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Abstract 
Conventional high-level synthesis algorithms usually 
employ multi-cycle operators to reduce the cycle length in 
order to improve the circuit performance. These operators 
need several cycles to execute one operation, but the 
entire functional unit is not used in any cycle. 
Additionally, the execution of operations over wider 
multi-cycle operators is unfeasible if their results must be 
available in a smaller number of cycles than the 
functional unit delay. This obliges to add new functional 
resources to the datapath even if multi-cycle operators 
are idle when the execution of the operation begins. 
In this paper a new design technique to overcome the 
restricted reusability of multi-cycle operators is 
presented. It reduces the area of these functional units 
allowing their internal reuse when executing one 
operation. It also expands the possibilities of common 
hardware sharing as it allows the partial use of multi-
cycle operators to calculate narrower operations faster 
than the functional unit delay. This technique is applied as 
an optimization phase at the end of the high-level 
synthesis process, and can optimize the circuits 
synthesized by any high-level synthesis tool. 
 

1. Introduction 
A High–Level Synthesis (HLS) process transforms the 

behavioural description of a circuit into a Register-
Transfer-Level (RTL) implementation. It involves three 
major tasks: scheduling, allocation, and binding. 
Scheduling selects the number of clock cycles and their 
duration, and assigns operations of the behavioural 
description to them. Allocation selects a set of resources 
to execute the specified behaviour, and binding assigns 
operations to functional units (FUs), variables to storage 
elements, and data transfers to routing resources.  

Many efforts in high-level scheduling have been 
concentrated on improving circuit performance (time 
required to execute all the specification operations). 
Traditionally, pipelining has been the preferred technique 
although it does not reduce the circuit latency [1-2]. Most 

scheduling algorithms have improved circuit performance 
with chaining [3-5] and multi-cycle [5-6] techniques. 
Chaining helps to reduce the number of clock cycles 
through the execution of several data-dependent 
operations in the same cycle. This technique requires 
more FUs as chained operations cannot share HW 
resources. Multi-cycle reduces the cycle duration through 
the execution of long operations across several 
consecutive cycles. Here, the results produced need 
several cycles to be available. Also, the reusability of 
multi-cycle operators is quite limited. A multi-cycle FU 
can execute as many specification operations as the circuit 
latency divided by the number of cycles needed to 
perform the calculus. But even in the best case, when the 
multi-cycle FU executes this maximum number of 
operations, it is only partially used in each cycle. Then, 
the best use of multi-cycle operators implies some HW 
waste that can be translated as redundant area. 

In order to minimize the datapath area most allocation 
algorithms bind operations to wider FUs. Here, the time 
required to calculate the operation result is equivalent to 
the FU delay. In particular, the execution of one operation 
over a wider multi-cycle FU requires the same number of 
cycles as the FU, even if the operation could be calculated 
faster. This makes the execution of operations over wider 
multi-cycle operators impossible if they must finish in a 
smaller number of cycles than the FU delay. 

In this paper, we propose an optimization technique 
that minimizes the HW waste in multi-cycle operators 
increasing their internal reuse. It reduces the area of the 
multi-cycle FUs without affecting their delays, and allows 
the execution of smaller operations faster than the 
operator delay. The proposed technique is applied as an 
optimization phase after the HLS process. Other 
optimization phases have been previously added at the 
end of the HLS process with successful results [7-10]. The 
post-synthesis optimizations can be applied to the RTL 
circuits synthesized by any HLS algorithm, and thus can 
benefit from future improvements in HLS tools. 
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2. Motivational example 
This section provides the insight into the internal reuse 

of multi-cycle operators, and the new possibilities of HW 
sharing provided by the proposed technique. Its 
underlying idea is the substitution of every multi-cycle 
operator for the minimum HW necessary to execute the 
part of the operation calculated in every cycle, reusing as 
much as possible the same FUs in all the cycles. The 
following paragraphs introduce the proposed technique 
with the aid of a simple example.  

Figure 1 a) shows a scheduled data flow graph (DFG) 
of a behavioural description formed by 4 multiplications. 
A conventional implementation using multi-cycle 
operators is illustrated in fig. 1 b). The datapath is formed 
by two FUs: one multi-cycle 128×64 multiplier, and one 
64×64 multiplier. The 128×64 multiplier calculates a×b 
across cycles 1 and 2, and the 64×64 multiplier computes 
d×e, f×g, and h×i in cycles 1, 2, and 3, respectively. In the 
best case, a multi-cycle operator performs the same 
number of calculi in every execution cycle, in order to 
minimize the slack times wasted. Then, we can assume 

that the 128×64 multiplier calculates the 96 least 
significant bits (LSB) of the result in cycle 1, and the 96 
most significant bits (MSB) in cycle 2, and the time spent 
performing the calculations coincides in both cycles. 
Figure 1 c) shows the calculus matrix of a 128×64 
multiplication, and the vertical line divides the part of the 
multiplication computed in cycles 1 and 2. Inside every 
operation fragment we can identify the calculus matrix of 
one 32×64 multiplication, shown in grey colour. This 
means that we can use a 32×64 multiplier to execute 
a31..0×b63..0 in cycle 1 and a127..96×b63..0 in cycle 2. Then, the 
internal reuse of a 32×64 multiplier implies a 25% 
reduction of the FU area. In addition to the two new 
multiplications, we find two other new operations in the 
calculus matrix of a 128×64 multiplication. These new 
operations perform the calculus included inside an 
isosceles right-angled triangle. TUp is the operation 
included in the triangle with the right angle on the top, 
and TDown the one included in the triangle with the right 
angle on the bottom. In [11] a possible implementation of 
these operations based on adders and AND gates is 
presented. The multi-cycle multiplier is then decomposed 

Figure 1. a) Scheduled DFG, b) conventional implementation, c) calculus matrix of a 128×64 multiplication in 2 cycles, d) 
availability of the new FUs, and e) binding of the operations executed over the 64×64 multiplier. 
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into one 32×64 multiplier, one TUp operator, one TDown 
operator and one adder used in cycles 1 and 2 to sum up 
the partial results. These additions do not increment the 
cycle length due to the rippling effect of the operations 
considered in the example. 

In addition to the internal reuse of the adder and the 
32×64 multiplier, it is possible to use the new FUs to 
execute other specification operations. In the example, if 
we are able to allocate all the operations bound to the 
64×64 multiplier to the new FUs, then the 64×64 
multiplier can be removed from the datapath. Figure 1 d) 
shows the availability of the new FUs, the grey cells 
correspond to the cycles where the FUs are idle. In order 
to remove the 64×64 multiplier, d×e must be executed 
over the TDown operator (the only one without allocated 
operations in cycle 1), f×g over TUp, and h×i over any of 
the FUs obtained from the decomposition of the multi-
cycle multiplier.  

Inside both the TUp and TDown operators it is possible 
to identify the calculus matrix of several smaller 
multiplications. In general, the execution of an m×m 
multiplication over an n bits TUp or TDown operator is 
possible if nm ≤−12 . Operations d×e and f×g satisfy this 
equation and then can be executed over the idle FUs. 
Figure 1 e) shows the execution of both multiplications 
over the TDown and TUp FUs. In both cases, the 
multiplications do not occupy the overall operator and it is 
necessary to extend the operands to invalidate some of the 
calculus performed by the FU to obtain the correct result. 
Note that the TUp and TDown operators linked as shown 
in fig. 1 c) constitute one 64×64 multiplier. Thus, h×i can 
be executed in cycle 3 distributed over these two FUs. 
The operands supplied to every FU are shown in fig. 1 e). 
The results produced by the TUp and TDown FUs are 
summed up in the same adder used in cycles 1 and 2 to 
perform the 128×64 multiplication.  

The optimized datapath is finally formed by one 32×64 
multiplier, one 64 bits TUp operator, one 63 bits TDown 
operator and one adder. Table I shows the area and time 
results of both implementations measured by Synopsys 
Design Compiler after logic synthesis. The area values 
include the area of FUs, storage and routing resources and 
the controller. As shown in the table, the overall area has 
been significantly decreased, around 30%. As expected, 
the execution times coincide in both cases. Note that this 
technique requires the storage of the partial results 
calculated by the multi-cycle operator until, at least, the 
end of the operation. However, the new storage needs do 
not waste the area reductions achieved because, in most 
cases, the storage elements present in the original datapath 
are used inside the new multi-cycle operator. 

3. Proposed algorithm 
The proposed technique is integrated into an automatic 

algorithm to optimize the circuit synthesized by a 
conventional HLS algorithm. The algorithm progressively 
transforms the synthesized implementation across two 
phases: decomposition of multi-cycle operators and 
removal of some datapath FUs. The first phase is executed 
only once, and the second one until the datapath satisfies 
some conditions. In the first phase every multi-cycle FU is 
substituted for a set of smaller FUs. Some of these new 
resources are used in several cycles of the multi-cycle 
operator (internal HW reuse). In the second phase some of 
the mono-cycle operations are bound to the new FUs with 
the aim of removing some of the FUs of the original 
datapth. The following subsections detail both phases. 

3.1 Decomposition of multi-cycle operators 
The synthesized datapath is transformed substituting 

every multi-cycle operator for a set of smaller FUs that 
are used in one or several cycles of the multi-cycle FU. 
The decompositions performed try to maximize the 
internal reuse of the smaller FUs, and thus to minimize 
the operator area. We have tried to find the largest 
common operation included in the fragments calculated in 
every execution cycle of the multi-cycle operator. 

In the present version of the optimization algorithm we 
have considered multi-cycle multipliers that have been 
decomposed into mono-cycle multipliers, adders, and the 
two new operators TUp and TDown. These two new FUs 
compute the operations included in one isosceles right-
angled triangle extracted from the calculus matrix of a 
multiplication. In [11] some implementations of both FUs 
are presented. In order to balance the set of calculations 
performed by the multi-cycle FU in every cycle, we have 
divided the FU to get the same number of result bits in 
every execution cycle. These partitions allow the 
fragments of the multi-cycle operator to share bigger FUs.  
3.1.1 Decomposition of 2-cycles multipliers. The 
decomposition of one 2-cycles multiplier of m×n bits is 
performed fragmenting vertically the calculus matrix of 
the multiplication to get the  2/)( nm +  LSB of the result 
in the first cycle and the remaining ones in the second. We 
have distinguished the following two cases: 
1) m×m multiplication. The multi-cycle FU is substituted 
for one mono-cycle multiplication of  2/m ×  2/m  bits 
that is used in cycles 1 and 2, two TUp FUs of  2/m  bits 
used in cycle 1, and two TDown FUs of  2/m -1 bits 
used in cycle 2. If m is an odd number, then it is necessary 
to insert a column of zeros between the two fragments 
obtained in the decomposition of the operator in order to 
have the cited set of FUs. The additional column in the 
calculus matrix of the operation does not increment its 
execution time because it does not enlarge the chain of 
carry propagations. Figure 2 a) illustrates this 
decomposition, the multiplier in grey colour is used in 

           Table I. Comparison of implementations
 Area (gates) Cycle length (ns) 

Original datapath 109668 39.592 
Optimized datapath 77920 39.596 
 



cycles 1 and 2 (internal reuse). As shown in the figure, 
this decomposition reduces 25% the operator area (one of 
the multipliers in grey is removed). 
2) m×n multiplication, being m≠n. The multi-cycle FU is 
substituted for one mono-cycle multiplication of 
  nnnm ×−−+ )1(2/)(  bits that is used in cycles 1 and 
2, one TUp FU of n-1 bits used in cycle 1, and one 
TDown FU used in cycle 2. If m+n is an even number, 
then the width of the TDown operator becomes n-2 bits, 
and in this case it is also necessary to insert a column of 
zeros between both operator fragments. If m+n is an odd 
number, then the width of the TDown operator is n-1 bits. 
Figure 2 b) shows this decomposition, with the multiplier 
in grey colour used in cycles 1 and 2. It also reduces 25% 
the operator area (one of the multipliers is removed). 
3.1.2 Decomposition of 3-cycles multipliers. The 
decomposition of one 3-cycles multiplier of m×n bits is 
performed fragmenting vertically the calculus matrix of 
the multiplication to obtain the  3/)( nm +  LSB of the 
result in the first cycle, and the  3/)( nm +  MSB in the 
third one. Two different cases appear: 
1) m×m multiplication. The multi-cycle FU is 
substituted for one TUp FU of  3/2m  bits used in cycles 
1 and 2, and one TDown FU of  3/2m  bits used in 
cycles 2 and 3. Figure 2 c) shows the 50% area reduction 
achieved (one TUp FU, and one TDown FU removed).  
2) m×n multiplication, being m≠n.  The multi-cycle FU 
is substituted for one mono-cycle multiplication of 
  nnnm ×−−+ )1(3/)(  bits that is used in cycles 1, 2, 
and 3, one TUp FU of n-1 bits used in cycles 1 and 2, and 
one TDown FU of n-1 bits used in cycles 2 and 3. Figure 

2 d) shows the 40% area reduction achieved (two 
multipliers, one TUp FU, and one TDown FU removed). 

The decompositions of multi-cycle multipliers that 
need more than 3 cycles to calculate the operation results 
are performed similarly to the 3-cycles operators. In these 
decompositions all the fragments take the same time to be 
executed. However, the algorithm can be easily modified 
to comply with non-integer multi-cycle FUs [7] that 
produce less result bits in the last execution cycle than in 
the previous ones. In this case, the vertical partitions 
performed are not equidistant but the extraction of the 
new FUs is carried out as explained above.  

3.2 Removal of some datapath FUs 
The main goal of this phase is the removal of some 

datapath FUs to reduce the overall circuit area. One FU 
can be removed from the datapath if all the operations 
bound to it can be executed over the remaining functional 
resources. In the previous phase the number of datapath 
FUs has been increased, and there are also more idle FUs 
left in every cycle. The algorithm tries to reallocate the 
specification operations over these idle FUs. To this 
purpose, it allows the execution of one operation over a 
wider FU, and also distributed over several chained FUs.   
3.2.1 Binding one operation to one idle FU. The 
algorithm takes into account the following cases: 
1) One m×n multiplier can execute a k×p multiplication if 
k≤m and p≤n. 
2) One m×n multiplier (m≥n) can calculate one 
TUp/TDown operation of k bits (being k≤n) as illustrated 
in fig. 3 a).  
3) One m bits TUp/TDown FU can execute one 
TUp/TDown operation of n bits (being n≤m). 

Figure 2. a) Decomposition of a 2-cycles m×m multiplier, b) 2-cycles m×n multiplier, c) 3-cycles m×m multiplier, and d) 3-cycles 
m×n multiplier. 
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4) One m bits TUp/TDown FU can calculate one 
   2/12/ mm ×+  multiplication as in fig. 3 b). 
5) One m bits TUp/TDown FU can execute one 
TDown/TUp operation of n bits (being  2/mn ≤ ) as 
illustrated in fig. 3 c). 
3.2.2 Binding one operation to several chained Fus.  
The datapath FUs can be chained to execute wider 
operations. The following rules compose wider FUs: 
1) An even number n of triangles of the same width m 
can be chained horizontally to form one multiplier of 
width mmn ×+⋅ )1()2/( . The number of TUp and 
TDown operators must be the same, and every operator 
must be located between two FUs of the other type. 
Figure 4 a) illustrates this composition. 
2) An even number n of triangles of the same width m 
can be chained vertically to other set of n chained 
triangles of m bits to form one multiplier of width 

mmn ⋅×+⋅ 2)1()2/( . The number of TUp and TDown 
operators must be also the same, and every operator must 
be located between two FUs of the other type. Every row 
of chained triangles must be shifted m bits to the left from 
the above row. Figure 4 c) shows this composition. 
3) One m×n multiplication can be chained horizontally to 
one k×n to form a multiplication of (m+k)×n bits. Figure 4 
d) illustrates this composition. 

4) One m×n multiplication can be chained vertically to 
one m×k to form a multiplication of m×(n+k)bits. The 
second multiplication must be shifted n bits to the left 
from the above one as shown in fig. 4 b). 
3.2.3 Removal execution. This phase consists of a 
loop. Every iteration tries to remove one of the datapath 
FUs, from the widest one to the narrowest. The FUs 
considered either in any cycle do not execute any 
operation, or calculate a narrower one. The algorithm tries 
to bind the operations assigned to the target FU to the 
remaining FUs in the datapath, with no change in its 
execution cycle. The first choice is always the binding of 
one operation to one FU, and as second choice it tries to 
bind one operation to several chained FUs. The previous 
rules are checked in order for every FU considered and 
every operation assigned to it. The phase finishes when 
either all the FUs have been considered, or all the 
datapath FUs are used in every cycle to execute 
operations of their same type and width. In this case, the 
removal of any datapath FU would make the execution of 
the operations scheduled in that cycle impossible. This 
second phase can be executed independently of the first 
one to optimize datapaths without multi-cycle operators. 
In this case, it tries to increase the internal reuse of FUs 
that execute smaller operations, binding them to several 
idle FUs chained as explained in the previous subsections.  

Figure 3. a) Execution of one TUp/TDown operation over a multiplier, b) one multiplier over one TDown/TUp FU, and c) one 
TUp/TDown operation over one TDown/TUp FU. 
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Figure 4. a) Horizontal composition of triangles, b) vertical composition of multipliers, c) vertical composition of triangles, and d) 
horizontal composition of multipliers. 
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4. Experimental results 
The experimental work performs the optimization of 

some circuits synthesized by the commercial tool 
Synopsys Behavioral Compiler (BC), version 2001.08. 
Both RT-level implementations, the one produced by BC 
and the optimized one, are processed by Synopsys Design 
Compiler (DC) to obtain the area and time reports. The 
implementations of both the TUp and TDown operators 
have been added to the design library. Time results shown 
in this section are measured in nanoseconds and areas in 
number of equivalent gates. In all cases areas include the 
FUs, storage and routing units, glue logic, and controller.  

We have synthesized and optimized twenty different 
synthetic specifications ranging from 50 to 100 operations 
(around 60% are multiplications). In the implementations 
synthesized by BC the percentage of area occupied by 
multi-cycle operators is around 20% of the total area. 
Figure 5 shows the average areas of these circuits grouped 
by the number of operations. In all the cases the optimized 
implementation is quite smaller than the original one, and 
the amount of area saved is 38% on average.  

 In addition to the synthetic specifications, we have 
synthesized the fifth order elliptical wave filter, and some 
modules of the ADPCM decoding algorithm described in 
Recommendation G.721 of the CCITT. Table II shows the 
datapath area and cycle length comparisons between the 
implementation obtained by BC and the optimized one, 
for three different latency values (λ). Areas have been 
decreased 40% on average, and reductions of up to 65% 
have been obtained. The ADPCM modules synthesized 
and optimized are: Inverse Adaptative Quantizer (IAQ), 
Output PCM Format Conversion (OPFC), Synchronous 
Coding Adjustment (SCA), and Tone and Transition 
Detector (TTD). Table III shows the areas of the 
implementation obtained by BC and our optimization. The 
circuit area has been reduced 24% on average. In all the 
experiments, the area reductions have incremented neither 
the latency nor the cycle length, which have remained 
constant.  

5. Conclusion 
The proposed optimization technique reduces the area 

of the circuits synthesized by regular HLS algorithms 
using multi-cycle operators. It allows the internal reuse of 
the HW inside the multi-cycle FUs in their different 
execution cycles, and also their partial reuse to execute 
smaller operations faster than the FU delay. Furthermore, 
the proposed transformations can be used to increment the 
partial reuse of mono-cycle operators, and are compatible 
with recent techniques like bit-level chaining and non-
integer multi-cycle. All the presented optimizations keep 
constant both the cycle length and the latency of the 
original implementation, therefore they do not waste the 
benefits obtained from the use of multi-cycle operators.  
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Figure 5. Area results for the synthetic circuits. 

Table III. Synthesis of some modules of ADPCM decoder 

Area (gates) Module λ Original Optimized Saved 
IAQ 3 798 672 16% 
TTD 5 1873 1282 32% 

OPFC + SCA 12 1226 870 30% 

Table II. Synthesis of the fifth-order elliptic wave filter 

Circuit area (gates) Cycle length (ns) 
λ 

Original Optimized Saved Original Optimized 
8 76540 58190 23% 58.63 58.68 

11 70652 45926 35% 51.59 51.54 
16 67944 23840 65% 32.27 32.36 
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