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ABSTRACT
Despite the progress of the last decades in electronic design au-
tomation, arithmetic circuits have always received way less atten-
tion than other classes of digital circuits. Logic synthesisers, which
play a fundamental role in design today, play a minor role on most
arithmetic circuits, performing some local optimisations but hardly
improving the overall structure of arithmetic components. Archi-
tectural optimisations have been often studied manually, and only
in the case of very common building blocks such as fast adders and
multi-input adders, ad-hoc techniques have been developed. A no-
table case is multi-input addition, which is the core of many circuits
such as multipliers, etc. The most common technique to imple-
ment multi-input addition is using compressor trees, which are of-
ten composed of carry-save adders (based on (3 : 2) counters, i.e.,
full adders). A large body of literature exists to implement com-
pressor trees using large counters. However, all the large counters
were built by using full and half adders recursively. In this paper
we give some definite answers to issues related to the use of large
counters. We present a general technique to implement large coun-
ters whose performance is much better than the ones composed of
full and half adders. Also we show that it is not always useful to
use larger optimised counters and sometimes a combination of var-
ious size counters gives the best performance. Our results show
15% improvement in the critical path delay. In some cases even
hardware area is reduced by using our counters.

1. INTRODUCTION
Compressor trees are one of the key components in arithmetic

circuits, as these are the main constituents of parallel multiplier and
multi-input adders. Hence, improving the speed of a compressor
tree results in significant speedup of the circuit. Unfortunately logic
synthesis tools do a lousy job in optimising XOR-intensive circuits
due to the shortcoming of algebraic factoring. Hence, the direct
synthesis of compressor trees (which are heavily XOR-dominated)
results in poor quality circuits. In fact, finding the optimum im-
plementation of a compressor tree still remains a challenging task.
Several attempts has been made to generate the optimal compres-
sor trees. The most common strategy to implement a compressor
tree is by using carry save adders. A carry save adder takes three
integers and returns two integers such that the sum of the inputs
equals the sum of the outputs. The carry save adder uses full adders
(i.e., (3 : 2) counter) in parallel to reduce the three bits in ith bit
position into two bits at positions i and i + 1. Many algorithms
have been proposed to use (3 : 2) counters in an effective way:
some of them are layout constrained such as the compressor trees
by Wallace [14] and Dadda [2], which exploit the regularity of the

structure; however, some other methods such as Three Greedy Ap-
proach by Oklobdzija et al. [5, 7] are greedy algorithms to find the
optimal interconnections among the various (3 : 2) counters.

It is also possible to use large counters instead of (3 : 2) counter,
e.g., using a (7 : 3) counter one can reduce 7 bits at bit position i
into 3 bits at positions i, i + 1 and i + 2. It has been observed that
using a (7 : 3) counters is advantageous compared to using only
(3 : 2) counters. In fact, as we increase the counter size, the speed
of the compressor tree increases. However, later it was noticed that
all the large counters were implemented using (3 : 2) counter, but
having a proper interconnections among the (3 : 2) blocks. Other
components used for multi-input additions are (p : q) compressors.
In contrast to counters, compressors use a horizaontal path also for
carry propagation. However, compressors also use full adder (FA)
and half adder (HA) as their building blocks, and hence the special
advantage of compressors can also be achieved by implementing
proper interconnections among FA and HA blocks.

As we have already mentioned, the most effective algorithm to
find the best interconnections among the (3 : 2) counters was given
by Oklobdzija et al [5] and is known as Three Greedy Approach
(TGA). In TGA, each bit position is considered individually from
right to left and the bits in a column are reduced to three or less
using (3 : 2) counters. While choosing the inputs of a (3 : 2)
counter, one sums those bits whose input arrival time is least among
all the bits. Once each bit position has three or less bits, a final
sequence of (3 : 2) counters is used to reduce the three integers
into two integers which are finally added by using an appropriate
hybrid adder. A similar approach at word level was suggested by
Kim et al. in their work [11] for the optimal allocation of the inputs
to cascaded Carry-Save Adders.

In this paper we address the following questions:

• Is the implementation of a large counter using (3 : 2) coun-
ters (full adders) and (2 : 2) counters (half adders) the best
implementation of it? If not, how to obtain the best imple-
mentation of a counter?

• If building optimal counters of arbitrary size is not feasible,
is it sufficient to use only primal counters (a primal counter
reduces 2n−1 input bits into an n-bit word)? Does it always
pay off to use the largest available counters instead of smaller
counters (e.g., should we ever use a (3 : 2) counter when the
number of bits is ≥ 7, and a (7 : 3) can be used)?

In the rest of the paper we answer these questions and show that
it is not always possible to obtain the best implementation of a
counter using smaller counters. We also propose a new method to
get the optimal implementation of counters and compressor trees.
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The rest of the paper is organised as follows. In the next section we
discuss some earlier work done on this topic. In Section 3 we ex-
plain why the large counters and compressors built of full and half
adders are not optimal. Section 4 discusses a novel approach to op-
timise counters and its limitations. In Section 5 we formulate the
problem of optimising counters and compressor trees, and present
a method to solve it using Integer Linear Programming. Finally
in Section 6 we present the results of our experiments followed by
conclusions in Section 7.

2. STATE OF THE ART
The problem of multi-input addition is not a new problem in the

arithmetic community as it appears often in many arithmetic cir-
cuits such as multipliers, etc. Not only in multipliers, but also
in some other applications which do not seem to contain multi-
input additions, some appearances of multi-input additions can be
found by clustering adders separated by logic operations as shown
in [12] and [10]. The first breakthrough in this direction was by
Wallace [14] when he introduced the notion of carry save adder
(constructed by using (3 : 2) counters). Using the chain of carry
save adders, the inputs of multi-input addition can be reduced sig-
nificantly faster than that by doing serial addition of inputs. The
notion of Wallace tree was generalised by Dadda [1] and he pro-
posed algorithms to minimise the number of counters.

Since the compressor trees proposed by Wallace and Dadda were
very regular and layout constrained, the interconnections between
the (3 : 2) counters were fixed, irrespective of the arrival times of
the inputs. It was later realized that by implementing proper inter-
connections between various (3 : 2) counter blocks, large counters
and compressors (such as (7 : 3) counter, (4 : 2) compressor, etc.)
can be generated. Since the large counters consider input arrival
times to interconnect the (3 : 2) blocks up to some extent (at least
among its constituents (3 : 2) counters), the compressor trees built
on large counters have usually smaller delays.

The notion of large counters and compressors was initiated by
Weinberger [15] who introduced (4 : 2) compressors. The use of
larger compressors and counters were explored by Song and De
Micheli [6]. Almost all large counters in literature are made of
full adders; however, discussion of faster quasi-digital counters also
exists in literature as in the work of Swartzlander [9]. Unfortunately
these quasi-digital counters are extremely complex and prone to
problems due to drift, etc. For the first time Oklobdzija presented
algorithmic methods (TGA) in his fundamental work [5, 7] to find
the optimal interconnections among the (3 : 2) counter blocks,
which consider the different input arrivals of inputs. Since all the
large counters used previously were built using (3 : 2) counters as
a basic block, after the introduction of the Three Greedy Approach
the use of larger counters appeared unnecessary. The present work
advances with respect to TGA and shows that it is advantageous
to use large optimised counters (not necessarily built using (3 : 2)
counter as a basic block).

Other than optimising the compressor tree, some work has been
done to optimise the final adder to add the two output words of
compressor trees. The choice of an optimal adder depends on the
delay profiles of bits of two output words. An example of such op-
timisation is presented in the work of Fadavi-Ardekani [3] which
optimises the final adder of the compressor tree used to reduce par-
tial products bit array. The adder generated by [3] uses various
stages of carry-select adders. However, the proposed method as-
sumes that all inputs of compressor tree are available at the same
time, which is not always true in general. The optimisation of final
adder by considering an hybrid adder was also explored by Oklob-
dzija [8]. In this work, we use the latter approach to optimise the

(a) (b)

Figure 1: Best implementation of the 2nd most significant bit
of (a) four-bit counter, and, (b) five-bit counter (the one which
typically belongs to the critical path). Both implementations
cannot be obtained by any combination of full and half adders.

final adder.
Note that all the works mentioned above assume that the inputs

of a (3 : 2) counter are independent of each other, which is not
the case in general as we have shown previously [13]. This work is
based on expliting the dependencies among the inputs of an XOR
gate, which are the core elements of full adder, to improve the speed
of multipliers. However, the method is computationally expensive
and remains practical only for smaller circuits. We will discuss the
application of this technique to counters in Section 4.

3. NON-OPTIMALITY OF COUNTERS
BUILT ON FULL AND HALF ADDERS

As we have mentioned in the previous section, sometimes the
inputs of a XOR gate are correlated expressions and using this fact
the XOR gate can be simplified into simple gates such as NAND or
OR. As an example the expression for the second most significant
bit of a four-bit counter (4 : 3) with input bits x0, x1, x2, and x3

can be written as follows:

out1 = x0x1 ⊕ x0x2 ⊕ x0x3 ⊕ x1x2 ⊕ x1x3 ⊕ x2x3

= ((x0 ⊕ x1)(x2 ⊕ x3)) ⊕ (x0x1 ⊕ x2x3).

Note that the expressions ((x0⊕x1)(x2⊕x3)) and (x0x1⊕x2x3)
cannot be true simultaneously for any values of x0, x1, x2, and x3

and hence the XOR of the two expressions will be same as the OR
of the two expressions. Using this fact the expression of out1 can
be simplified:

out1 = ((x0 ⊕ x1)(x2 ⊕ x3)) + (x0x1 ⊕ x2x3).

This implementation of a four-bit counter is shown in Fig. 1(a).
In a similar way, in the expression of the second bit of a five-bit
counter, one XOR can be converted into one OR, resulting in the
implementation shown in Fig. 1(b).

3.1 Explicit expression for a Counter
To understand the nature of the correlation among the various in-

puts of XOR gates used in a counter circuit, we should look at the
exact expression of a counter circuit. A (n : k) counter takes n bits
x0, x1, ..., xn−1 as inputs, and returns k bits c0, c1, ..., ck−1 such



that vector (ck−1, ck−2, ..., c0) corresponds to the binary represen-
tation of the sum of n input bits. The following theorem tells the
exact expression for ci’s in terms of x0, x1, ..., xn−1.

THEOREM 1. If (ck−1, ck−2, ..., c0) is the binary representa-
tion of the sum of the bits x0, x1, ..., xn−1, then the expression for
ci can be given as follows:

ci =
⊕

xk1xk2 · · ·xk2i ,

where (k1, k2, · · · , k2i ) runs over all
(

n
2i

)
of 2i integers from the

set {0, 1, · · · , n − 1}.

In order to illustrate the simplification of some counter circuits
using correlation we define two terms.

c(n, r) =
⊕

xk1xk2 · · ·xkr ,

d(n, r) =
∑

xk1xk2 · · ·xkr .

Note that ci = c(n, 2i). It is easy to see that d(n, r) corresponds
to the same expression as c(n, r) with each XOR gate replaced
by OR gate. Hence, often the delay of a circuit corresponding
to d(n, r) can be significantly less than that of corresponding to
c(n, r). Also note that in some cases c(n, r) can be expressed very
easily in terms of d(n, r). Some such cases are stated in the next
theorem.

THEOREM 2. The following holds true for all n and i:

(2i < n < 2i+1) ⇒ (c(n, 2i) = d(n, 2i)).

(2i+1 ≤ n < 3 × 2i) ⇒ (c(n, 2i) = d(n, 2i)d(n, 2i+1)).

(n mod 2 = 1) ⇒ (c(n, n − 1) = d(n, n − 1)).

(n mod 2 = 0) ⇒ (c(n, n − 1) = d(n, n − 1)d(n, n)).

Note that the first statement tells that for the calculation of the
most significant bit of a counter we do not need any XOR gate.
Also note that a full adder is better than implementing a (3 : 2)
counter using half adders because it can use the property (3) men-
tioned above (that c(3, 2) = d(3, 2); in other words ab⊕bc⊕ac =
ab+ bc+ac). Similarly, the expression for the second most signif-
icant bit of a four-bit counter can be simplified using the property
(2) in the theorem above, i.e., c(4, 2) = d(4, 2)d(4, 4), which has
the same performance as the one shown in Fig. 1(a). Note that
these are not the only relations between c(n, r) and d(n, r), and it
is extremely difficult to figure out which relation between c(n, r)
and d(n, r) we should use to get the best advantage. Sometimes we
might not even want to rewrite c(n, r) in terms of d(n, r). This is
because rewriting c(n, r)’s improves the delay of the circuit locally,
but introduces OR gates which results in the loss of ring properties
such as commutativity, associativity, and distributivity properties
(i.e., OR and XOR operations do not follow assocativity rules with
each other); hence it hinders the factorisation of the expression.

4. EXPLOITING CORRELATION TO
BUILD OPTIMAL COUNTERS

The previous section has answered negatively to our first qus-
tion: large counters cannot always be implemented optimally out
of smaller counters. It has also shown that the reason for such im-
possibility is the difficulty of accounting for correlations. We have
mentioned in the Section 2 that the algorithm presented in [13],
known as Selective Expansion improves the performance of a cir-
cuit by exploiting the correlation between the operands of XOR op-
eration. Hence, one possibility is to write the circuit for a counter in

Counter Delay with FA and HA Selective Expansion
size (ns) (ns)

2 (0.07, 0.12) (0.07, 0.12)
3 (0.11, 0.17) (0.11, 0.17)
4 (0.09, 0.33, 0.21) (0.09, 0.22, 0.21)
5 (0.18, 0.34, 0.26) (0.18, 0.30, 0.26)
6 (0.30, 0.36, 0.28) (0.24, 0.33, 0.28)
7 (0.37, 0.40, 0.28) (0.34, 0.38, 0.28)
8 (0.12, 0.48, 0.48, 0.32) (0.12, 0.35, 0.40, 0.32)

Table 1: Comparison between the delays of different counters
before and after using the Selective Expansion algorithm [13].

terms of full and half adders, and then use the Selective Expansion
algorithm to improve the performance of the circuit by replacing
full adders and half adders with correlated inputs by simpler oper-
ators.

In the Selective Expansion algorithm two kinds of correlation are
measured, called local correlation and global correlation. The local
correlation is the correlation between the operands of an XOR op-
eration, while global correlation is the correlation among the rest of
the expression and the operands of an XOR operation. If some em-
pirical correlation index is above a threshold value, then the XOR
gate is replaced by its equivalent expression in terms of AND and
OR gates as shown below:

A ⊕ B = AB(A + B), and

(A ⊕ B) + C = (AB → C)(A + B + C),

where the expression (x → y) is the same as (x+ y). We used this
algorithm to optimise counters, and the performance of some of the
counters optimised by this algorithm is shown in Table 1. The first
column shows the counter size, the second column shows the de-
lay vector (delays of individual output bits from most significant to
least significant) of the underlying counter when implemented us-
ing only full and half adders interconnected using the Three Greedy
Approach. The third column shows the delay vector of the same
circuit after optimising it using the Selective Expansion algorithm.

In this section we have exploited an existing technique to gener-
ate better large counters than previously possible with algorithmic
approaches. The only problem with the Selective Expansion algo-
rithm is its computational complexity: although it produces faster
counter and compressor trees, it remains practical only for small
size counters and compressors. We turn therefore our attention to
the second set of questions mentioned in Section 1: how can we
build a large counter optimally by using a combination of optimized
counters up to a certain size?

5. BUILDING COMPRESSORS FROM
LARGE SET OF COUNTERS

Since we cannot implement counters and compressors of all sizes
using the Selective Expansion algorithm, one possibility is to find
small and frequent blocks in a compressor tree, which can be op-
timised using Selective Expansion, and then replace those blocks
by the optimised circuit corresponding to them. One way is to con-
sider counters as building blocks and implement the compressor
tree using these optimised counters, thanks to the fact that counters
up to some significant sizes (e.g., 12-bit) can be optimised using
Selective Expansion.

Now the question is how large should be the set of building block
counters. As we have seen, large counters have more possibility
to use the correlation between the operands of XORs, we should
extend the set of building block counters as much as we can. At
this point one might also think that we should consider only pri-
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Figure 2: Implementation of an eight-bit counter using (a) only full and half adders, (b) only primal (i.e., (2n − 1) to n) and (2 : 2)
counters, and (c) counters smaller than eight bit. Note that the use of large counters is not always advantageous as it might leave the
circuit lopsided.

.

mal counters, i.e., the counters which reduce (2n − 1) bits into n
bits (e.g., (3 : 2), (7 : 3), etc.) and half adders. However, using
only primal counters might lead to a nonoptimal solution, because
it might make the circuit unbalanced, while using smaller coun-
ters which are not primal may make the circuit more balanced, and
hence faster.

To understand it more clearly let us consider the example shown
in Fig. 2. The first part of the figure shows the delays of various
counters in terms of the delay of a two-input XOR gate (which is an
approximation of the real delay values). Next, Fig. 2(a) shows the
implementation of a (8 : 4) counter using only full and half adders
according to the Three Greedy Approach. Fig. 2(b) shows the best
implementation of (8 : 4) counter using only primal counters and
half adders. Finally, Fig. 2(c) shows the best implementation of the
same (8 : 4) counter using any smaller counters. Note that in all
the three circuits, the computation of the second most significant bit
comes in the critical path. However, the critical path delay in the
three circuits is different. In the first and second circuits the delay
is 5.5DXOR, and in the last circuit it is 4.5DXOR. The reason is
that when we implement the (8 : 4) counter using (4 : 3) counters,
we exploit the correlation among the operands of XOR more than
the correlation used in implementation using full and half adders,
and also it is more balanced compared to the circuit built on (7 : 3)
counters. Although here we have used an approximate model to
measure the counter delays, the same conclusion can be deduced if
we had used the actual delays of optimized counters as shown in
Table 1.

5.1 Approximate Delay Model and Problem
Formulation

For the simplicity and without loss of generality we use only upto
(8 : 4) counters as building block counters, and to estimate the
delay of a circuit built on these counters we consider the critical
path delay of the circuit, where the values corresponding to the
delay of the building block counters are taken from Table 1, i.e.,
the delays of counters optimised using Selective Expansion. Now
we can formulate the problem as follows.

PROBLEM 1. Given a set of input integers with not necessarily
identical arrival times, find the best implementation of the compres-
sor tree built on up to (8 : 4) counters to add the input integers.

5.2 ILP Formulation
Integer Linear Programming (ILP) has been proved to be a pow-

erful method to solve combinatorial optimisation problems like the
one mentioned above. Although theoretically solving an ILP is an
NP-hard problem, however, many tools like CPLEX [4] solve suffi-
ciently large instances of ILP within reasonable time. Any problem
which can be formulated as an Integer Linear Program has two ele-
ments: constraints and objective functions. The constraints should
be in the form of linear inequalities and equalities and the objective
function must be a linear function of the input variables which has
to be minimised or maximised. Restriction of variables to integers,
Booleans, and piecewise continuous variables is also allowed. Next
we show how we formulate our problem as an Integer Linear Pro-
gramming problem. First we define a couple of terms which will
help understanding the formulation.

DEFINITION 1. Rank of a counter: If the inputs of a counter
are the inputs at bit-position i, or the carries propagated from pre-
vious bit positions to this bit position, then the rank of this counter
is i.

DEFINITION 2. Weight of a signal: All the input signals at
bit-position i have the weight i. Also the jth output (starting from
0) of a counter with rank i will have weight (i + j).

It is easy to see that all the input signals of a rank i counter will
have weight i. Also the output at bit position i will have weight i.
Note that, since in all counters except (2 : 2) counters the num-
ber of inputs are at least one more than the number of outputs, the
number of counters (excluding the (2 : 2) counters) in a compres-
sor tree with N input bits must be less than N . If we consider
(2 : 2) counters also, then the upper bound can be proved to be
O(N2). However this is an extreme bound and we allow only cN
counters in our compressor for some constant c.



For the sake of brevity we demonstrate our formulation using
and, or, if-else, max, min, etc. Such operators can be easily writ-
ten using ILP with additional variables and constraints. The list of
variables used in the formulation and their interpretation is given
below.

• sizei: This denotes the size of the ith counter. Note that
sizei can vary from 2 to 9 and must be an integer (i.e., 2 ≤
sizei ≤ 9). If the sizei is 9 for a counter, that means the
counter is a null counter (i.e., unused counter).

• eijk: It is a Boolean variable and is true if there is a connec-
tion between the kth output signal of the ith counter and the
jth counter. The value of k varies from 0 to 3, and if the ith

counter has less than (k + 1) outputs, then eijk is set false.
• pij , and qijk: Both are Boolean variables. pij is true if there

is an edge from the ith input bit to the jth counter, while qijk

is true if the kth output signal of the ith counter corresponds
to the jth output. Note that eijk and qij′k can not be true
simultaneously (i.e., eijk + qij′k ≤ 1).

• tij : It is a real variable and denotes the delay of the jth out-
put of the ith counter.

• ri: This denotes the rank of the ith counter.
• hijk: These are some special variables which manage the

counters with inputs of different arrival times.

Next we present the list of the constraints. The constraints can
be divided into three categories: I/O based constraints, constraints
based on rank of counters, delay based constraints, and special con-
straints.

• I/O Constraints: The number of inputs and outputs of a
counter should be consistent with its size, e.g., an (8 : 4)
counter must have 8 incoming connections and 4 outgoing
connections. This constraint can be written as follows:

if (sizei = 8), then
∑

j<i

∑

k

(ejik) +
∑

k

(pki) = 8, and

if (sizei = 8), then
∑

j>i

∑

k

(eijk) +
∑

j′

∑

k

(qij′k) = 4.

Also note that some of the edge variables can be assigned
zero directly as mentioned above. The following examples
illustrate this kind of constraints:

if (sizei < 8), then ∀j(eij3 = 0).

if (sizei = 9), then ∀(j, k)(eijk = 0).

• Rank Based Constraints: The rank of a counter must be
well defined, i.e., all weight of all its input signals must be
equal to the rank of this counter. As an example suppose
that the mth input bit was at the nth bit position, then the
rank of a counter which uses this input must be n and also all
other input signals of this counter must have weight n. More
formally:

if (pmi = 1), then ri = n.

if (eijk = 1), then rj = ri + k.

Similar constraints for the outputs can also be applied.

• Delay Based Constraints: Delay based constraints put
lower bounds on the delays of output signals of a counter.
A typical delay constraints looks like:

if (sizej = 5 and eijk = 1), then tik + d5,0 ≤ tj0,

where d5,0 is the delay to compute the 0th bit of a (5 : 3)
counter. Note that there is no upper bound on tij . This is be-
cause our objective function is to minimise the delay, hence
the values of tij’s will automatically be set to their lower
bounds. Also the above constraint assumes uniform arrival
times of the inputs of a counter, which is not true. For ex-
ample if 0th of a (3 : 2) counter with inputs a, b, c is imple-
mented like ((a ⊕ b) ⊕ c), then the delay from c to output
is DXOR, while the delay from b to output is 2DXOR. In
order to delay be minimized c should be the one with largest
arrival time. To handle these kind of cases we define the new
Boolean variable hijk which is true only if, among all the in-
puts to jth counter, the one which is coming from ith has the
largest arrival time. After introducing this variable the delay
constraint for a (3 : 2) counter will look as follows:

if (sizej = 3), then
∑

i<j

∑

k

(hijk) = 1,

if (sizej = 3 and eijk = 1), then

tik + d3,0 − d′
3,0hijk ≤ tj0.

Once again, note that we have specified that the sum of all
hijk’s is one; since the objective function is to minimise the
delay, this will automatically set true that hijk whose cor-
responding input has the largest arrival time among all the
inputs.

• Special Constraints: Other than the above constraints, we
also need to enforce that each input must be used by exactly
one counter and each output should correspond to exactly
one output bit of a counter. In other words,

∀(i)
∑

j

pij = 1, and

∀(j)
∑

i

∑

k

qijk = 1.

Objective Function: One possibility can be to have exactly one
output bit per bit-position, in that case the objective function will be
to minimise the maximum of the delays of these output bits. How-
ever, this method enforces that the final adder used must be a ripple
carry adder, because that is the only adder which can be made us-
ing only full adders and other counters but no other logic functions.
Instead, we allow two temporary outputs per bit-position so that
we can use an appropriate final adder. In this case our objective
function corresponds to the following expression:

minimise maxi{max(tmpOuti0, tmpOuti1) + di}.
The di’s are constants which denote the estimated delay from ith

temporary output bits to the the slowest output bit of final adder.
A reasonable estimate of these constant values can be found by
implementing the compressor tree using Three Greedy Approach.
Using the above constraints and the mentioned objective function,
the problem can be fed to any standard ILP solver which can find an
optimal solution or an approximation after some reasonable time.

6. EXPERIMENTS
We have written a C++ program which takes the bit-width and

arrival times of input integers and writes an ILP instance corre-
sponding to the optimisation of the compressor tree used to add the
integers. This instance of ILP is solved by the ILP solver CPLEX
and then we write the VHDL code corresponding to the resulting
circuit with an appropriate choice of final adder (the final adder is



12 × 12-bit Multiplier
DesignWare 8211.3µm2 2.43ns
Three Greedy Approach 11033.3µm2 1.65ns
Optimised Counter Approach 12464.1µm2 1.41ns
16 × 16-bit Multiplier
DesignWare 15498.4µm2 3.12ns
Three Greedy Approach 23070.5µm2 1.83ns
Optimised Counter Approach 24120.0µm2 1.64ns
24 × 24-bit Multiplier
DesignWare 35069.8µm2 4.35ns
Three Greedy Approach 50103.4µm2 2.22ns
Optimised Counter Approach 49557.3µm2 1.95ns
16-bit Counter
Three Greedy Approach 1143.9µm2 0.77ns
Optimised Counter Approach 1092.1µm2 0.62ns
24-bit Counter
Three Greedy Approach 1622.6µm2 0.91ns
Optimised Counter Approach 1540.9µm2 0.78ns
32-bit Counter
Three Greedy Approach 2609.3µm2 1.11ns
Optimised Counter Approach 2886.0µm2 0.94ns
48-bit Counter
Three Greedy Approach 3829.2µm2 1.25ns
Optimised Counter Approach 4107.6µm2 1.10ns

Table 2: Optimisation results for all our benchmarks.
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Figure 3: Comparison of arrival times of the 6 outputs of the
48-bit counter generated by the Three Greedy Approach and
the Optimised Counter Approach.

chosen using the algorithm mentioned in [8]). The circuits are syn-
thesised using a common standard-cell library for UMC 0.13µm
CMOS technology.

Table 2 shows the results of our algorithm. There are two qualita-
tively different kind of arithmetic circuits: multipliers and counters.
In case of multipliers we compare our results with the DesignWare
implementation and also with the multiplier generated using the
Three Greedy Approach. We have implemented 12× 12, 16× 16,
and 24 × 24-bit multipliers. As we can see that the multipliers
generated by our approach (Optimised Counter Approach) are the
fastest ones. The multiplier generated by Optimised Counter Ap-
proach are 12–15% faster than the ones generated by the Three
Greedy Approach, and the area penalty is almost negligible. In
some cases, such as the 24 × 24-bit multiplier, the area of the Op-
timised Counter Approach multiplier is less than that of the Three
Greedy Approach Multiplier.

The second set of benchmarks consist of counters. We have im-
plemented 16, 24, 32, and 48-bit counters. Here too we compare
our results with the counters generated by the Three Greedy Ap-
proach using only full and half adders. Once again, the counters
generated by our approach are almost 15% faster than the ones
produced by the Three Greedy Approach at the cost of negligible
or no area overhead. The comparison of the delay vectors of 48-bit
counter generated by the two approaches is shown in Fig. 3.

7. CONCLUSIONS
In this paper we have shown that there are still chances to im-

prove compressor trees, one of the most studied component in arith-
metic circuits. We have shown that the compressor trees built on
only full and half adders do not utilise the correlation among vari-
ous operands and hence produce suboptimal results. Also, a com-
pressor tree built on large size counters may be lopsided and hence
slow compared to the compressor tree built on smaller counters. We
have presented an approach based on Integer Linear Programming
which exploits the correlation among various operands as well as
tries to make the circuit as balanced as possible to improve the
speed of the resulting circuit. The results show that our approach
improves the speed of a compressor tree by almost 15% compared
to state of art techniques.
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