
System-Level Process Variation Driven Throughput Analysis for Single and Multiple Voltage-Frequency
Island Designs∗

Siddharth Garg
Dept. of Electrical and Computer Engineering

Carnegie Mellon University
sgarg1@andrew.cmu.edu

Diana Marculescu
Dept. of Electrical and Computer Engineering

Carnegie Mellon University
dianam@ece.cmu.edu

Abstract

Manufacturing process variations are the primary cause of timing yield
loss in aggressively scaled technologies. In this paper, we analyze the
impact of process variations on the throughput (rate) characteristics of
embedded systems comprised of multiple voltage-frequency islands (VFIs)
represented as component graphs. We provide an efficient, yet accurate
method to compute the throughput of an application in a probabilistic sce-
nario and show that systems implemented with multiple VFIs are more
likely to meet throughput constraints than their fully synchronous counter-
parts. The proposed framework allows designers to investigate the impact
of architectural decisions such as the granularity of VFI partitioning on
their designs, while determining the likelihood of a system meeting speci-
fied throughput constraints. An implementation of the proposed framework
is accurate within 1.2% of Monte Carlo simulation while yielding speed-
ups ranging from 78X-260X, for a set of synthetic benchmarks. Results on
a real benchmark (MPEG-2 encoder) show that a nine clock domain imple-
mentation gives 100% yield for a throughput constraint for which a fully
synchronous design only yields 25%. For the same throughput constraint,
a three clock domain architecture yields 78%.

1. Introduction
Manufacturing process variations have emerged as a major de-

sign concern for aggressively scaled technologies. These vari-
ations manifest themselves across a single die (WID or within-
die) or across several dies (D2D or die-to-die). Furthermore, the
source, and therefore the statistical nature, of these variations can
be random or systematic, static or dynamic [4].

There is a significant body of work that analyzes the impact
of process variations on static timing analysis [1, 3] at the cir-
cuit level. Such techniques are extremely useful in helping de-
signers predict timing yield and in optimizing their designs at the
circuit/gate level. There is, however, very little work that makes
variability models available to system and microarchitecture level
designers. In [11], the authors take a first step in that direction and
introduce a framework that uses variability information from low
level circuit analysis to build variability models for system level
performance parameters, such as end-to-end system latency. Us-
ing this framework, they show that systems comprised of multiple
voltage-frequency islands (VFI) are more likely to meet a speci-
fied latency constraint than their fully synchronous, single clock,
single voltage (SSV) counterparts.

∗This research was supported in part by Semiconductor Research Corporation
contract no. 2005-HJ-1314.

VFI systems tend to outperform fully synchronous designs be-
cause they provide more flexibility in dealing with WID process
variability. While the clock frequency of a fully synchronous de-
sign is limited by the slowest critical path on the entire chip, the
clock frequency of each clock domain in a multiple VFI system
is only limited by the slowest path in that particular domain.VFI
systems are thereby able to isolate the impact of critical paths
that have been negatively affected by process variations to the fre-
quency domains in which these speed constraining paths lie.

In this work, we complement the analysis framework proposed
in [11] and outline an algorithm to determine the throughput dis-
tribution of a multiple VFI system, given frequency distributions
for each clock domain. Combined with results from [11], our pro-
posed technique would allow designers to specify throughput and
latency constraints for their designs and determine the percentage
of manufactured chips that will meet these constraints.

2. Related Work

While statistical timing analysis has become a hot area of re-
search over the past few years, the problem has, with the exception
of [11], been addressed only at the gate/circuit level. Techniques
have been proposed to deal with correlated gate delay distributions
[3] and to provide stochastic bounds on worst-case circuit delay
[4]. [11] provides stochastic bounds on the end-to-end latency of
a directed acyclic task graph implemented using multiple VFIs.
Our work extends the scope of [11] by analyzing graphs that have
cyclic paths and consequently determining the throughput distri-
bution of the design.

In [9], the authors propose a globally asynchronous locally syn-
chronous (GALS) architecture consisting of a number of process-
ing units (PU), each implemented as a separate VFI. The authors
note that intra-die process variations can cause the maximum clock
frequency of each PU to shift by different margins. They propose
a software based self-test scheme to run each PU at its optimal
clock frequency. [5] proposes a hardware based technique that
uses shadow flip-flops to detect timing violations, thereby allow-
ing the synchronous logic to operate close to or at its maximum
clock speed. Both works focus on implementation issues, while
our focus is on evaluating the benefits of such implementations.
We note that while [5] uses a fully synchronous design, the tech-
nique described could as easily be used in a multiple VFI system
to adapt the clock speed of each frequency island.

978-3-9810801-2-4/DATE07 © 2007 EDAA

3. Paper Contributions

This work makes the following contributions:

• We consider the case of applications specified as cyclic task
(or component) graphs implemented on multiple VFIs and
derive distributions for the best case throughput (alternatively
rate) under manufacturing process variations. Our technique
offers significant speed-up over Monte Carlo based simula-
tion at the expense of marginal loss in accuracy.

• In the process of determining system throughput, we de-
scribe, to the best of our knowledge, the first algorithm that
solves the Maximum Cycle Mean (MCM) problem in a prob-
abilistic setting.

• Using a case study, we demonstrate how our framework can
be used to evaluate the trade-off between performance and
clock domain granularity, and compare the performance of a
multiple VFI design versus that of a fully synchronous de-
sign.

Before proceeding further, we will now discuss the assumption we
make about the hardware implementation of single and multiple
VFI systems and introduce the mathematical notation that will be
used in the rest of the paper.

4. Preliminaries and Assumptions

We consider the case of systems comprised of a number of syn-
chronous cores, IPs or processing elements (PE). Henceforth, we
will refer to all three generically as PEs. We now consider two
cases: (1) A fully synchronous (or an SSV) system that has a
single global clock that drives all the PEs. Communication be-
tween PEs is assumed to be point-to-point and synchronous. (2)
A multiple VFI system in which each voltage-frequency island is
controlled by an independent clock source. Each clock domain
(or VFI) can have multiple PEs within it, all running locally syn-
chronous to each other. PEs in different clock domains communi-
cate via mixed-clock token ring FIFOs modified to support voltage
level conversion if required [6].

For both VFI and SSV systems, we assume that the implemen-
tation supports fine grained frequency scaling, and there exists ei-
ther hardware or software based support, as discussed in [9] or
[5] to allow each clock domain to run at or near its optimal clock
frequency under the impact of process variations.

We model a system comprising of a number of communicat-
ing PEs using a component graph, represented as a directed graph
G(V, E). Vertices in a component graph represent PEs and edges
represent control or data dependencies between vertices. Figure 1
shows an example of a component graph with five PEs. The graph
on the left is clocked globally with a single clock and represents
an SSV system, while the one on the right has an two independent
clocks that operate two separate VFIs. As in Figure 1, each clock
domain can contain more than one PE.

5. Theoretical Formulation

Without any loss of generality, for a given component graph
G(V, E), we make the following assumptions:

Figure 1. Fully Synchronous and multiple VFI architecture (a)
An SSV system with a single global clock source (b) A multiple
VFI system with two VFIs and more than one PE in each VFI.

• The component graph G(V, E) of a system with n PEs com-
prises the set of nodes V = 1, 2, . . . , n and edges E =
(i, j) : i → j, i, j ∈ V .

• Each node i, (1 ≤ i ≤ n), is characterized by the number of
cycles Ci it takes to produce an output data token after all its
input data dependencies are satisfied. For an IP implemented
as a simple linear pipeline, for example, the number of cycles
will be equal to the number of stages in that pipeline. We
assume, as in [11] that the communication latency is lumped
into the number of execution cycles, and that the architec-
ture is partitioned to minimize inter-domain communication.
Note that, in general, the number of execution cycles for a
PE can vary dynamically depending on the workload. In this
work, we are not interested in modeling workload or appli-
cation driven variability and therefore we restrict Ci to be a
fixed number.

• Each PE is characterized in terms of the probability density
function (pdf) of its cycle time Ti, where the cycle time is de-
fined as the inverse of the clock frequency for that PE. If the
PE is an external IP, the pdf of cycle time could be provided
by the IP vendor or it could be obtained using detailed circuit
level statistical timing analysis (SSTA) assuming probability
distributions for the underlying process parameters. We note
that from an implementation perspective, the clock frequency
of a PE is likely to be controlled in discrete steps. If that is
the case, the pdf of Ti will actually be a discrete distribution.
While, our approach is general and can handle both discrete
and continuous distributions, we note that continuous distri-
butions serve well to answer what-if kind of questions that
frequently arise in system level design. The pdf of Ti is rep-
resented as fTi(t) and its corresponding cumulative density
function (cdf) as FTi(t), where FTi(t) =

∫ t

−∞ fTi(τ) dτ .

• Given Ci and Ti for a PE, its execution latency Li = Ci.Ti

will also be a random variable. Since we have assumed Ci to
be a fixed number, the pdf for Li can be computed directly
from the pdf of the cycle time. We will refer to the pdf of Li

as fLi(t) and its cdf as FLi(t).

• We point out that the notation and assumptions described
above hold if each PE lies in a separate VFI. In general, as-
sume that there are p VFIs, where p ≤ n. If p < n, there will
be at least one domain with more than one PEs. The cycle
time of the VFI j is given as T V FI

j , where 1 ≤ j ≤ p. With-
out loss of generality, let the nodes (1, 2, . . . , r) belong to the
jth VFI. Since the cycle time of a VFI can be no smaller than

the largest cycle time of its constituent PEs, we can write
T V FI

j = max(T1, T2, . . . , Tr). Furthermore, we need to
make the following changes in the definition of the latency
Li of a PE: if PE i lies in VFI j, its latency Li = Ci.T

V FI
j .

Though our proposed algorithm is presented for the case in
which each PE lies in a separate VFI (to avoid notational
complexity), these modifications make it equally valid for the
case when there is more than one PE in a clock domain.

Having introduced the mathematical notations and assumptions,
we will now outline our algorithm to compute the throughput of
the component graph efficiently.

5.1. Throughput Analysis for VFI Systems

The throughput (or rate) of a component graph is restricted
by the presence of cycles in the graph [7]. Cycles in component
graphs can only be found within strongly connected components
(SCC). A SCC is a set of nodes in which it is possible to tra-
verse from every node to every other node. While a graph can
have more than one SCC, no two distinct SCCs can have a node in
common. Furthermore, all SCCs in a graph can be found in linear
time with respect to the number of nodes in the graph [7]. It is,
therefore, sufficient to individually compute the throughput con-
straining cycles of each SCC in a component graph to determine
the system throughput, which will just be the minimum throughput
across all SCCs. In the following discussion, therefore, we only
discuss throughput analysis on a component graph that is strongly
connected, and later show how graphs with multiple SCCs can be
analyzed.

We start with a component graph G(V, E) with n nodes, as
described in the previous Section. We make an additional assump-
tion that G(V, E) is strongly connected. We note that if the graph
is not strongly connected, we can run the proposed algorithm on
each of its SCCs individually and take the statistical minimum of
the resulting distributions from each SCC, as we will demonstrate
in the final step of the proposed algorithm. Finally we associate
weights w(u, v) to every edge e ∈ E that connects nodes u and
v. The weight assigned to edge e is equal the to the latency (as
defined in the previous Section) of the source node of that edge.
Specifically

w(u, v) = Lu, ∀(u, v) ∈ E

Since the latencies are random variables, the edge weights are ran-
dom variables also. We can now compute the throughput for the
graph by computing its maximum cycle mean (MCM) [7]. The
cycle mean (CM) of a cycle C in G(V, E) is defined as the sum
of the weights of the edges in the cycle divided by the number of
edges in the cycle. The MCM can then be computed by determin-
ing the maximum value of the cycle mean over all cycles in the
graph. The throughput for the graph is then inversely proportional
to the MCM. Formally, if λ∗ is the throughput for G(V, E), then:

λ∗ = max
C∈G

|C|∑

(u,v)∈C

w(u, v)

where |C| represents the number of edges in cycle C. In [7], the
authors use Karp’s algorithm [10] to compute the MCM. Accord-
ing to Karp’s algorithm, the MCM (∆∗ = 1

λ∗) is given as:

∆∗ =
1

λ∗ = max
v∈V

min
0≤k≤n−1

Dn
v − Dk

v

n − k
(1)

where Dk
v (0 ≤ k ≤ N) is defined as the maximum k step distance

between node v and an arbitrarily picked node s ∈ V in the graph.
This can be computed by enumerating all paths between s and
v that contain exactly k edges and picking the path that has the
maximum sum of edge weights. The algorithm begins by D0

s = 0
(since the node s can reach itself in zero steps) and D0

i = −∞ for
every other node i ∈ V . Now Dk

v can be computed for 1 ≤ k ≤ n
and all v ∈ V using the following recurrence relation

Dk
v = max

u∈V,(u,v)∈E
(Dk−1

u + w(u, v))

It is critically important for a statistical version of Karp’s MCM
algorithm to keep track of correlations between the distance vari-
ables (Dk

v for all v ∈ V and 1 ≤ k ≤ n). Unlike SSTA, that needs
to operate only on independent variables if there are no structural
or spatial correlations between critical paths, statistical MCM al-
ways needs to account for correlations. This is due to the existence
of the term (Dn

v −Dk
v) in equation (1). Specifically, the variables

Dn
v and Dk

v will always be correlated for throughput constrain-
ing cycles in the graph, since the edges represented in Dk

v will be
a subset of those in Dn

v . To ensure that we keep track of corre-
lations at all stages in the algorithm, we use a recently proposed
SSTA technique that models correlations by representing all inter-
mediate random variables as linear (or quadratic) functions of the
input random variables, and uses a moment matching based prop-
agation scheme [3]. For each random variable Ti, we introduce a
new random variable T

′
i that is a normalized version of Ti. If µTi

is the mean of Ti and σTi is its standard deviation, we can write
T

′
i as:

T
′
i =

Ti − µTi

σTi

The cdf of T
′
i can now be written in terms of FTi(t) as:

F
T

′
i
(t) = FTi(σTi t + µTi)

Since the only random variables we take as input to our algo-
rithm are the cycle times Ti, or equivalently T

′
i , we would like to

express the intermediate variables Dk
v for 1 ≤ k ≤ n and for all

v ∈ V as:
Dk

v = ak
v,0 +

∑

1≤i≤n

ak
v,iT

′
i

where the coefficients ak
v,i ∈ � for 0 ≤ i ≤ n. The goal is to

determine these coefficients for Dk
v . We start by assigning D0

s = 0
as in Karp’s MCM algorithm by setting a0

s,i = 0 for 1 ≤ i ≤ n.
We can now solve the recurrence relationship to get

Dk
v = max

u∈V,(u,v)∈E
(ak−1

u,0 +
∑

1≤i≤n

ak−1
u,i T

′
i +Cu(σTuT

′
u +µTu))

but we also know that:

Dk
v = ak

v,0 +
∑

1≤i≤n

ak
v,iT

′
i

We now need to determine the coefficients ak
v,i for 1 ≤ i ≤ n.

Without any loss in generality, consider a generic max function of
that takes as input two variables A and B that are linear combina-
tions of the random variables Li, 1 ≤ i ≤ n:

D = max(A, B) = max(α0 +
∑

1≤i≤n

αiT
′
i , β0 +

∑

1≤i≤n

βiT
′
i)

We want to write:

D = γ0 +
∑

1≤i≤n

γiT
′
i

This can be accomplished by noting that:

E(T
′
i D) = γi = E(T

′
i max(A, B)), ∀(1 ≤ i ≤ n) (2)

and
E(D) = γ0 = E(max(A, B)) (3)

where E(X) represents the expectation of random variable X .
Exact algebraic expressions for the terms E(max(A, B)) and
E(T

′
i max(A, B)) are provided in [3] and can be evaluated nu-

merically. Having computed the coefficients for each Dk
v for

1 ≤ k ≤ n and v ∈ V , we can now rewrite equation (1) as:

1

λ∗ = max
v∈V

min
0≤k≤n−1

an
v,0 − ak

v,0 +
∑

1≤i≤n

(an
v,i − ak

v,i)T
′
i

n − k
(4)

This equation needs, again, a series of max and min operations
over inputs that are linear combinations of random variables,
where, at each stage we express the output as another linear combi-
nation over the same random variables. Even though we have only
described in detail how this can be done using moment matching
for the max operation, the expressions for the min operation can be
derived in exactly the same fashion as for the max operation.

Algorithm 1 is the formal description of our proposed tech-
nique and yields the desired coefficients δi, where (0 ≤ i ≤ n),
that allow us to write:

∆∗ =
1

λ∗ = δ0 +
n∑

i=1

δiT
′
i

We can now write the cdf of random variable of ∆∗ as:

F∆∗(τ) = F
T

′
1
(
τ − δ0

δ1
) ∗ F

T
′
2
(
τ − δ0

δ2
) . . . FT

′
n
(
τ − δ0

δn
) (5)

Therefore the cdf for the throughput of G, represented as Fλ∗(λ),
is given by:

1−Fλ∗(λ) = F
T

′
1
(
1 − δ0λ

δ1λ
)∗F

T
′
2
(
1 − δ0λ

δ2λ
)∗. . . FT

′
n
(
1 − δ0λ

δnλ
)

(6)
In equations (5) and (6), ∗ represents the convolution operation.
Finally, the description above applies to a component graph that
is an SCC. If there are more than one such SCCs in the graph, we
run the steps described above on each SCC individually and obtain
the cdfs of the throughput for each SCC. These cdfs can then be
combined using a simple statistical min operation to yield the final
result. If Fλ∗

i
(λ) represents the cdf for the ith SCC in the graph,

we can write the cdf of throughput for the entire graph by taking
the statistical minimum across the throughput distributions from
each SCC. If X , Y and Z are some arbitrary random variables,
and Z = min(X, Y), the cdf of Z can be written in terms of the
cdf of X and Y as:

1 − FZ(z) = (1 − FX(z))(1 − FY (z))

We can therefore write:

1−Fλ∗(λ) = (1−Fλ∗
1
(λ))(1−Fλ∗

2
(λ)) . . . (1−Fλ∗

m
(λ)) (7)

Equations (2),(3), (5),(6) and (7) can be computed efficiently using
the techniques outlined in [1]. This completes the description of
the proposed algorithm. We note that the time complexity of the
algorithm is O(p|V ||E|), since Karp’s MCM is itself O(|V ||E|)
[7], and we replace the max function in Karp’s MCM with the
computation of p coefficients (the description in this section as-
sumes p = n, but in the general case p ≤ n).

Algorithm 1 Statistical MCM
Inputs: Number of cycles for each PE (Ci), cdfs of cycle time
random variables (Ti, T

′
i).

Outputs: δi; ∀i : 0 ≤ i ≤ n
for k = 0 to n do

for each node v ∈ V do
ak

v,i = −∞; ∀i : 1 ≤ i ≤ n
end for

end for
a0

s,i = 0, ∀i : 1 ≤ i ≤ n
for k = 1 to n do

for each node v ∈ V do
ti = 0; ∀i : 0 ≤ i ≤ n
for each node u s.t. (u, v) ∈ E do

A = t0 +
∑n

i=1 tiT
′
i

B = ak−1
u,0 +

∑n
i=1 ak−1

u,i T
′
i + σTuCuT

′
u + µTuCu

ti = E(T
′
i max(A, B));∀i : 1 ≤ i ≤ n

t0 = E(max(A, B))
end for
ak

v,i = ti; ∀i : 1 ≤ i ≤ n
end for

end for
δi = 0; ∀i : 0 ≤ i ≤ n
for each node v ∈ V do

ti = ∞; ∀i : 0 ≤ i ≤ n
for k = 0 to n − 1 do

A = t0 +
∑n

i=1 tiT
′
i

B = an
v,0 − ak

v,0 +
∑n

i=1(
an

v,i−ak
v,i

n−k
)

ti = E(T
′
i min(A, B));∀i : 1 ≤ i ≤ n

t0 = E(min(A, B))
end for
C = δ0 +

∑n
i=1 δiT

′
i

D = t0 +
∑n

i=1 tiT
′
i

δi = E(T
′
i max(C, D)); ∀i : 1 ≤ i ≤ n

δ0 = E(max(C, D))
end for

5.2. Throughput Analysis for SSV Systems

An SSV system has only one global clock frequency. Let the
cycle time of the global clock be TG. Since TG is constrained by
the cycle times of each of the individual PEs, we can write

TG = max
1≤i≤n

Ti (8)

If we assume that the individual cycle times vary independently
due to random variations we can write the cdf of TG as

FTG(t) = FT1(t).FT2(t) . . . FTn(t) (9)

In the previous Section, we outlined an algorithm to compute the
distribution of λ∗ given the input latencies Li = CiTi for all nodes
in V . Formally:

λ∗ = Q(C1T1, C2T2 . . . CnTn)

where the function Q(.) represents the proposed probabilistic ver-
sion of Karp’s MCM algorithm. We note that Q(ax, ay) =
aQ(x, y) since scaling the latency of each node by a fixed amount
can only scale the output by the same amount. Now, for an SSV
system

λ∗
SSV = Q(C1.TG, C2.TG . . . Cn.TG)

= TG.Q(C1, C2, . . . , Cn)

Since the cycle counts are single values, and we have already com-
puted the cdf (and therefore pdf) of TG in equation (9), we just
need a single run of the classic Karp’s MCM algorithm over input
values that are fixed numbers.

5.3. SSV vs. VFI

Though it seems intuitive to assume that multiple VFIs will al-
ways perform better than SSV systems under variability, we would
like to prove formally that this is indeed the case.
Lemma: The probability that a multiple VFI system meets a given
throughput constraint, λc, is always greater than or equal to the
probability that its SSV counterpart will meet the same constraint.
Proof: Assume there that exists a probability space Ω, from which
samples of the random vector of cycle times T = (T1, T2 . . . Tn)
are drawn. Now we define

QSSV (T) = λ∗
SSV = Q(C1TG, C2TG . . . CnTG)

and correspondingly

QV FI(T) = λ∗
V FI = Q(C1T1, C2T2 . . . CnTn)

Since the Q(.) function is a monotonically decreasing function of
its inputs [7], and from equation (8) we know that TG ≥ Ti, (∀i
s.t. 1 ≤ i ≤ n), we can say that:

QSSV (T) ≤ QV FI(T), ∀T ∈ Ω (10)

Now consider the probability of an SSV system meeting the
throughput constraint λc,

Pr(QSSV (T) ≥ λc) = Pr(ΩSSV)

and the corresponding probability for VFI systems

Pr(QV FI(T) ≥ λc) = Pr(ΩV FI)

where ΩSSV and ΩV FI are the regions of Ω where the corre-
sponding throughputs of SSV and VFI systems respectively are
larger than λc. From equation (10), we know that

ΩSSV ⊂ ΩV FI

and therefore, Pr(ΩV FI) ≥ Pr(ΩSSV), or equivalently
Pr(λ∗

V FI ≥ λc) ≥ Pr(λ∗
SSV ≥ λc). In other words, a VFI

system is more likely to meet a given throughput constraint than
an SSV system. We note that we have not made any assumptions
about the nature (discrete or continuous) or statistics of the cycle
time distributions. The proof is therefore applicable for any arbi-
trary distribution of cycle times.

Figure 2. The MPEG-2 Encoder Benchmark. For MCV-3, nodes
with similar background patterns are clustered into VFIs.

Benchmark n p Error(µ) Error(Y.P.) Speed-Up

synth-1 15 5 1.21% 2.1% 260X
synth-2 30 10 0.87% 2.74% 147X
synth-3 45 15 1.8% 0.65% 97X
synth-4 60 20 0.92% 3.08% 78X

Table 1. Results for synthetic benchmarks. All comparisons are
with respect to Monte Carlo simulations

6. Results

We implemented the proposed algorithm for determining the
throughput distribution of single and multiple voltage-frequency
island systems in C. The implementation takes as input the com-
ponent graph for the given application, the number of execution
cycles and the cycle time distribution for each PE in the graph,
the number of clock domains and the allocation of PEs to clock
domains and provides the cdf of the throughput for the applica-
tion. There is, unfortunately, an acknowledged lack of embed-
ded system benchmarks that have cyclic component graphs [12].
We therefore validate the accuracy and efficiency of our proposed
techniques on a set of synthetic benchmarks that are generated us-
ing the algorithm presented in [12]. We then demonstrate the im-
pact of our proposed analysis framework on the design of multiple
VFI systems with a case study on a real embedded benchmark
(MPEG-2 encoder). All results are compared to an exhaustive
simulation that consists of 10,000 runs of Monte Carlo simulation
[3, 1, 2].

Figure 3. cdfs of throughput obtained for the MPEG-2 encoder
benchmark for three different architectures

6.1. Synthetic Benchmarks

In [12], the authors outline an algorithm to generate cyclic
task (component) graphs with specified properties. Using this ap-
proach, we generate a set of four synthetic benchmarks that we

label synth-1,synth-2,synth-3 and synth-4. We vary the number
of PEs (n) in the graphs from 15 to 60 and the number of clock
domains (p) from 4 to 20. The number of execution cycles for
each PE is chosen randomly from a uniform distribution between
50 and 100. Finally, we assume that the cycle times of the PEs
are normally distributed with a 3σ of 20% of the mean. Table
1 shows the error between the mean and the 99% yield points of
the throughput distributions for each of the benchmarks. We note
that the average error in the mean of the throughput distribution,
compared to the Monte Carlo results, is 1.2% (maximum 1.81%)
and the average error in the 99% yield point is 2.14% (maximum
3.08%). This comes at a speed-up ranging from 78X to 260X (av-
erage 145X). We note that the speed-up is greater for systems with
fewer clock domains, as predicted by the time complexity analysis.

6.2. Case Study : MPEG-2 Encoder

The results from the previous section demonstrate that the pro-
posed technique is able to accurately estimate the throughput dis-
tribution of multiple VFI systems with an appreciable speed-up in
run time. Using an example of an MPEG-2 encoder from [8], we
now demonstrate how such a framework can be used by system
level designers to evaluate multiple VFI systems. Figure 2 shows
the component graph of the MPEG-2 encoder. To determine the
execution cycles for each of the components, we simulated a soft-
ware version of the MPEG-2 encoder on an ARM7TDMI core and
obtained cycle counts for each module. We note the software im-
plementation we used, the DCT and Quantizer modules were im-
plemented together, as were the IDCT and IQ modules. Instead of
rewriting the software to separate the two modules, we divided the
cycle counts equally between the modules that were implemented
together. As in the previous section, we assumed the cycle time of
each PE to be normally distributed with a 3σ of 20% of the mean.

Using these simulation parameters, we considered three pos-
sible implementations of the MPEG-2 encoder: MCV-9, MCV-3
and SSV. MCV-9 is a nine clock domain architecture in which each
PE lies in its own VFI. MCV-3 has three clock domains, with three
PEs in each clock domain, as represented by the shaded regions in
Figure 2. Finally SSV is a fully synchronous design with a sin-
gle clock domain. Figure 3 show the cdf of throughput obtained
(normalized to the nominal cycle time of a PE) using our approach
and using Monte Carlo simulations for each of the three architec-
tures (for SSV the proposed method always yields exact results
and therefore we only show the Monte Carlo curve for SSV). The
results allow us to quantify the yield of any of the three designs
for a given throughput constraint. We can see that for a throughput
constraint that gives 50% yield for a fully synchronous system,
a nine clock domain architecture (MCV-9) achieves 100% yield
(proposed scheme also predicts 100%) while a three clock domain
architecture (MCV-3) achieves 98% yield (proposed scheme pre-
dicts 92%). The improvements are more dramatic when we con-
sider the 25% yield point of the SSV architecture- MCV-9 again
achieves 100% yield (predicted textbf99.8%) while MCV-3 is able
to achieve 77% yield (predicted 71%). Such information could be
used by designers, in conjunction with the throughput constraints
that the design is expected to meet, to decide on the number of
clock domains for their design or even choose between a fully syn-
chronous and a multiple VFI design style.

7. Conclusions and Future Work

We provide an efficient and accurate algorithm to compute the
system throughput of an embedded application, implemented as
a VFI design, under manufacturing process variations. The pro-
posed framework allows system level designers to make variabil-
ity aware architectural decisions for their VFI designs. Results on
synthetic benchmarks demonstrate the accuracy of the proposed
technique (on average 1.2% error in mean and 2.14% error in
the 99% yield point) for a speed up ranging from 78X to 260X.
Furthermore, using an MPEG-2 benchmark application, we show
that multiple VFI island designs are more likely to meet through-
put constraints than their fully synchronous counterparts and that
the yield advantage diminishes gradually as the number of clock
domains are reduced (PEs are clustered together). Our future re-
search directions involve modeling spatial and systematic sources
of WID variability.

References
[1] A.Devgan and C. Kashyap. Block-based static timing analysis

with uncertainty. In Proceedings of ICCAD, 2003.
[2] H. Chang and S. Sapatnekar. Statistical timing analysis con-

sidering spatial correlations using a single pert-like traversal.
In Proceedings of ICCAD, 2003.

[3] Y. Zhang, A.J. Strojwas, X. Li and L.T. Pileggi. Correlation-
aware statistical timing analysis with non-gaussian delay dis-
tributions. In Proceedings of DAC ,2005.

[4] M. Orshansky and K.Kuetzer. A general probabilistic frame-
work for worst case timing analysis. In Proceedings of DAC,
2002.

[5] D. Ernst, N.S. Kim, S. Das, S. Pant, R. Rao, T. Pham, C.
Ziesler, D. Blaauw, T. Austin, K. Flautner and T. Mudge.
Razor: A Low-Power Pipeline Based on Circuit-Level Tim-
ing Speculation. In MICRO 36: Proceedings of the 36th an-
nual IEEE/ACM International Symposium on Microarchitec-
ture, 2003.

[6] T. Chelcea and S. Nowick. Robust interfaces for mixed-timing
systems with application to latency-insensitive protocols. In
Proceedings of DAC, 2001.

[7] A. Mathur, A. Dasdan and R.K. Gupta. Rate analysis for em-
bedded systems. ACM Transactions on Design Automation of
Electronic Systems, 3(3), 1998.

[8] L.P. Carloni and A.S. Vincentelli. Performance analysis and
optimization of latency insensitive systems. In Proceedings of
DAC, 2000.

[9] A. Dutta, N. Bhunia, A. Banerjee and K. Roy. A power-aware
GALS architecture for real-time algorithm-specific tasks. In
Proceedings of ISQED, 2005.

[10] R.M. Karp. A characterization of the minimum cycle mean
in a digraph. Discrete Math, 23, 1978.

[11] D. Marculescu and S. Garg. System level process-driven
variability analysis for single and multiple voltage-frequency
islands. In Proceedings of ICCAD, 2006.

[12] S. Stuijik, M. Gielen and T. Basten. SDF3: SDF for free. In
Proceedings of ACSD’06, 2006.

	Main
	DATE07
	Front Matter
	Table of Contents
	Author Index

