in
cycles 2 and 3. Figure 2 c) shows the 50% area reduction
achieved (one TUp FU, and one TDown FU removed).
2) m×n multiplication, being m≠n. The multi-cycle FU
is substituted for one mono-cycle multiplication of
  nnnm ×−−+)1(3/)(bits that is used in cycles 1, 2,
and 3, one TUp FU of n-1 bits used in cycles 1 and 2, and
one TDown FU of n-1 bits used in cycles 2 and 3. Figure

2 d) shows the 40% area reduction achieved (two
multipliers, one TUp FU, and one TDown FU removed).

The decompositions of multi-cycle multipliers that
need more than 3 cycles to calculate the operation results
are performed similarly to the 3-cycles operators. In these
decompositions all the fragments take the same time to be
executed. However, the algorithm can be easily modified
to comply with non-integer multi-cycle FUs [7] that
produce less result bits in the last execution cycle than in
the previous ones. In this case, the vertical partitions
performed are not equidistant but the extraction of the
new FUs is carried out as explained above.

3.2 Removal of some datapath FUs
The main goal of this phase is the removal of some

datapath FUs to reduce the overall circuit area. One FU
can be removed from the datapath if all the operations
bound to it can be executed over the remaining functional
resources. In the previous phase the number of datapath
FUs has been increased, and there are also more idle FUs
left in every cycle. The algorithm tries to reallocate the
specification operations over these idle FUs. To this
purpose, it allows the execution of one operation over a
wider FU, and also distributed over several chained FUs.
3.2.1 Binding one operation to one idle FU. The
algorithm takes into account the following cases:
1) One m×n multiplier can execute a k×p multiplication if
k≤m and p≤n.
2) One m×n multiplier (m≥n) can calculate one
TUp/TDown operation of k bits (being k≤n) as illustrated
in fig. 3 a).
3) One m bits TUp/TDown FU can execute one
TUp/TDown operation of n bits (being n≤m).

Figure 2. a) Decomposition of a 2-cycles m×m multiplier, b) 2-cycles m×n multiplier, c) 3-cycles m×m multiplier, and d) 3-cycles
m×n multiplier.

cycle 1cycle 2









×








22
mm









×








22
mm 








2
m









2
m

1
2

−






m

1
2

−






m

m bits

m bits
nnnm

×−−






 +)1(
2

nnnm
×−−







 +)1(
2

TUp

TDown

cycle 1cycle 2

m bits

n bits

TUp

TDown

cycle 1

m bits

n bits

cycle 2cycle 3

TDown

TUp TUp

a) b)

c) d)cycle 1cycle 2cycle 3

m bits

m bits

TDown

TUp

TDown

TUp

cycle 1cycle 2









×








22
mm









×








22
mm 








2
m









2
m

1
2

−






m

1
2

−






m

m bits

m bits

cycle 1cycle 2









×








22
mm









×








22
mm 








2
m









2
m

1
2

−






m

1
2

−






m

m bitsm bits

m bits
nnnm

×−−






 +)1(
2

nnnm
×−−







 +)1(
2

TUp

TDown

cycle 1cycle 2

m bits

n bitsnnnm
×−−







 +)1(
2

nnnm
×−−







 +)1(
2

TUp

TDown

cycle 1cycle 2

m bits

n bits

TUp

TDown

cycle 1

m bits

n bits

cycle 2cycle 3

TDown

TUp TUp
TUp

TDown

cycle 1cycle 1

m bits

n bits

cycle 2cycle 2cycle 3cycle 3

TDown

TUp TUp

a) b)

c) d)cycle 1cycle 2cycle 3

m bits

m bits

TDown

TUp

TDown

TUp

cycle 1cycle 1cycle 2cycle 2cycle 3cycle 3

m bits

m bits

TDown

TUp

TDown

TUp

4) One m bits TUp/TDown FU can calculate one
   2/12/ mm ×+ multiplication as in fig. 3 b).
5) One m bits TUp/TDown FU can execute one
TDown/TUp operation of n bits (being  2/mn ≤) as
illustrated in fig. 3 c).
3.2.2 Binding one operation to several chained Fus.
The datapath FUs can be chained to execute wider
operations. The following rules compose wider FUs:
1) An even number n of triangles of the same width m
can be chained horizontally to form one multiplier of
width mmn ×+⋅)1()2/(. The number of TUp and
TDown operators must be the same, and every operator
must be located between two FUs of the other type.
Figure 4 a) illustrates this composition.
2) An even number n of triangles of the same width m
can be chained vertically to other set of n chained
triangles of m bits to form one multiplier of width

mmn ⋅×+⋅ 2)1()2/(. The number of TUp and TDown
operators must be also the same, and every operator must
be located between two FUs of the other type. Every row
of chained triangles must be shifted m bits to the left from
the above row. Figure 4 c) shows this composition.
3) One m×n multiplication can be chained horizontally to
one k×n to form a multiplication of (m+k)×n bits. Figure 4
d) illustrates this composition.

4) One m×n multiplication can be chained vertically to
one m×k to form a multiplication of m×(n+k)bits. The
second multiplication must be shifted n bits to the left
from the above one as shown in fig. 4 b).
3.2.3 Removal execution. This phase consists of a
loop. Every iteration tries to remove one of the datapath
FUs, from the widest one to the narrowest. The FUs
considered either in any cycle do not execute any
operation, or calculate a narrower one. The algorithm tries
to bind the operations assigned to the target FU to the
remaining FUs in the datapath, with no change in its
execution cycle. The first choice is always the binding of
one operation to one FU, and as second choice it tries to
bind one operation to several chained FUs. The previous
rules are checked in order for every FU considered and
every operation assigned to it. The phase finishes when
either all the FUs have been considered, or all the
datapath FUs are used in every cycle to execute
operations of their same type and width. In this case, the
removal of any datapath FU would make the execution of
the operations scheduled in that cycle impossible. This
second phase can be executed independently of the first
one to optimize datapaths without multi-cycle operators.
In this case, it tries to increase the internal reuse of FUs
that execute smaller operations, binding them to several
idle FUs chained as explained in the previous subsections.

Figure 3. a) Execution of one TUp/TDown operation over a multiplier, b) one multiplier over one TDown/TUp FU, and c) one
TUp/TDown operation over one TDown/TUp FU.

m bits

n bits

TUp
n bits

TDown
n bits









×+








2

1
2

mm

m bits









×+








2

1
2

mm

m bits m bits









2
m

m bits









2
m

a) b) c)
m bits

n bits

TUp
n bits

TDown
n bits

m bits

n bits

TUp
n bits

TDown
n bits









×+








2

1
2

mm

m bits









×+








2

1
2

mm

m bits









×+








2

1
2

mm

m bits









×+








2

1
2

mm

m bits









×+








2

1
2

mm

m bits









×+








2

1
2

mm

m bits m bits









2
m

m bits









2
m

m bits









2
m

m bitsm bits









2
m

a) b) c)

Figure 4. a) Horizontal composition of triangles, b) vertical composition of multipliers, c) vertical composition of triangles, and d)
horizontal composition of multipliers.

TUp TUp

TDown TDown

2m bits

m bits

TUp TUp

TDown TDown

2m bits

2m bitsTUp TUp

TDown TDownm bits k bits

n bits

m+k bits

m bits

n
bits

k bits

n+k
bits

a) c)b)

d)

TUp TUp

TDown TDown

2m bits

m bits

TUp TUp

TDown TDown

2m bits

m bits

TUp TUp

TDown TDown

2m bits

2m bitsTUp TUp

TDown TDown

TUp TUp

TDown TDown

TUp TUp

TDown TDown

2m bits

2m bitsTUp TUp

TDown TDown

TUp TUp

TDown TDownm bits k bits

n bits

m+k bits

m bits k bits

n bits

m+k bits

m bits

n
bits

k bits

n+k
bits

m bits

n
bits

k bits

n+k
bits

a) c)b)

d)

4. Experimental results
The experimental work performs the optimization of

some circuits synthesized by the commercial tool
Synopsys Behavioral Compiler (BC), version 2001.08.
Both RT-level implementations, the one produced by BC
and the optimized one, are processed by Synopsys Design
Compiler (DC) to obtain the area and time reports. The
implementations of both the TUp and TDown operators
have been added to the design library. Time results shown
in this section are measured in nanoseconds and areas in
number of equivalent gates. In all cases areas include the
FUs, storage and routing units, glue logic, and controller.

We have synthesized and optimized twenty different
synthetic specifications ranging from 50 to 100 operations
(around 60% are multiplications). In the implementations
synthesized by BC the percentage of area occupied by
multi-cycle operators is around 20% of the total area.
Figure 5 shows the average areas of these circuits grouped
by the number of operations. In all the cases the optimized
implementation is quite smaller than the original one, and
the amount of area saved is 38% on average.

 In addition to the synthetic specifications, we have
synthesized the fifth order elliptical wave filter, and some
modules of the ADPCM decoding algorithm described in
Recommendation G.721 of the CCITT. Table II shows the
datapath area and cycle length comparisons between the
implementation obtained by BC and the optimized one,
for three different latency values (λ). Areas have been
decreased 40% on average, and reductions of up to 65%
have been obtained. The ADPCM modules synthesized
and optimized are: Inverse Adaptative Quantizer (IAQ),
Output PCM Format Conversion (OPFC), Synchronous
Coding Adjustment (SCA), and Tone and Transition
Detector (TTD). Table III shows the areas of the
implementation obtained by BC and our optimization. The
circuit area has been reduced 24% on average. In all the
experiments, the area reductions have incremented neither
the latency nor the cycle length, which have remained
constant.

5. Conclusion
The proposed optimization technique reduces the area

of the circuits synthesized by regular HLS algorithms
using multi-cycle operators. It allows the internal reuse of
the HW inside the multi-cycle FUs in their different
execution cycles, and also their partial reuse to execute
smaller operations faster than the FU delay. Furthermore,
the proposed transformations can be used to increment the
partial reuse of mono-cycle operators, and are compatible
with recent techniques like bit-level chaining and non-
integer multi-cycle. All the presented optimizations keep
constant both the cycle length and the latency of the
original implementation, therefore they do not waste the
benefits obtained from the use of multi-cycle operators.

References
[1] N. Park, and A. Parker. “Sehwa: A Software Package for

Synthesis of Pipelines from Behavioural Specifications”. IEEE
Trans. on CAD, March 1988.

[2] K.S. Hwang, A.E. Casavant, C.T. Chang, and M.A. d’Abreu.
“Scheduling and Hardware Sharing in Pipelined Data Paths”. In
Proc. ICCAD 1989.

[3] S. Ogrenci, R. Kastner, E. Bozorgzadeh, M. Sarrafzadeh. “A
Scheduling Algorithm for Optimization and Early Planning in
High-level Synthesis”. ACM TODAES, January 2005.

[4] S. Gupta, T. Kam, M. Kishinevsky, S. Rotem, N. Savoiu, N. Dutt,
R. Gupta, A. Nicolau. “Coordinated Transformations for High-
Level Synthesis of High Performance Microprocessor Blocks”. In
Proc. DAC 2002.

[5] A. Kountouris, C. Wolinski. “Efficient Scheduling of Conditional
Behaviors for High-level Synthesis”. ACM TODAES, July 2002.

[6] J. Jeon, D. Kim, D. Shin, K. Choi. “High-level Synthesis under
Multi-cycle Interconnect Delay”. In Proc. ASP-DAC 2001.

[7] S. Park, and K. Choi. “Performance-Driven High-Level Synthesis
with Bit-Level Chaining and Clock Selection”. IEEE Trans. on
CAD, February 2001.

[8] Z. Yu, K. Khoo, and A. Wilson, Jr. “The Use of Carry-Save
Representation in Joint Module Selection and Retiming”. In Proc.
DAC 2000.

[9] V. Raghunathan, S. Ravi, and G. Lakshminarayana. “Integrating
Variable-Latency Components into High-Level Synthesis”. IEEE
Trans. on CAD, October 2000.

[10] J. Zhu, and D. D. Gajski. “Soft Scheduling in High Level
Synthesis”. In Proc. DAC 1999.

[11] R. Ruiz-Sautua, M. C. Molina, J. M. Mendias, R. Hermida.
“Pre-synthesis Optimization of Multiplications to Improve
Circuit Performance”. In Proc. DATE 2006.

0
2000
4000
6000
8000

10000
12000

50 60 70 80 90 100

Number of operations

A
re

a
(g

at
es

x1
00

0)

Original Optimized

Figure 5. Area results for the synthetic circuits.

Table III. Synthesis of some modules of ADPCM decoder

Area (gates) Module λ Original Optimized Saved
IAQ 3 798 672 16%
TTD 5 1873 1282 32%

OPFC + SCA 12 1226 870 30%

Table II. Synthesis of the fifth-order elliptic wave filter

Circuit area (gates) Cycle length (ns)
λ

Original Optimized Saved Original Optimized
8 76540 58190 23% 58.63 58.68

11 70652 45926 35% 51.59 51.54
16 67944 23840 65% 32.27 32.36

	Main
	DATE07
	Front Matter
	Table of Contents
	Author Index

