
Clock-Frequency Assignment for Multiple Clock Domain Systems-on-a-Chip

Abstract
Modern systems-on-a-chip platforms support multiple clock

domains, in which different sub-circuits are driven by different

clock signals. Although the frequency of each domain can be

customized, the number of unique clock frequencies on a platform

is typically limited. We define the clock-frequency assignment

problem to be the assignment of frequencies to processing modules,

each with an ideal maximum frequency, such that the sum of

module processing times is minimized, subject to a limit on the

number of unique frequencies. We develop a novel polynomial-time

optimal algorithm to solve the problem, based on dynamic

programming. We apply the algorithm to the particular context of

post-improvement of accelerator-based hardware/software

partitioning, and demonstrate 1.5x-4x additional speedups using

just three clock domains.

1. Introduction
Modern system-on-a-chip platforms support multiple clock domains

on a single chip. A clock domain is a block of circuitry that operates

at a single clock frequency that may differ from the frequency of

other blocks on the same chip. In addition to reducing clock skew

related problems, a second advantage of multiple clock domains is

that a module having a shorter critical path than other modules can

be clocked at its maximum frequency, rather than all modules being

clocked at the maximum frequency of the slowest module. Figure 1

shows a system with four modules having maximum frequencies of

100, 500, 1000, and 200 MHz. Communication across clock

domains is a challenge, but has been aggressively researched

recently, with established solutions (e.g., [4][15]) and with pre-

designed bridge blocks present in many system libraries.

Because circuitry to generate a unique clock frequency is not

free, platforms impose a limit on the number of unique clock

domains. For example, the Xilinx Virtex-II Pro FPGA (field-

programmable gate array) has eight clock frequency synthesizers,

able to generate frequencies between 24 MHz and 420 MHz via

different clock multiplication and division factors [22]. If the

number of modules having distinct maximum frequencies exceeds

the limit on unique clock frequencies, then we define the clock-

frequency assignment problem as assigning a frequency to each

module such that a performance metric is optimized, subject to a

limit on the number of unique frequencies. The example in Figure 1

shows a frequency assignment for four modules driven by only two

available frequencies, chosen to be 100 and 500 MHz.

The clock-frequency assignment problem has not been

addressed in the design automation literature, to the best of our

knowledge. The contributions of this paper are the identification

and definition of the clock-frequency assignment problem, and the

development of a novel optimal yet efficient dynamic

programming algorithm to solve the problem. Section 2 of the

paper introduces and defines the problem. Section 3 describes our

dynamic programming algorithm. Section 4 gives results on a

commercial H.264 benchmark and on numerous synthetic

benchmarks. Section 5 summarizes related work. Section 6

concludes.

2. Problem background and definition

2.1 Background
A system-on-a-chip may consist of tens or hundreds of

communicating processor-level modules. Some modules, such as

those interfacing directly with external circuitry, may have hard real-

time constraints that dictate a specific operating frequency. Other

modules may have softer performance requirements, for which the

clock-frequency assignment problem seeks to optimize a

performance metric.

A common performance metric for multiple modules is the

(possibly weighted) summation of the execution time for all the

modules. For example, Kumar [14] sought to create a set of

heterogeneous general-purpose processor core microarchitectures

with the goal to minimize the sum of the execution times of a set of

benchmarks on each core.

A summation metric could be used to minimize the critical path

of a task-level dataflow graph [12]. Such tasks may be mapped to

two or more processing modules. When those processors are not

system-level pipelined (mapping such tasks to multiple processors

without pipelining is often done for hardware modularity

purposes), the goal of minimizing the task graph’s critical path

becomes the goal of minimizing the sum of the critical tasks’

execution times.

Another use of a summation metric is in accelerator-based

hardware/software partitioning of sequential programs, illustrated

in Figure 2. When microprocessor execution reaches a critical

function, control switches from the microprocessor to a hardware

accelerator (such as a hardware floating-point unit or graphics

accelerator); after the accelerator completes, control switches back

to the microprocessor. The goal of minimizing program execution

time in this case is the same as minimizing the sum of the

microprocessor and accelerator execution times for the program.

Figure 1: Four modules driven by two clock frequencies. Figure 2: Accelerator hardware/software partitioning model.

Base micro-

processor
AccelFct1

Mem

AccelFct2

clock

domain

bridge

100 MHz 500 MHz

AccelFct3

Clock frequency synthesizers

max 100 MHz

max 500 MHz
max 1000 MHz

max 200 MHz

Scott Sirowy, Yonghui Wu, Stefano Lonardi, Frank Vahid*

Department of Computer Science and Engineering – University of California, Riverside

{ssirowy, yonghui,stelo, vahid}@cs.ucr.edu
*
Also with the Center for Embedded Computer Systems, University of California, Irvine

Fct1 Main

Fct2

Fct3

Base micro-

processor

AccelFct1 AccelFct2 AccelFct3

978-3-9810801-2-4/DATE07 © 2007 EDAA

This problem, using FPGAs to implement accelerators, served as

the original motivation of our work. Several platforms today

integrate FPGAs closely with a microprocessor [1][6][22] and

commercial tools are beginning to appear to automatically partition

a sequential application’s critical functions to accelerators

[3][7][16].

We note that the accelerator model of partitioning, which uses

coprocessors as microprocessor surrogates rather than parallel

processors, represents a different model than the widely researched

model of partitioning a task graph among concurrently-executing

programmable and coprocessors (e.g., [8][12]). Nevertheless, the

accelerator model has received research attention [2][10][17][20]

and is the model for several commercial partitioners [7][16]. The

model frees the architecture from the complexity of synchronizing

concurrent processors that share common data, and is justified due

to well-known limits on available parallelism in sequential

programs [23], as well as to the relatively short execution time of

typical accelerators.

Figure 3 shows data for the twelve most critical functions of a

commercial H.264 video decoder by Freescale, obtained from Stitt

[21]. Unlike common benchmarks taken from publicly available

reference implementations, that decoder’s code was highly

optimized, and thus did not consist of just two or three critical

functions, but rather of 42 critical functions that together accounted

for about 90% of execution time. Stitt’s partitioning into

accelerators was straightforward, involving implementing an

accelerator for each critical function. Figure 3 lists, for each H.264

function, the function’s execution time in software on a given

microprocessor, the number of cycles for the function’s

corresponding accelerator (including communication cycles), and

the maximum clock frequency (in MHz) at which that accelerator

could execute as determined by Xilinx synthesis tools for Virtex

FPGAs. Notice the variation in maximum frequencies, ranging

from 40 MHz to 285 MHz.

2.2 Definition
We define the clock-frequency assignment problem in the context of

accelerators, but the problem definition directly applies to any

modules whose execution sum must be minimized. The problem

definition, illustrated by example in Figure 4, begins with an

application represented as a set of accelerators A={a1,a2, …, aM},

where M is an integer 1. . Each ai is a circuit to accelerate one or

more functions of the application, where a function may be a

subroutine, loop, or even a large block of code. Note that a single

accelerator ai may accelerate multiple functions, much as a single

floating-point unit accelerates floating-point addition, multiplication,

and other functions. For formulation simplicity, we can treat the

microprocessor itself as just another accelerator, which will

implement all the remaining functions not implemented on an actual

accelerator. We assume the accelerators were determined by an

earlier hardware/software partitioning step. While the eventual clock

frequency of each accelerator could influence partitioning choices,

previous partitioning work has assumed a single frequency. Thus,

using multiple clock domains can be viewed as a post-processing

step to partitioning to improve performance further. Future work

may include integrating clock-frequency assignment with

hardware/software partitioning for even better results.

Each accelerator ai has several weights. The weight ai.cycles

corresponds to the number of clock cycles that the accelerator

contributes to the total clock cycles for the application, not

including cycles required for accessing memory. The number may

be obtained through profiling, code analysis, or user annotation,

and may represent average or worst-case values, depending on

designer goals – those issues are orthogonal to our approach.

The weight ai.maxfreq represents the fastest clock frequency at

which this accelerator may execute. That frequency would

typically be determined by synthesizing the accelerator and then

taking the inverse of the critical path.

The weight ai.freq represents the frequency at which

accelerator ai is being clocked in an implementation. This number

is not given, but rather must be determined. The determined

number must be less than or equal to ai.maxfreq.

The application’s execution time E is the sum of the

application’s computation time and communication time. The

computation time equals the cycles multiplied by 1/freq values for

every accelerator. The communication time equals the total number

of memory accesses multiplied by the memory access time. We

originally included communication time in our problem

formulation, but found that component of time unnecessary to

include during clock-frequency assignment. The reason is that

communication time equals the number of memory accesses by

each accelerator times the time associated with each access. The

time associated with each access consisted of two parts, one part

dependent on the accelerator’s frequency and hence foldable into

the accelerator’s compute time, and the other part independent of

the accelerator frequencies, instead dependent on the frequency of

Figure 3: Excerpt of H.264 application’s critical functions’

information.

Figure 4: Clock-frequency assignment example.

Function sw time # hw cycles hw max clk

<MotionComp_00>: 0.040733 1 281

<InvTransform4x4>: 0.034787 8 194

<FindHorizontalBS>: 0.025026 1 140

<GetBits>: 0.024681 1 200

<FindVerticalBS>: 0.02366 1 140

<MotionCompChromaFullXFullY> 0.023577 1 285

<FilterHorizontalLuma>: 0.023559 4 134

<FilterVerticalLuma>: 0.020008 4 138

<FilterHorizontalChroma>: 0.018803 4 134

<CombineCoefsZerosInvQuantSca 0.018438 1 120

<MotionCompensate>: 0.016822 10 40

..<FilterVerticalChroma>: 0.016035 4 138

..<MotionCompChromaFracXFrac 0.016023 32 78

..<ReadLeadingZerosAndOne>: 0.015665 1 106

a1 a2 a4

MemMicro-

processor

Actual

accelerators

cycles: 100

a3

10 5 2

maxfreq (MHz): 100 500 1000 200

Minimize:

E = 100*1/a1.freq+10*1/a2.freq+5*1/a3.freq+2*1/a4.freq

freq (MHz): ? ? ? ?

Subject to: Each ai.freq ai.maxfreq, and num unique freq F

Because F=2, then valid solutions are:

freq (MHz): 100 100 100 100

E

1.170

freq (MHz): 100 200 200 200 1.085

freq (MHz): 100 500 500 100 1.050

freq (MHz): 100 100 1000 100 1.125

Given:

F=2

the microprocessor and memory, which do not impact the relative

total execution time of a given partitioning. Note that this non-

overlapping computation/communication model of execution time,

while different from the model uses in multi-processor based

hardware/software partitioning, holds for accelerator-based

hardware/software partitioning.

We are also given a maximum number of unique clock

frequencies F available to the accelerators.

Thus, the clock-frequency assignment problem is to:

 Find a positive integer value for every ai.freq, such

that each ai.freq is less than ai.maxfreq for every i, the

number of distinct ai.freq values is less than or equal to

F, and the execution time E is minimized.

Figure 4 provides an example showing a microprocessor (a

special “accelerator”) and three actual accelerators. Each of these

four accelerators is weighed with the number of cycles executed on

the accelerator (100, 10, 5, and 2, respectively), and the maximum

frequency for that accelerator (100, 500, 1000, and 200 MHz,

respectively). The figure shows all possible clock-frequency

assignments with the execution time resulting from each; the

optimal solution, having the best execution time, is circled. Note

that this example is trivially-small; actual applications may have

many tens of accelerators, and platforms may have tens of

available frequencies, with both numbers growing yearly.

A real clock frequency synthesizer may not generate all

possible frequencies in a range. In that case, we replace each

accelerator’s ideal maximum frequency by the highest

synthesizable frequency less than or equal to that ideal. If an

accelerator’s ideal frequency exceeds the range, we reduce the

ideal frequency to be the highest synthesizable frequency.

3. Dynamic Programming Solution
We considered several possible solutions to the clock-frequency

assignment problem. Exhaustive search is feasible for small

numbers of accelerators and possible frequencies, but grows at a

quick rate and proved to be infeasible for practical problem sizes.

In fact, we found that the number of solutions for n clock lines was

equivalent to finding the nth Bell number of solutions, a well

known combinatorial mathematics sequence whose complexity is

factorial [18]. A heuristic could certainly be developed, but we

suspected this problem contained enough structure that a

polynomial-time optimal algorithm might be found.

3.1 Intuition
Examining the simple example of Figure 4 suggests the idea of first

sorting the accelerators by their maximum frequency, resulting in a1,

a4, a2, and a3, and frequencies of 100, 200, 500, and 1000. Consider

the case of F=1. In that case, the problem has only one solution: 100,

100, 100, 100. Consider instead the case of F=2. In that case, a1

would have to be 100. Solving for the remaining accelerators would

represent a new sub-problem consisting of three accelerators, of

F=1, and of an additional option of using a frequency of 100 for any

of those three accelerators. Considering that sub-problem, and

starting with the accelerator with the lowest maximum frequency,

am, whose maximum frequency is 200, we can assign either 100 or

200 to am. If we assign 200, the sub-problem solution is done: 200,

200, 200, meaning the problem solution is: 100, 200, 200, 200. If we

instead assign 100, then we again have a new sub-problem

consisting of the remaining two accelerators, F=1, and the option of

assigning 100. Noting the sub-problem structure in the problem, we

investigated a dynamic programming solution.

We developed the table structure in Figure 5 as the basis for a

dynamic programming solution. The rows correspond to sub-

problems with A accelerators. The columns correspond to sub-

problems with C available clock frequencies. Very importantly, and

without loss of generality, we assume that the accelerators have

been pre-sorted according to descending maximum frequency, and

that each maximum frequency is distinct. We shall justify these

assumptions in Section 3.3.

The bottom right table cell represents the solution to the

complete problem. Let X(g,h) represent the cell with A=g and C=h.

Consider attempting to find a solution to the sub-problem

represented by cell X(1,1), illustrated in Figure 5(a). That sub-

problem has one accelerator a1 with maximum frequency of 1000,

and one available frequency, so the only (reasonable) solution is

obviously to assign a1 a frequency of 1000. Since a1 requires 5

cycles, the resulting execution time of that one accelerator sub-

problem is 5/1000 = 0.005 microseconds (assuming frequencies are

in megahertz), which is entered into the table. Now consider

moving down the column to cell X(2,1). That sub-problem has two

accelerators a1 and a2 with maximum frequencies of 1000 and 500,

but has only one available frequency. Thus, the only solution is to

assign both accelerators a frequency of 500. Since the accelerators

require 5 and 10 cycles, respectively, the total execution time of

those two accelerators is (5+10)/500 = 0.030. Continuing down the

column, both remaining cells also have only one solution, with

X(3,1) requiring a frequency of 200, and X(4,1) requiring a

solution of 100, to be assigned to all accelerators. The computed

execution times for those sub-problems are shown in the table.

Next, consider the top of the second column, cell X(1,2). There

is one accelerator a1, but two clock frequencies available. The only

reasonable solution assigns the maximum frequency to the

accelerator, yielding 5/1000=0.005. Cell X(2,2) has two

accelerators and two clock frequencies available, so the only

reasonable solution assigns the maximum frequency to each

accelerator, yielding 5/1000+10/500=0.025. The solution is the

Figure 5: Table forming basis of dynamic programming approach.

Example has 4 accelerators (M=4) with maximum frequencies and

cycles shown, and has 2 possible clock frequencies (F=2). Note that

accelerators are sorted by maximum frequency and renumbered.

A

C
1 2

1

2

3

4

a1 a2 a3 a4

1000 500 200 100maxfrq

:cycles: 5 10 2 100

X(1,1) =5/1000 = 0.005

X(2,1) =(5+10)/500 = 0.030

0.005

0.030

X(3,1) =(5+10+2)/200= 0.085
0.085 X(4,1) =(5+10+2+100)/100

 = 1.170
1.170

A

C
1 2

1

2

3

4

0.005

0.030

0.085

1.170

X(1,2) =5/1000=0.005

X(2,2) =5/1000+10/500=0.025

 Note: = X(1,1)+10/500

0.005

0.025

X(3,2) = Min of:

 * (5+10)/500+2/200=0.040

 Note: =X(2,1)+2/200

 * 5/1000+(10+2)/200=0.065

 Note: =X(1,1)+(10+2)/200
0.040 X(4,2) = Min of:

 * X(3,1)+100/100 = 1.085

 * X(2,1)+(2+100)/100=1.050

 * X(1,1)+(10+2+100)/100=1.125
1.050

(a)

(b)

same as X(1,1)+10/500=0.025; we had an available frequency, so

we assigned the present accelerator a2 its maximum frequency, and

then used the best solution for X(1,1) for the previous accelerator

a1. This cell hints how we can reuse prior sub-problem solutions in

computing the present sub-problems solution.

Cell X(3,2) reveals such reuse more fully. That sub-problem

has three accelerators a1, a2, and a3 having maximum frequencies

of 1000, 500, and 200, respectively, and has two available clock

frequencies. Accelerator a3 must be assigned a frequency of 200,

because it has the lowest maximum frequency of the three

accelerators (recall that the accelerators were initially presorted

according to their maximum frequency). To complete the sub-

problem solution, we have two choices. We can assume that a3 is

the only accelerator assigned 200, in which case the remainder of

the sub-problem consists of the two accelerators a1 and a2 and one

available frequency, i.e., X(2,1). Alternatively, we can assume that

frequency 200 is assigned to both a3 and a2, in which case the

remaining sub-problem would be X(1,1). There is no need to

consider assigning 200 to a1, because there is one remaining

available frequency. Similar cell reuse exists with cell X(4,2).

Thus, we see that a cell with A=N can be computed by

selecting the minimum of N-1 alternatives, where each alternative

combines a simple new term with the results from a previous cell.

3.2 Dynamic Programming Formulation
We assume (without loss of generality) that accelerators a1, a2... aM,

have been pre-sorted in decreasing order of maximum frequency and

that each maximum frequency is unique. Let X(A,C) equal the total

execution time of the first A accelerators using the first C clock

frequencies. We define the following recurrence relation as a

function:

If (A=0) then X(A,C)=0

Else If (C=0) then X(A,C)= infinity

Else

)1,1(
.

.

),(
1

CiX
mxfreqa

cyclesa

CAX
A

A

ij

j
A

iMin

If A=0, there are no accelerators, and thus the execution time is 0. If

C=0, there are no clock frequencies available, so execution time is

infinite. We intentionally define X to return 0 for X(0,0).

The “Min” term compares the alternative solutions that assume

the present accelerator’s (aA) maximum frequency is assigned to

the present accelerator only, to the present accelerator and the next

accelerator, to the present accelerator and the next two

accelerators, etc. The expression inside that term computes the total

execution time for this cell as the sum of the execution times for

the accelerators assigned to the present maximum frequency, added

to the previously-computed best solution for the other accelerators

with one less available clock frequencies.

3.3 Justification of Assumptions
Several observations must be established to justify assumptions we

made in the dynamic programming formulation. For convenience of

this discussion, we restate the problem definition in a form that

partitions the accelerators into groups:

Partition the m accelerators into at most F groups, such that

the total execution time as determined by the following

equation is minimized:

Ni ji
j

j

ji

Ni freqaMIN

cyclesa

1 ,

,

1).(

).(

igroupoffrequencymin

igroupofcyclestotal
E

where ai,j denotes the jth component in the ith group of a solution.

We note that if the maximum number of available clock

frequencies F is greater than or equal to the number of accelerators

M, the solution is trivial – we just assign each accelerator a

frequency equal to that accelerator’s maximum frequency. If F is

less than M, some accelerators must be grouped to share a single

clock frequency. We make three observations that allow us to

formulate the dynamic programming algorithm.

Observation 1: If ai.freq = aj.freq (i.e., if two accelerators i

and j have the same frequencies), then in the optimal solution,

the two accelerators must be assigned to the same group.

We prove this observation by contradiction. Assume ai.freq is equal

to aj.freq but ai and aj are assigned to two different groups P1 and P2

with minimal frequencies min_freq1 and min_freq2 respectively.

Without loss of generality, assume min_freq1 < min_freq2. If that is

the case, we can move ai from P1 to P2, and it can be easily verified

that the new solution as obtained will have a smaller total execution

time (since ai now has a faster clock), which contradicts our

assumption of the optimality of the original solution. Therefore,

according to the above observation, without loss of generality, we

can assume that the frequencies of the given accelerators are all

distinct. If not, we can simply combine those accelerators having

identical frequencies into one single accelerator. The new

accelerator will have the same frequency as that of the original

accelerators, and its total cycles will equal the sum of the total

cycles of the original accelerators.

Observation 2: If F < M, then the optimal solution will always

consist of F non-empty groups, i.e., all the available

frequencies F will be used.

Otherwise, we could split any group consisting of more than two

accelerators into two groups and the new solution will have a

smaller total execution time, which again contradicts our

assumption of the optimality of the original solution.

Observation 3: Let P1, P2 be any two groups taken from an

optimal solution. Let min_freq1 be the minimal frequency of

the components in P1, max_freq1 be the maximal frequency of

the components in P1, and min_freq2 and max_freq2 be

similarly defined. Then either min_freq1 max_freq1 <

min_freq2 max_freq2 or min_freq2 max_freq2 < min_freq1

 max_freq1 holds, i.e., either the components in P1 are all

slower than those in P2 or they are all faster than those in P2.

We prove observation 3 by contradiction. Assume to the contrary, in

the optimal solution we have that min_freq1 < min_freq2 <

max_freq1. Let ax be in the accelerator in P1 with frequency

max_freq1. We can move ax from P1 to P2 and obtain a new solution.

It can be easily verified that the new solution will require less total

execution time since the execution time for accelerator ax is reduced.

This is a contradiction. The case where min_freq2 < min_freq1 <

max_freq2 can be similarly proved. Due to observation 3, we can

first sort the accelerators by their maximum frequencies. The

optimal solution will be guaranteed to observe this order, namely

each group of the optimal solution will contain only consecutive

accelerators from the sorted list.

3.4 Complexity
The algorithm fills a table of size O(m*F), where m is the number of

accelerators and F is the number of available clock frequencies. The

algorithm visits each cell once. Filling each cell requires O(F) time.

Thus, the complexity of the algorithm is O(m*F2).

Because the algorithm finds the optimal solution in polynomial

time, the clock-frequency assignment problem is clearly not NP-

complete. Although the problem bears resemblance to the well-

known NP-complete problem of bin-packing, the key difference is

that, while the bin-packing problem has a capacity constraint on

each bin, the clock-frequency assignment problem does not have a

limit on the number of accelerators that may be assigned to each

clock frequency.

3.5 Limitations
The formulation and solution do not consider physical design factors

that might influence assignment of frequencies to accelerators, such

as placement issues (accelerators with different frequencies may be

placed farther apart, impacting routing) or size constraints that may

existing on each clock domain – integrating physical design issues

with higher-level exploration might be a useful extension, as is the

case with most high-level design automation. The formulation did

not consider the case of pre-existing fixed frequencies being

available (perhaps pre-assigned to a circuit with a hard real-time

constraint) – we suspect that extending our algorithm to take a

partial solution as input would be straightforward, but have not

investigated that yet.

4. Results
We implemented the dynamic programming algorithm and ran

experiments on a 2.66 GHz 1Gb RAM Pentium 4 PC. We applied

the algorithm to the 42 functions of the earlier-introduced H.264

decoder. We targeted synthesis of the 42 functions to a Xilinx Virtex

IV Pro and gathered information on cycles per function accelerator,

and maximum clock frequency of each accelerator. Figure 6

illustrates assignments obtained by the algorithm given three

available clock frequencies. Obtained speedup was over 2x versus

having just one frequency (with that speedup being in addition to

already-obtained speedup from partitioning functions to

accelerators). The algorithm ran in about 0.2 seconds.

We exercised the algorithm using synthetically-generated

examples that supported large ranges of computation cycles and

clock frequencies. Figure 7 provides results of applying the clock

assignment on 10 synthetic benchmarks with varying numbers of

accelerators ranging from 5 to 50. For each, we report speedups

relative to execution time of the set of accelerators using only one

clock frequency, which must necessarily be the lowest maximum

frequency of the set. We considered available numbers of

frequencies F of 3, 6, and 9. Figure 7 shows that partitioning an

application among the available clock improves overall execution

time by 1.5x-3x. Figure 8 shows algorithm runtimes for Figure 7.

For normal-sized examples having 5-15 accelerators, the runtime is

.1-.2 seconds. Even for the large examples having 50 accelerators,

the runtime is still a reasonable .4-.8 seconds.

These runtimes suggest applicability of the algorithm as a sub-

algorithm of a higher-level exploration tool, or even as part of

future on-chip CAD tools that may dynamically partition

accelerators among available clock domains. We developed a

higher-level exploration tool that repeatedly applied our algorithm

to determine the point of diminishing returns for number of

available clock frequencies – such determination would be

important for a system-level tool that allocates available clock

frequencies to different sub-groups of modules. Figure 9 shows

results for H.264, where we applied our algorithm ten times, for

one available frequency, two available, three available,... or ten

available. The data shows that H.264 performance improves up

until about 4 or 5 available frequencies; more frequencies yield

little additional performance improvements. We also consider four

synthetic examples of different sizes, and again found tapering off

of benefits at different points. That data could be used by a system-

level exploration tool. For each example, the total tool runtime was

under 4 seconds..

Another interesting possible use of the algorithm would be as

part of a hardware/software partitioning approach. A

hardware/software partitioning algorithm might apply clock-

frequency assignment at certain points during exploration, to obtain

accurate execution time feedback for a given partitioning of

behavior among a microprocessor and accelerators.

5. Related Work
Several previous works used multiple clock frequencies to improve

general-purpose processing. Semeraro [19] used multiple

frequencies to reduce power of a single microprocessor. The clock

domains included the front end (including L1 instruction cache), the

integer units, the floating-point units, and the load-store units

(including L1 data cache and L2 cache). Kumar [14] considered

multiple frequencies for multiple heterogeneous microprocessors,

where each microprocessor might be optimized for different

application sets, each conceivably having its own clock frequency.

Some work has considered the similar topic of voltage islands.

A voltage island is a sub-circuit operating at a different voltage,

and typically therefore different clock frequency, compared to

other islands [5]. Hu [11] considered mapping a set of cores, each

with allowed voltage levels, into islands such that power was

minimized. They used an iterative improvement heuristic, in

particular simulated annealing, to group the cores into islands.

Numerous researchers (e.g., [24]) have considered the different

concept of multiple voltage levels (and typically therefore multiple

clock frequencies), namely the concept of voltage scaling of a

single microprocessor. In such work, a microprocessor’s voltage

and clock may be dynamically adjusted to reduce power while still

satisfying an application’s performance constraints.

Figure 6: Clock-frequency assignment for the H.264 decoder with

three available clock frequencies. All accelerators in a group are

assigned the lowest (circled) frequency in that group.

Accelerator Clock Freq (MHz) Cycles

..<MotionCompChromaFullXFullY>: 285 285

..<MotionComp_00>: 281 281

..<UpdateValidMBs>: 204 1224

...<GetBits> 200 200

…

..<GetSignedUVLC> 106 212

..<DeblockingFilterLumaRow>: 80 3520

..<MotionCompChromaFracXFullY>: 74 1184

…

..<MotionComp_31>: 70 15680

..<DeblockingFilterChromaRow>: 60 2640

..<MotionCompensate>: 40 400

Speedup versus one frequency: 2.04x

We are not aware of prior work on clock domains, voltage

islands, or voltage scaling, whose problem definition is equivalent

to the clock-frequency assignment problem. To our knowledge, no

hardware/software partitioning work (either multi-processor

oriented or accelerator oriented) has considered multiple clock

domains, due in part to such domains not having existed in cost-

effective form until relatively recently.

Beyond such system-on-chip research, the problem of

clustering items into a fixed number of groups is widely studied,

such as the problem of quantizing a set of colors into a fixed

number of colors, or of dividing a time series of data into a fixed

number of straight-line segments[13]. The clock-frequency

assignment problem differs from such clustering problems in the

asymmetric constraint that an accelerator may belong to a group

with a lower frequency than the accelerator’s maximum frequency,

but may not belong to a group with a higher frequency. Such

asymmetry introduces more structure into the problem, allowing

for an optimal algorithm with low runtime complexity.

6. Conclusions
We showed that partitioning a microprocessor’s accelerators among

clock domains could yield application speedups of 1.5x-4x for

applications with 5-50 accelerators, including a commercial H.264

decoder, and with 3-9 available clock frequencies. We defined the

clock-frequency assignment problem for making use of multiple

available clock frequencies, and developed a novel efficient dynamic

programming algorithm that finds optimal results in polynomial time

(thus showing that the problem is not NP-hard), and that runs in

under a second for even very large examples. Future work will

extend the problem to consider a wider range of clock-domain usage

scenarios, and to integrate clock-frequency assignment with other

exploration methods.

7. Acknowledgments
This work was supported in part by the National Science Foundation

(CNS-0614957) and the Semiconductor Research Corporation

(2005-HJ-1331), and by donations by Xilinx Corp. The authors

would also like to thank Greg Stitt for gathering synthesis

information relating to H.264.

8. References
[1] Atmel Corp. 2005. FPSLIC (AVR with FPGA),

http://www.atmel.com/products/FPSLIC/.
[2] Banerjee, S. and N. Dutt. Efficient search space exploration for HW-SW

Partitioning. Int. Symp. on Hardware/Software Codesign and System
Synthesis (CODES+ISSS), 2004.

[3] Celoxica. http://www.celoxica.com.
[4] Chattopadhyay, A., and Z. Zilic. GALDS: A Complete Framework for

Designing Multiclock ASICs and SoCs. IEEE Trans. on Very Large Scale
Integration (VLSI) Systems, Vol. 13, No. 6, June 2005.

[5] Cohn, J.M., D.W. Stout, P.S. Zuchowski, S.W. Gould, T.R. Bednar, and
D.E. Lackey. Managing power and performance for System-on-Chip
designs using Voltage Islands. Int. Conf. on Computer-Aided Design
(ICCAD), 2002, pp. 195-202.

[6] Cray XD1. Cray Supercomputers.
http://www.cray.com/products/xd1/index.html.

[7] Critical Blue. 2005. http://www.criticalblue.com
[8] Eles, P., Z. Peng, K. Kuchcinsky, and A. Doboli. System Level

Hardware/Software Partitioning Based on Simulated Annealing and Tabu
Search. Design Automation for Embedded Systems, vol2, no 1, 5-32 Jan.
1997

[9] Excalibur. Altera Corp., http://www.altera.com
[10] Gupta, R. and G. De Micheli. Hardware-Software Cosynthesis For Digital

Systems. IEEE Design and Test of Computers. Pages 29-41, September
1993

[11] Hu, J., Y. Shin, N. Dhanwada, and R. Marculescu. Architecting Voltage
Islands in Core-Based System-on-a-Chip Designs. Int. Symp. on Low
Power Electronics and Design (ISLPED), 2004, pp. 180-185.

[12] Kalavade, A. and P.A. Subrahmanyam. Hardware/software partitioning for
multi-function systems. IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), 1997.

[13] Keogh, E.J., S. Chu, D. Hart, and M.J. Passani. An Online Algorithm for
Segmenting Time Series. IEEE Int. Conf. on Data Mining, pp. 289-296,
2001

[14] Kumar, R., K.I. Farkas, N.P. Jouppi, P. Ranganathan, and D.M. Tullsen.
Single-ISA Heterogeneous Multi-Core Architectures: The Potential for
Processor Power Reduction. Int. Symposium on Microarchitecture
(MICRO), 2003.

[15] Muttersbach, J., T Villiger, H Kaeslin, N Felber, and W. Fichtner.
Globally-Asynchronous Locally-Synchronous Architectures to Simplify
the Design of On-Chip Systems. IEEE Int. ASIC/SOC Conference, 1999.

[16] Mimosys. http:// http://www.mimosys.com/.
[17] Miyamori, T., and U. Olukotun. A Quantitative Analysis of

Reconfigurable Coprocessors for Multimedia Applications. FPGAs for
Custom Computing Machines (FCCM). 1998, pp. 2 – 11.

[18] Rota, Gian Carlo. The Number of Partitions of a Set. American
Mathematical Monthly., Vol 71. No 5 pp 498-504. 1964.

[19] Semeraro, G., G. Magklis, R. Balasubramonian, D.H. Albonesi, S.
Dwarkadas, and M.L. Scott. Energy-Efficient Processor Design Using
Multiple Clock Domains with Dynamic Voltage and Frequency Scaling.
Int. Symp. on High-Performance Computer Architecture (HPCA), 2002.

[20] Stitt, G., F. Vahid, and S. Nematbakshi. Energy Savings and Speedups
From Partitioning Critical Software Loops to Hardware in Embedded
Systems. IEEE Transactions on Embedded Computer Systems, January
2004.

[21] Stitt, G., F. Vahid, G. McGregor, B. Einloth Hardware/Software
Partitioning of Software Binaries: A Case Study of H.264 Decode. Int.
Conf. on Hardware/Software Codesign and System Synthesis
(CODES/ISSS), Sep. 2005.

[22] Virtex II and IV. Xilinx Corp., http://www.xilinx.com
[23] Wall, D. Limits of instruction-level parallelism. ACM SIGARCH

Computer Architecture News. Volume 19 , Issue 2, pp. 176 – 188 April
1991.

[24] Zhang, Y., XS Hu, and DZ Chen. Task scheduling and voltage selection
for energy minimization. Design Automation Conference, 2002.

Figure 7: Execution time speedups for varying numbers of

accelerators as a result of using multiple clock domains

0

1

2

3

4

5 10 15 20 25 30 35 40 45 50

Number of Accelerators

S
p

e
e
d

u
p 3 Clocks

6 Clocks

9 Clocks

Figure 8: Dynamic programming algorithm runtimes for varying

numbers of accelerators and varying numbers of clock domains.

0

0.2

0.4

0.6

0.8

1

5 10 15 20 25 30 35 40 45 50

Number of Accelerators

T
im

e
 (

s
) 3 clocks

6 clocks

9 clocks

Figure 9 Applying the dynamic programming algorithm as part of a

higher level exploration strategy.

0

1

2

3

4

1 2 3 4 5 6 7 8 9 10

Number of Available Clocks

S
p

e
e
d

u
p

10 accelerators

20 accelerators

30 accelerators

50 accelerators

H264

	Main
	DATE07
	Front Matter
	Table of Contents
	Author Index

