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Abstract
Modern systems-on-a-chip platforms support multiple clock 

domains, in which different sub-circuits are driven by different 

clock signals. Although the frequency of each domain can be 

customized, the number of unique clock frequencies on a platform 

is typically limited. We define the clock-frequency assignment 

problem to be the assignment of frequencies to processing modules, 

each with an ideal maximum frequency, such that the sum of 

module processing times is minimized, subject to a limit on the 

number of unique frequencies. We develop a novel polynomial-time 

optimal algorithm to solve the problem, based on dynamic 

programming. We apply the algorithm to the particular context of 

post-improvement of accelerator-based hardware/software 

partitioning, and demonstrate 1.5x-4x additional speedups using 

just three clock domains.

1. Introduction 
Modern system-on-a-chip platforms support multiple clock domains 

on a single chip. A clock domain is a block of circuitry that operates 

at a single clock frequency that may differ from the frequency of 

other blocks on the same chip. In addition to reducing clock skew 

related problems, a second advantage of multiple clock domains is 

that a module having a shorter critical path than other modules can 

be clocked at its maximum frequency, rather than all modules being 

clocked at the maximum frequency of the slowest module. Figure 1 

shows a system with four modules having maximum frequencies of 

100, 500, 1000, and 200 MHz. Communication across clock 

domains is a challenge, but has been aggressively researched 

recently, with established solutions (e.g., [4][15]) and with pre-

designed bridge blocks present in many system libraries.  

Because circuitry to generate a unique clock frequency is not 

free, platforms impose a limit on the number of unique clock 

domains. For example, the Xilinx Virtex-II Pro FPGA (field-

programmable gate array) has eight clock frequency synthesizers, 

able to generate frequencies between 24 MHz and 420 MHz via 

different clock multiplication and division factors [22]. If the 

number of modules having distinct maximum frequencies exceeds 

the limit on unique clock frequencies, then we define the clock-

frequency assignment problem as assigning a frequency to each 

module such that a performance metric is optimized, subject to a 

limit on the number of unique frequencies. The example in Figure 1 

shows a frequency assignment for four modules driven by only two 

available frequencies, chosen to be 100 and 500 MHz. 

The clock-frequency assignment problem has not been 

addressed in the design automation literature, to the best of our 

knowledge. The contributions of this paper are the identification 

and definition of the clock-frequency assignment problem, and the 

development of a novel optimal yet efficient dynamic 

programming algorithm to solve the problem.  Section 2 of the 

paper introduces and defines the problem. Section 3 describes our 

dynamic programming algorithm. Section 4 gives results on a 

commercial H.264 benchmark and on numerous synthetic 

benchmarks. Section 5 summarizes related work. Section 6 

concludes.

2. Problem background and definition 

2.1 Background 
A system-on-a-chip may consist of tens or hundreds of 

communicating processor-level modules. Some modules, such as 

those interfacing directly with external circuitry, may have hard real-

time constraints that dictate a specific operating frequency. Other 

modules may have softer performance requirements, for which the 

clock-frequency assignment problem seeks to optimize a 

performance metric.

A common performance metric for multiple modules is the 

(possibly weighted) summation of the execution time for all the 

modules. For example, Kumar [14] sought to create a set of 

heterogeneous general-purpose processor core microarchitectures 

with the goal to minimize the sum of the execution times of a set of 

benchmarks on each core.  

A summation metric could be used to minimize the critical path 

of a task-level dataflow graph [12]. Such tasks may be mapped to 

two or more processing modules. When those processors are not 

system-level pipelined (mapping such tasks to multiple processors 

without pipelining is often done for hardware modularity 

purposes), the goal of minimizing the task graph’s critical path 

becomes the goal of minimizing the sum of the critical tasks’ 

execution times. 

Another use of a summation metric is in accelerator-based 

hardware/software partitioning of sequential programs, illustrated 

in Figure 2. When microprocessor execution reaches a critical 

function, control switches from the microprocessor to a hardware 

accelerator (such as a hardware floating-point unit or graphics 

accelerator); after the accelerator completes, control switches back 

to the microprocessor. The goal of minimizing program execution 

time in this case is the same as minimizing the sum of the 

microprocessor and accelerator execution times for the program. 

Figure 1: Four modules driven by two clock frequencies.  Figure 2: Accelerator hardware/software partitioning model.  
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This problem, using FPGAs to implement accelerators, served as 

the original motivation of our work. Several platforms today 

integrate FPGAs closely with a microprocessor [1][6][22] and 

commercial tools are beginning to appear to automatically partition 

a sequential application’s critical functions to accelerators 

[3][7][16].  

We note that the accelerator model of partitioning, which uses 

coprocessors as microprocessor surrogates rather than parallel 

processors, represents a different model than the widely researched 

model of partitioning a task graph among concurrently-executing 

programmable and coprocessors (e.g., [8][12]). Nevertheless, the 

accelerator model has received research attention [2][10][17][20] 

and is the model for several commercial partitioners [7][16]. The 

model frees the architecture from the complexity of synchronizing 

concurrent processors that share common data, and is justified due 

to well-known limits on available parallelism in sequential 

programs [23], as well as to the relatively short execution time of 

typical accelerators.  

Figure 3 shows data for the twelve most critical functions of a 

commercial H.264 video decoder by Freescale, obtained from Stitt 

[21]. Unlike common benchmarks taken from publicly available 

reference implementations, that decoder’s code was highly 

optimized, and thus did not consist of just two or three critical 

functions, but rather of 42 critical functions that together accounted 

for about 90% of execution time. Stitt’s partitioning into 

accelerators was straightforward, involving implementing an 

accelerator for each critical function. Figure 3 lists, for each H.264 

function, the function’s execution time in software on a given 

microprocessor, the number of cycles for the function’s 

corresponding accelerator (including communication cycles), and 

the maximum clock frequency (in MHz) at which that accelerator 

could execute as determined by Xilinx synthesis tools for Virtex 

FPGAs. Notice the variation in maximum frequencies, ranging 

from 40 MHz to 285 MHz.

2.2 Definition 
We define the clock-frequency assignment problem in the context of 

accelerators, but the problem definition directly applies to any 

modules whose execution sum must be minimized. The problem 

definition, illustrated by example in Figure 4, begins with an 

application represented as a set of accelerators A={a1,a2, …, aM},

where M is an integer  1. . Each ai is a circuit to accelerate one or 

more functions of the application, where a function may be a 

subroutine, loop, or even a large block of code. Note that a single 

accelerator ai may accelerate multiple functions, much as a single 

floating-point unit accelerates floating-point addition, multiplication, 

and other functions. For formulation simplicity, we can treat the 

microprocessor itself as just another accelerator, which will 

implement all the remaining functions not implemented on an actual 

accelerator.  We assume the accelerators were determined by an 

earlier hardware/software partitioning step. While the eventual clock 

frequency of each accelerator could influence partitioning choices, 

previous partitioning work has assumed a single frequency. Thus, 

using multiple clock domains can be viewed as a post-processing 

step to partitioning to improve performance further. Future work 

may include integrating clock-frequency assignment with 

hardware/software partitioning for even better results.

Each accelerator ai has several weights. The weight ai.cycles

corresponds to the number of clock cycles that the accelerator 

contributes to the total clock cycles for the application, not 

including cycles required for accessing memory. The number may 

be obtained through profiling, code analysis, or user annotation, 

and may represent average or worst-case values, depending on 

designer goals – those issues are orthogonal to our approach.

The weight ai.maxfreq represents the fastest clock frequency at 

which this accelerator may execute. That frequency would 

typically be determined by synthesizing the accelerator and then 

taking the inverse of the critical path.

The weight ai.freq represents the frequency at which 

accelerator  ai is being clocked in an implementation. This number 

is not given, but rather must be determined. The determined 

number must be less than or equal to ai.maxfreq.

The application’s execution time E is the sum of the 

application’s computation time and communication time. The 

computation time equals the cycles multiplied by 1/freq values for 

every accelerator. The communication time equals the total number 

of memory accesses multiplied by the memory access time. We 

originally included communication time in our problem 

formulation, but found that component of time unnecessary to 

include during clock-frequency assignment. The reason is that 

communication time equals the number of memory accesses by 

each accelerator times the time associated with each access. The 

time associated with each access consisted of two parts, one part 

dependent on the accelerator’s frequency and hence foldable into 

the accelerator’s compute time, and the other part independent of 

the accelerator frequencies, instead dependent on the frequency of 

Figure 3: Excerpt of H.264 application’s critical functions’ 

information.

Figure 4: Clock-frequency assignment example.  
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<MotionComp_00>: 0.040733 1 281

<InvTransform4x4>: 0.034787 8 194
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<FilterHorizontalLuma>: 0.023559 4 134
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<CombineCoefsZerosInvQuantSca 0.018438 1 120

<MotionCompensate>: 0.016822 10 40

..<FilterVerticalChroma>: 0.016035 4 138
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the microprocessor and memory, which do not impact the relative

total execution time of a given partitioning. Note that this non-

overlapping computation/communication model of execution time, 

while different from the model uses in multi-processor based 

hardware/software partitioning, holds for accelerator-based 

hardware/software partitioning.

We are also given a maximum number of unique clock 

frequencies F available to the accelerators.  

Thus, the clock-frequency assignment problem is to: 

 Find a positive integer value for every ai.freq, such 

that each ai.freq is less than ai.maxfreq for every i, the 

number of distinct ai.freq values is less than or equal to 

F, and the execution time E is minimized.   

Figure 4 provides an example showing a microprocessor (a 

special “accelerator”) and three actual accelerators. Each of these 

four accelerators is weighed with the number of cycles executed on 

the accelerator (100, 10, 5, and 2, respectively), and the maximum 

frequency for that accelerator (100, 500, 1000, and 200 MHz, 

respectively). The figure shows all possible clock-frequency 

assignments with the execution time resulting from each; the 

optimal solution, having the best execution time, is circled. Note 

that this example is trivially-small; actual applications may have 

many tens of accelerators, and platforms may have tens of 

available frequencies, with both numbers growing yearly.  

A real clock frequency synthesizer may not generate all 

possible frequencies in a range. In that case, we replace each 

accelerator’s ideal maximum frequency by the highest 

synthesizable frequency less than or equal to that ideal. If an 

accelerator’s ideal frequency exceeds the range, we reduce the 

ideal frequency to be the highest synthesizable frequency. 

3. Dynamic Programming Solution 
We considered several possible solutions to the clock-frequency 

assignment problem. Exhaustive search is feasible for small 

numbers of accelerators and possible frequencies, but grows at a 

quick rate and proved to be infeasible for practical problem sizes. 

In fact, we found that the number of solutions for n clock lines was 

equivalent to finding the nth Bell number of solutions, a well 

known combinatorial mathematics sequence whose complexity is   

factorial [18]. A heuristic could certainly be developed, but we 

suspected this problem contained enough structure that a 

polynomial-time optimal algorithm might be found. 

3.1 Intuition 
Examining the simple example of Figure 4 suggests the idea of first 

sorting the accelerators by their maximum frequency, resulting in a1,

a4, a2, and a3, and frequencies of 100, 200, 500, and 1000. Consider 

the case of F=1. In that case, the problem has only one solution: 100, 

100, 100, 100. Consider instead the case of F=2. In that case, a1

would have to be 100. Solving for the remaining accelerators would 

represent a new sub-problem consisting of three accelerators, of 

F=1, and of an additional option of using a frequency of 100 for any 

of those three accelerators.  Considering that sub-problem, and 

starting with the accelerator with the lowest maximum frequency, 

am, whose maximum frequency is 200, we can assign either 100 or 

200 to am. If we assign 200, the sub-problem solution is done: 200, 

200, 200, meaning the problem solution is: 100, 200, 200, 200. If we 

instead assign 100, then we again have a new sub-problem 

consisting of the remaining two accelerators, F=1, and the option of 

assigning 100. Noting the sub-problem structure in the problem, we 

investigated a dynamic programming solution.  

We developed the table structure in Figure 5 as the basis for a 

dynamic programming solution. The rows correspond to sub-

problems with A accelerators. The columns correspond to sub-

problems with C available clock frequencies. Very importantly, and 

without loss of generality, we assume that the accelerators have 

been pre-sorted according to descending maximum frequency, and 

that each maximum frequency is distinct. We shall justify these 

assumptions in Section 3.3.

The bottom right table cell represents the solution to the 

complete problem. Let X(g,h) represent the cell with A=g and C=h. 

Consider attempting to find a solution to the sub-problem 

represented by cell X(1,1), illustrated in Figure 5(a). That sub-

problem has one accelerator a1 with maximum frequency of 1000, 

and one available frequency, so the only (reasonable) solution is 

obviously to assign a1 a frequency of 1000. Since a1 requires 5 

cycles, the resulting execution time of that one accelerator sub-

problem is 5/1000 = 0.005 microseconds (assuming frequencies are 

in megahertz), which is entered into the table. Now consider 

moving down the column to cell X(2,1). That sub-problem has two 

accelerators a1 and a2 with maximum frequencies of 1000 and 500, 

but has only one available frequency. Thus, the only solution is to 

assign both accelerators a frequency of 500. Since the accelerators 

require 5 and 10 cycles, respectively, the total execution time of 

those two accelerators is (5+10)/500 = 0.030. Continuing down the 

column, both remaining cells also have only one solution, with 

X(3,1) requiring a frequency of 200, and X(4,1) requiring a 

solution of 100, to be assigned to all accelerators. The computed 

execution times for those sub-problems are shown in the table.  

Next, consider the top of the second column, cell X(1,2). There 

is one accelerator a1, but two clock frequencies available. The only 

reasonable solution assigns the maximum frequency to the 

accelerator, yielding 5/1000=0.005. Cell X(2,2) has two 

accelerators and two clock frequencies available, so the only 

reasonable solution assigns the maximum frequency to each 

accelerator, yielding 5/1000+10/500=0.025. The solution is the 

Figure 5: Table forming basis of dynamic programming approach. 

Example has 4 accelerators (M=4) with maximum frequencies and 

cycles shown, and has 2 possible clock frequencies (F=2). Note that 

accelerators are  sorted by maximum frequency and renumbered.  
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same as X(1,1)+10/500=0.025; we had an available frequency, so 

we assigned the present accelerator a2 its maximum frequency, and 

then used the best solution for X(1,1) for the previous accelerator 

a1. This cell hints how we can reuse prior sub-problem solutions in 

computing the present sub-problems solution.

Cell X(3,2) reveals such reuse more fully. That sub-problem 

has three accelerators a1, a2, and a3 having maximum frequencies 

of 1000, 500, and 200, respectively, and has two available clock 

frequencies. Accelerator a3 must be assigned a frequency of 200, 

because it has the lowest maximum frequency of the three 

accelerators (recall that the accelerators were initially presorted 

according to their maximum frequency). To complete the sub-

problem solution, we have two choices. We can assume that a3 is 

the only accelerator assigned 200, in which case the remainder of 

the sub-problem consists of the two accelerators a1 and a2 and one 

available frequency, i.e., X(2,1). Alternatively, we can assume that 

frequency 200 is assigned to both a3 and a2, in which case the 

remaining sub-problem would be X(1,1). There is no need to 

consider assigning 200 to a1, because there is one remaining 

available frequency. Similar cell reuse exists with cell X(4,2). 

Thus, we see that a cell with A=N can be computed by 

selecting the minimum of N-1 alternatives, where each alternative 

combines a simple new term with the results from a previous cell.  

3.2 Dynamic Programming Formulation 
We assume (without loss of generality) that accelerators a1, a2... aM,

have been pre-sorted in decreasing order of maximum frequency and 

that each maximum frequency is unique.  Let X(A,C) equal the total 

execution time of the first A accelerators using the first C clock 

frequencies. We define the following recurrence relation as a 

function:

If (A=0)            then     X(A,C)=0   

Else If (C=0)     then    X(A,C)= infinity  

Else

)1,1(
.
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If A=0, there are no accelerators, and thus the execution time is 0. If 

C=0, there are no clock frequencies available, so execution time is 

infinite. We intentionally define X to return 0 for X(0,0).  

The “Min” term compares the alternative solutions that assume 

the present accelerator’s (aA) maximum frequency is assigned to 

the present accelerator only, to the present accelerator and the next 

accelerator, to the present accelerator and the next two 

accelerators, etc. The expression inside that term computes the total 

execution time for this cell as the sum of the execution times for 

the accelerators assigned to the present maximum frequency, added 

to the previously-computed best solution for the other accelerators 

with one less available clock frequencies.

3.3 Justification of Assumptions  
Several observations must be established to justify assumptions we 

made in the dynamic programming formulation. For convenience of 

this discussion, we restate the problem definition in a form that 

partitions the accelerators into groups:

Partition the m accelerators into at most F groups, such that 

the total execution time as determined by the following 

equation is minimized:

Ni ji
j
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where ai,j denotes the jth component in the ith group of a solution.

We note that if the maximum number of available clock 

frequencies F is greater than or equal to the number of accelerators 

M, the solution is trivial – we just assign each accelerator a 

frequency equal to that accelerator’s maximum frequency. If F is 

less than M, some accelerators must be grouped to share a single 

clock frequency. We make three observations that allow us to 

formulate the dynamic programming algorithm.  

Observation 1: If ai.freq = aj.freq (i.e., if two accelerators i 

and j have the same frequencies), then in the optimal solution, 

the two accelerators must be assigned to the same group.

We prove this observation by contradiction. Assume ai.freq is equal 

to aj.freq but ai and aj are assigned to two different groups P1 and P2

with minimal frequencies min_freq1 and min_freq2 respectively. 

Without loss of generality, assume min_freq1 < min_freq2. If that is 

the case, we can move ai from P1 to P2, and it can be easily verified 

that the new solution as obtained will have a smaller total execution 

time (since ai now has a faster clock), which contradicts our 

assumption of the optimality of the original solution. Therefore, 

according to the above observation, without loss of generality, we 

can assume that the frequencies of the given accelerators are all 

distinct. If not, we can simply combine those accelerators having 

identical frequencies into one single accelerator. The new 

accelerator will have the same frequency as that of the original 

accelerators, and its total cycles will equal the sum of the total 

cycles of the original accelerators.  

Observation 2: If F < M, then the optimal solution will always 

consist of F non-empty groups, i.e., all the available 

frequencies F will be used.

Otherwise, we could split any group consisting of more than two 

accelerators into two groups and the new solution will have a 

smaller total execution time, which again contradicts our 

assumption of the optimality of the original solution.    

Observation 3: Let P1, P2 be any two groups taken from an 

optimal solution. Let min_freq1 be the minimal frequency of 

the components in P1, max_freq1 be the maximal frequency of 

the components in P1, and min_freq2 and max_freq2 be 

similarly defined. Then either  min_freq1  max_freq1 <

min_freq2  max_freq2   or min_freq2  max_freq2 < min_freq1

 max_freq1 holds, i.e., either the components in P1 are all 

slower than those in P2 or they are all faster than those in P2.

We prove observation 3 by contradiction. Assume to the contrary, in 

the optimal solution we have that min_freq1 < min_freq2 <

max_freq1. Let ax be in the accelerator in P1 with frequency 

max_freq1. We can move ax from P1 to P2 and obtain a new solution. 

It can be easily verified that the new solution will require less total 

execution time since the execution time for accelerator ax is reduced. 

This is a contradiction. The case where min_freq2 < min_freq1 <

max_freq2 can be similarly proved. Due to observation 3, we can 

first sort the accelerators by their maximum frequencies. The 

optimal solution will be guaranteed to observe this order, namely 

each group of the optimal solution will contain only consecutive 

accelerators from the sorted list.



3.4 Complexity 
The algorithm fills a table of size O(m*F), where m is the number of 

accelerators and F is the number of available clock frequencies. The 

algorithm visits each cell once. Filling each cell requires O(F) time. 

Thus, the complexity of the algorithm is O(m*F2).

Because the algorithm finds the optimal solution in polynomial 

time, the clock-frequency assignment problem is clearly not NP-

complete. Although the problem bears resemblance to the well-

known NP-complete problem of bin-packing, the key difference is 

that, while the bin-packing problem has a capacity constraint on 

each bin, the clock-frequency assignment problem does not have a 

limit on the number of accelerators that may be assigned to each 

clock frequency.  

3.5 Limitations 
The formulation and solution do not consider physical design factors 

that might influence assignment of frequencies to accelerators, such 

as placement issues (accelerators with different frequencies may be 

placed farther apart, impacting routing) or size constraints that may 

existing on each clock domain – integrating physical design issues 

with higher-level exploration might be a useful extension, as is the 

case with most high-level design automation. The formulation did 

not consider the case of pre-existing fixed frequencies being 

available (perhaps pre-assigned to a circuit with a hard real-time 

constraint) – we suspect that extending our algorithm to take a 

partial solution as input would be straightforward, but have not 

investigated that yet.  

4. Results 
We implemented the dynamic programming algorithm and ran 

experiments on a 2.66 GHz 1Gb RAM Pentium 4 PC. We applied 

the algorithm to the 42 functions of the earlier-introduced H.264 

decoder. We targeted synthesis of the 42 functions to a Xilinx Virtex 

IV Pro and gathered information on cycles per function accelerator, 

and maximum clock frequency of each accelerator. Figure 6 

illustrates assignments obtained by the algorithm given three 

available clock frequencies. Obtained speedup was over 2x versus 

having just one frequency (with that speedup being in addition to 

already-obtained speedup from partitioning functions to 

accelerators). The algorithm ran in about 0.2 seconds.  

We exercised the algorithm using synthetically-generated  

examples that supported large ranges of computation cycles and 

clock frequencies. Figure 7 provides results of applying the clock 

assignment on 10 synthetic benchmarks with varying numbers of 

accelerators ranging from 5 to 50. For each, we report speedups 

relative to execution time of the set of accelerators using only one 

clock frequency, which must necessarily be the lowest maximum 

frequency of the set. We considered available numbers of 

frequencies F of 3, 6, and 9.  Figure 7 shows that partitioning an 

application among the available clock improves overall execution 

time by 1.5x-3x.  Figure 8 shows algorithm runtimes for Figure 7. 

For normal-sized examples having 5-15 accelerators, the runtime is 

.1-.2 seconds. Even for the large examples having 50 accelerators, 

the runtime is still a reasonable .4-.8 seconds.

These runtimes suggest applicability of the algorithm as a sub-

algorithm of a higher-level exploration tool, or even as part of 

future on-chip CAD tools that may dynamically partition 

accelerators among available clock domains. We developed a 

higher-level exploration tool that repeatedly applied our algorithm 

to determine the point of diminishing returns for number of 

available clock frequencies – such determination would be 

important for a system-level tool that allocates available clock 

frequencies to different sub-groups of modules. Figure 9 shows 

results for H.264, where we applied our algorithm ten times, for 

one available frequency, two available, three available,... or ten 

available. The data shows that H.264 performance improves up 

until about 4 or 5 available frequencies; more frequencies yield 

little additional performance improvements. We also consider four 

synthetic examples of different sizes, and again found tapering off 

of benefits at different points. That data could be used by a system-

level exploration tool. For each example, the total tool runtime was 

under 4 seconds..

Another interesting possible use of the algorithm would be as 

part of a hardware/software partitioning approach. A 

hardware/software partitioning algorithm might apply clock-

frequency assignment at certain points during exploration, to obtain 

accurate execution time feedback for a given partitioning of 

behavior among a microprocessor and accelerators.  

5. Related Work 
Several previous works used multiple clock frequencies to improve 

general-purpose processing. Semeraro [19] used multiple 

frequencies to reduce power of a single microprocessor. The clock 

domains included the front end (including L1 instruction cache), the 

integer units, the floating-point units, and the load-store units 

(including L1 data cache and L2 cache). Kumar [14] considered 

multiple frequencies for multiple heterogeneous microprocessors, 

where each microprocessor might be optimized for different 

application sets, each conceivably having its own clock frequency.  

Some work has considered the similar topic of voltage islands. 

A voltage island is a sub-circuit operating at a different voltage, 

and typically therefore different clock frequency, compared to 

other islands [5]. Hu [11] considered mapping a set of cores, each 

with allowed voltage levels, into islands such that power was 

minimized. They used an iterative improvement heuristic, in 

particular simulated annealing, to group the cores into islands.

Numerous researchers (e.g., [24]) have considered the different 

concept of multiple voltage levels (and typically therefore multiple 

clock frequencies), namely the concept of voltage scaling of a 

single microprocessor. In such work, a microprocessor’s voltage 

and clock may be dynamically adjusted to reduce power while still 

satisfying an application’s performance constraints.  

Figure 6: Clock-frequency assignment for the H.264 decoder with 

three available clock frequencies. All accelerators in a group are 

assigned the lowest (circled) frequency in that group.   

Accelerator                   Clock Freq (MHz)         Cycles

..<MotionCompChromaFullXFullY>:  285                  285 

..<MotionComp_00>:                           281                281 

..<UpdateValidMBs>:                          204          1224 

...<GetBits>                                         200                  200

…

..<GetSignedUVLC>                           106                 212    

..<DeblockingFilterLumaRow>:           80                  3520 

..<MotionCompChromaFracXFullY>: 74                   1184 

…

..<MotionComp_31>:                          70                   15680 

..<DeblockingFilterChromaRow>:       60                   2640 

..<MotionCompensate>:              40                  400 

Speedup versus one frequency: 2.04x



We are not aware of prior work on clock domains, voltage 

islands, or voltage scaling, whose problem definition is equivalent 

to the clock-frequency assignment problem. To our knowledge, no 

hardware/software partitioning work (either multi-processor 

oriented or accelerator oriented) has considered multiple clock 

domains, due in part to such domains not having existed in cost-

effective form until relatively recently.  

Beyond such system-on-chip research, the problem of 

clustering items into a fixed number of groups is widely studied, 

such as the problem of quantizing a set of colors into a fixed 

number of colors, or of dividing a time series of data into a fixed 

number of straight-line segments[13]. The clock-frequency 

assignment problem differs from such clustering problems in the 

asymmetric constraint that an accelerator may belong to a group 

with a lower frequency than the accelerator’s maximum frequency, 

but may not belong to a group with a higher frequency. Such 

asymmetry introduces more structure into the problem, allowing 

for an optimal algorithm with low runtime complexity.  

6. Conclusions 
We showed that partitioning a microprocessor’s accelerators among 

clock domains could yield application speedups of 1.5x-4x for 

applications with 5-50 accelerators, including a commercial H.264 

decoder, and with 3-9 available clock frequencies. We defined the 

clock-frequency assignment problem for making use of multiple 

available clock frequencies, and developed a novel efficient dynamic 

programming algorithm that finds optimal results in polynomial time 

(thus showing that the problem is not NP-hard), and that runs in 

under a second for even very large examples. Future work will 

extend the problem to consider a wider range of clock-domain usage 

scenarios, and to integrate clock-frequency assignment with other 

exploration methods.
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Figure 7: Execution time speedups for varying numbers of 

accelerators as a result of using multiple clock domains 
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Figure 8: Dynamic programming algorithm runtimes for varying 

numbers of accelerators and varying numbers of clock domains. 

0

0.2

0.4

0.6

0.8

1

5 10 15 20 25 30 35 40 45 50

Number of Accelerators

T
im

e
 (

s
) 3 clocks

6 clocks

9 clocks

Figure 9 Applying the dynamic programming algorithm as part of a 

higher level exploration strategy. 
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