
The Impact of Loop Unrolling on Controller Delay in High Level Synthesis

Srikanth Kurra
Dept. of Comp. Sc. & Engg.

Indian Institute of Technology
New Delhi 110016

srikanth@cse.iitd.ac.in

Neeraj Kumar Singh
Intel Tech. India Pvt. Ltd.

136 Airport Road
Bangalore 560017

neeraj.k.singh@intel.com

Preeti Ranjan Panda
Dept. of Comp. Sc. & Engg.

Indian Institute of Technology
New Delhi 110016

panda@cse.iitd.ac.in

Abstract

Loop unrolling is a well-known compiler optimization that
can lead to significant performance improvements. When
used in High Level Synthesis (HLS) unrolling can affect the
controller complexity and delay. We study the effect of the
loop unrolling factor on the delay of controllers generated
during HLS. We propose a technique to predict controller
delay as a function of the loop unrolling factor, and use this
prediction with other search space pruning methods to au-
tomatically determine the optimal loop unrolling factor that
results in a controller whose delay fits into a specified time
budget, without an exhaustive exploration. Experimental re-
sults indicate delay predictions that are close to measured
delays, yet significantly faster than exhaustive synthesis.

1 Introduction
In the early stages of the Behavioral (or High Level) Syn-

thesis process, a number of high-level optimizations and
transformations are applied on the behavioral description,
many of them similar to typical compiler optimizations. A
large number of well-known compiler optimizations have
been adopted in HLS in the past. However, some of them
have non-trivial effects and the ultimate result may be unex-
pected. In this paper we address an important transformation
- loop unrolling - in the context of high level synthesis and
make the following contributions:

• We study the effect of the loop unrolling factor on the
delay of controllers generated during HLS.

• We propose a technique to predict controller delay as a
function of the loop unrolling factor.

• We use the above prediction and other search space
pruning methodologies to automatically determine the
optimal loop unrolling factor that results in a controller
whose delay fits into a specified time budget.

The loop unrolling transformation duplicates the body of
the loop multiple times to expose additional parallelism that
may be available across loop iterations. An example of loop
unrolling is shown in Figure 1. Figure 1(a) shows the sched-
uled Data Flow Graph (DFG) of the original loop body with

LD

i

q

+

q += x[i]*z[i];
}

for (i=0; i<32; i+=1){

1

2

3

4 +

z
LD

x i

q

i 1

i
<

32*

(a) Original Loop

LD

i

q += x[i]*z[i];
for (i=0; i<31; i+=2){

q += x[i+1]*z[i+1];
}

<

31+

x

i 1

LD

1

2

3

4

5

6

+

z
LD

i 2

i

z

q

+
q

x i

q

+

LD
*

*

(b) Original loop unrolled once

Figure 1. Loop Unrolling example

the resource constraints: 1 adder, 1 multiplier, 1 compara-
tor, 2 load units, with the multiplier taking 2 cycles and the
others being single-cycled. The load units perform both the
memory address calculations and memory read operations,
and are scheduled together if simultaneous memory accesses
are possible. The loop requires approximately 32 × 4 = 128
clock cycles, ignoring the initialization part. When the loop
is unrolled once (unroll factor = 2), the transformed code is
shown in Figure 1(b) along with scheduled DFG with the
same resource constraints. The new loop executes in roughly
16 × 6 = 96 clock cycles. There is a performance improve-
ment of 25% by unrolling the loop once.

However, unrolling also leads to a code size increase and
cache pollution, which indirectly affects performance ad-
versely. In the context of behavioral synthesis also, there
are non-trivial implications which make unrolling decisions
not so straightforward. The DFG size increases in synthesis,
which leads to indirect effects that ultimately influence both
the performance of the resulting designs as well as correct-
ness of the generated schedules if the effects are not properly
accounted for.

Figure 2 shows a typical output of behavioral synthesis.
In such circuits, the critical timing path passes through the
controller, the MUXes at the inputs of the function units, the
function units themselves, and the MUXes before registers.

978-3-9810801-2-4/DATE07 © 2007 EDAA

==*+

R1 R2 R3 R4

DATA PATH

Next State

Select Logic
 &

State Reg.

FSM

Figure 2. Behavioral synthesis output

Thus, the clock period needs to be larger than the sum of
the delays through these components. Loop unrolling causes
an increase in the critical path delay. First, because a larger
number of nodes need to be scheduled, the controller has
to perform more work, leading to more complex combina-
tional logic in the Finite State Machine (FSM) which leads
to longer delays. The number of FSM states increases lead-
ing to a larger state register and ultimately to longer FSM
delays. For example, in Figure 1, the unrolled loop schedule
has 6 states in comparison to 4 states in the original sched-
ule. Further, additional operations after unrolling lead to in-
creased sharing of resources, possibly increasing the sizes of
the MUXes and hence, their delay. If the delays through the
controller and MUXes are not accounted for, then the sched-
ule resulting from high-level synthesis can easily be invalid;
it would be incorrect to ignore these delays when performing
scheduling.

In this paper, we use an estimation-based approach to pre-
dict the optimal unrolling factor of loops while respecting an
overall FSM delay budget. Our strategy involves a search
space pruning mechanism for limiting the number of unroll
factors to be considered, followed by a priority function-
based algorithm for exploring the loop unroll factor.

2 Related Work
Loop unrolling is a relatively well studied transformation

in the compiler domain [1–3]. The topic of automatically
selecting optimal loop unroll factors was addressed by [1,2].
In [3] the authors give an algorithm for determining the num-
ber of times and the directions in which loops should be un-
rolled through the use of information such as dependence,
reuse, and machine resources. Researchers have also eval-
uated the performance and power effects of transformations
such as unrolling and inlining in the context of embedded
processors [4, 5]. While the above analyses are relevant, the
loop unrolling problem in the context of high-level synthesis
is quite different, as motivated in Section 1 due to the absence
of an instruction cache/memory and absence of a fixed-size
register file.

A large number of optimizations that improve timing
have been identified for high-level synthesis – some of
them adapted from the compiler domain, and many being
hardware-specific, for example, variants of common sub-
expression elimination [6, 7, 10], retiming [8], speculation

[9,10], loop shifting/compaction [13] and bit-level optimiza-
tions [11, 12]. While the authors in [13] do observe a nega-
tive impact on timing due to unrolling in their experiments,
the loop unrolling factor itself is considered to be manually
specified.

[14] presents a timing model for high-level synthesis con-
sisting of a timing network for datapath and control sections.
Timing analysis is included as part of the synthesis procedure
to ensure that the resulting designs meet timing. [15] presents
a behavioral network graph model in which HLS optimisa-
tions are evaluated by examining logic-level effects. Timing
closure at the behavioral level has been addressed through
introducing delay relaxation for functional units [16].

A formulation for modeling and estimation of controller
delay in terms of the number of operations scheduled, num-
ber of control steps, and function unit control bits was pre-
sented in [17]. In this paper, we use this formulation and
present a technique for quantifying controller delay in HLS
due to various loop unrolling factors and suggest a methodol-
ogy for deriving an optimal unrolling factor while respecting
controller delay budget constraints.

3 Loop Unrolling and Controller Delay
Figure 3(a) shows the latency of the behaviour shown in

Figure 1(a) with the same resource constraints as before. The
first observation is that the performance does not monotoni-
cally increase with the unroll factor. This is because the un-
roll factor may not evenly divide the iteration count resulting
in a trailer loop in which the remaining iterations are sequen-
tially executed, which affects the overall latency negatively.
Figure 4(a) shows the code when the unroll factor 16 evenly
divides the iteration count 32 and Figure 4(b) shows the code
when unroll factor 17 does not, resulting in a trailer loop.
Figure 3(a) shows that the latency due to unroll factor 17 is
significantly worse (greater by 41%) than the latency due to
unroll factor 16.

 0

 20

 40

 60

 80

 100

 120

 0 5 10 15 20 25 30

La
te

nc
y

Unroll Factor

(a) Latency Variation

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 5 10 15 20 25 30

F
S

M
 D

el
ay

 (
ns

)

Unroll Factor

(b) FSM Delay Variation

Figure 3. Variation of latency and FSM delay
with unroll factor

In Figure 3(b) we plot the FSM delay against a subset of
the unroll factors. The delay is observed to be an increasing
function of the unroll factors. In fact, as in latency, the FSM
delay for evenly dividing factors is also seen to be smaller
than that due to other nearby factors (not shown in figure) be-

q += x[i]*z[i];
q += x[i+1]*z[i+1];

q += x[i+15]*z[i+15];
}

for (i=0; i<32; i+=16){

(a) Factor = 16

q += x[i]*z[i];
for (;i<32; i+=1){

}

} q += x[i+16]*z[i+16];

q += x[i]*z[i];
q += x[i+1]*z[i+1];

for (i=0; i<17; i+=17){

(b) Factor = 17

Figure 4. Different unroll factors with loop
bound = 32

cause of the lower number of FSM states. The FSM resulting
from the unrolled code has 34 and 40 (36 in unrolled loop
and 4 in trailer) states for unroll factors 16 and 17 respec-
tively. The increasing FSM delay with unroll factor is very
significant, and can critically affect the resulting designs. Ar-
bitrarily large unroll factors, while apparently decreasing the
number of cycles, can cause timing violations due to the crit-
ical path delay exceeding the clock cycle.

Clearly, an exhaustive strategy with detailed FSM and
logic synthesis in the loop will be prohibitively expensive
for real applications. In applications with multiple loop nests
that are amenable to unrolling, every unroll factor of every
loop could be a candidate for exploration. This motivates the
need for a more practically efficient loop unroll factor explo-
ration methodology that does not rely on exhaustive enumer-
ation and synthesis.

4 Formulation and Approach
For unrolling, we consider loop constructs such as for and

while with only one update (of the type ’i += k’ where k is a
constant) to the loop induction variable, either in the header
or the body. Our objective is to determine the best set of
unrolling decisions for the loops that allow maximization of
performance while the controller delay fits within a time bud-
get, being a fraction of the clock period. This time budget is
an input to the algorithm, and could be arrived at by consider-
ing the clock period, and the function unit and MUX delays,
but its automation is outside the scope of the paper.
4.1 Knapsack Formulation

The unroll factor optimization can be viewed as a variant
of the well known Knapsack Problem of maximizing profits
under weight constraints. In this case, we have a total delay
constraint D and an initial delay D′ when all loops are rolled,
and the available slack D − D′ should be distributed among
n loops, each loop being unrolled ui times, resulting in an
additional delay di. The delay constraint is:

∑
di ≤ D − D′ (1)

If the latency due to each loop is Li, then the total latency∑
Li needs to be minimized. However, the mapping to the

traditional Knapsack problem is not straightforward, as the
di’s in our problem are not independent; the additional de-
lay due to an unroll factor for a loop depends on the extent

to which other loops have been unrolled. Nevertheless, it is
possible to use heuristics similar to those used in the Knap-
sack context to address our problem.

Our exploration strategy consists of two components: (1)
search space pruning to limit the exploration to a few promis-
ing candidate unroll factors; and (2) a fast estimation of FSM
delay for the considered unroll factors without actually un-
rolling the loops and without detailed synthesis
4.2 Search Space Pruning

There are two important observations, based on which the
search space of unroll factors to be considered can be sub-
stantially reduced.

4.2.1 Pareto-optimal Factors

Figure 3(a) shows that loop performance does not monoton-
ically improve with increasing unroll factor. On the other
hand, the FSM delay generally increases with increasing un-
roll factors because the larger loop body results in an in-
creased number of states. Thus, we can restrict our atten-
tion to few pareto-optimal unroll factors – among these fac-
tors, latency reduces with increasing factor, but FSM delay
increases.

4.2.2 Threshold Factors

Another interesting empirical observation about the perfor-
mance effect of loop unrolling is that the performance im-
provement is marginal for relatively large unroll factors. This
is generally due to the saturation of resource utilization even
if parallelism theoretically exists. The results of extensive
experiments we performed on the variation of performance
and FSM delay with unroll factors can be summarized as
follows: a latency of around 10-15% over that of the fully
unrolled loop can be achieved by relatively small threshold
unroll factors that cost an average of 45% extra FSM delay
over the rolled loop. We performed this study over differ-
ent applications by varying different parameters such as re-
source constraints and loop iteration counts, and found the
above observation to be true. The experimental evidence is
omitted due to lack of space, but Figure 3(a) illustrates this
phenomenon – the latency is 72 cycles due to unroll factor
8 and the fully unrolled loop (factor = 32) has a latency of
66 cycles. Thus, small unroll factors such as 8 are important
exploration candidates.
4.3 Controller Delay Estmation

Our estimation of the FSM delay is based on the follow-
ing equation [17] that uses only high-level behavioral infor-
mation from the specification.

Delay = A × log(#operations) × (#state bits) (2)

where #operations is the number of DFG nodes and #state
bits is the state register bits. A depends on resource con-
straints and the number of variables, and is found as:

A = x + y × (#FU control bits) + z × (#Variables) (3)

where the constants x, y, and z are determined from a linear
regression and are ASIC library-specific. The above equa-
tions give the FSM delay within a 6-7% error and do not
involve actual generation and synthesis of the FSM itself,
which makes them attractive mechanisms in design space ex-
ploration. For a specific unroll factor, we can arrive at an
FSM delay estimate by computing: (1) the number of op-
erations; (2) the number of basic blocks; and (3) the total
number of states/control steps.

4.3.1 Operation Count

Consider a program with n unrollable loops l1...ln with iter-
ation counts B1...Bn. Loop unrolling increases the number
of operations to be managed by the FSM in the process of
duplicating loop bodies. If the unroll factor for loop li is
ui, and the number of operations in the body of the origi-
nal loop was LOps(li), then additional operations due to un-
rolling are (ui − 1) × LOps(li) if ui evenly divides Bi. If
ui mod Bi �= 0, a trailer loop is generated with LOps(li)+2
extra operations (the two extra operations are the increment
and comparison operations for the trailer loop). If Ops(P)
was the operation count in the original program, then the new
operation count LUOps(P,U) after subjecting it to unrolling
vector U = (u1, ..., un) is given by:

LUOps(P,U) = Ops(P)+
n∑

i=1

(ui − 1) × LOps(li) + Even(ui, Bi) × (LOps(li) + 2)

where Even(ui, Bi) = 0 if Bi mod ui = 0 and Even(ui, Bi)
= 1 otherwise.

4.3.2 Basic Blocks

The FSM delay is generally independent of the number of
basic blocks in a standard binary encoding. However, we
have used a slightly different state register encoding in our
synthesis flow – some bits are used to encode the basic block
number, and other bits encode the control step within that
scheduled basic block. This separation usually leads to more
state bits, but has been observed in our experiments to result
in slightly better delay characteristics. A basic block count
resulting due to unrolling is necessary to determine a part of
the state register width. (Actually, even if a straight binary
encoding is done, the following computation is still neces-
sary to determine the overall number of state bits after un-
rolling). If the basic block count in the original program is
BB(P), and the count for loop li is LBB(li), the new count
LUBB(P,U) is given by:

LUBB(P,U) = BB(P)+
n∑

i=1

(ui − 1) × (LBB(li) − 1) + Even(li) × (LBB(li) + 1)

The (LBB(li) − 1) term is due to the merging of the tail of
one basic block and the head of the next one during unrolling.
Note that if the original loop had only one basic block, its
basic block count remains unchanged after unrolling by some
ui if Even(ui, Bi) = 0. We have omitted discussion of some
other corner cases due to lack of space.

4.3.3 Control Steps Estimation

The number of states/control steps can be estimated by a
simple basic block-wise list scheduling. However, during
unrolling factor exploration, it is very time-consuming to
explicitly unroll the loops for different factors and perform
scheduling. In our exploration, we use estimates for the num-
ber of control steps as a function of the unroll factor without
explicitly performing unrolling. We use the idea of pipeline
Initiation Interval (II). II for a loop depends on two main
factors [18]: loop carried dependences and resource con-
straints. The initiation interval due to loop carried depen-

dences is given by: IILCD(li) = Max�DistLat(li)
DistIter(li)

�, where

DistLat(li) is the number of cycles that the dependent nodes
are apart in the basic block schedule, and DistIter(li) is the
number of iterations that they are apart. II can also be lim-
ited by the resource constraints: IIRC(li) = Maxr�NrCr

Fr
�,

where Nr is the number of nodes of type r in the loop body,
Cr is the latency of the function unit in cycles, and Fr is the
number of resources of this type. The initiation interval esti-
mate is now computed as: II(li) = Max(IILCD, IIRC).

According to our FSM encoding, the basic block with
the longest latency determines the second part of the state
bits. This may change due to unrolling: (1) if the loop
body has only one basic block, then the new latency is:
NS(li) = LCS(li) + (ui − 1) × II(li), where LCS(li) is
the latency of the original loop body; (2) if the loop has
multiple basic blocks, the merging of the first and last ones
during unrolling will require a rescheduling and recomputa-
tion of latency NS(li). If the initial maximum latency basic
block was CS(P), the maximum control steps after unrolling
LUCS(P,U) is given by:

LUCS(P,U) = Max(CS(P),∀iNS(li)) (4)

4.4 Unroll Factors Exploration
Because of the computational intractability of the explo-

ration problem, we define a priority function to select a loop
for unrolling, and a mechanism for arriving at a delay budget
for each loop.

4.4.1 Priority Function

To capture the effect of latency reduction due to unrolling
and the concomitant FSM delay increase, we use a priority
function of the type:

Pr(li) =
Reduction in Latency

Additional FSM Delay
(5)

Equation 5 allots a higher priority to loops that result in a
higher latency improvement and relatively lower FSM de-
lay. While this is similar in principle to the value-density
heuristic (= value/weight) used in solutions to the Knapsack
problem, one complication is that the value of Pr(li) will,
in general, be different for different unroll factors (whereas
in the Knapsack problem the density for an object remains
independent of other selections). We exploit the observation
(Section 4.2.2) that we can get to within 10% of the latency
of the fully unrolled loop (unroll factor Bi) with a relatively
small unroll factor in typical practical loops. Let this thresh-
old unroll factor be uth. The priority function is initially
defined as:

Pr(li) =
LCS(li) − NS(li, uth)

Delay(li, uth) − Delay(li, 1)
(6)

4.4.2 Delay Budgets for Loops

Instead of spending available FSM delay budget on a sin-
gle high priority loop, we attempt to distribute the delay be-
tween different loops because of the observation that latency
improvements are greatest at small unroll factors. Thus, for
example, if two loops have equal priority, then it is better to
unroll both loops by a smaller extent than to unroll one loop
to a larger extent; unrolling the loop by a larger factor leads
to smaller incremental latency improvement. We arrive at an
FSM delay budget for loop li as follows:

Budget(li) =
Pr(li)∑n

j=1 Pr(lj)
× (D − D′) (7)

Equation 7 gives preference to relatively smaller unroll fac-
tors which are more profitable.

4.5 Overall Algorithm
Algorithm 1 shows our overall heuristic algorithm for ar-

riving at the optimal unroll factors; it is based on the priority
computation and delay budget allocation for loops. We make
two passes through the loops. In the first pass, the priority
for each loop li and the FSM delays are computed for the
threshold factor ui th. The delay budget is allotted for the
highest priority loop and it is unrolled by up to ui th from
among its pareto-optimal factors. The new U is pushed on to
a stack. The process continues until all loops are unrolled, or
the available delay budget reduces to zero. Note that the pri-
ority functions have to be re-computed at each step because
the FSM delays keep changing with new unrolling decisions.

In the second pass, if additional slack is still available,
we now attempt to fully unroll all the loops, using the same
priority function, but now using full unroll factors (ui = Bi).
Every new unroll vector U is pushed on to the stack. We
continue the full unrolling until all loops are fully unrolled,
or no more FSM delay budget remains. Finally, we perform
a verification step involving actual synthesis using the unroll
vector U at the top of the stack to confirm that the resulting

Algorithm 1 Exploration of Optimal Unroll Factor
Input: CDFG with loops l1, l2, ..., ln with iteration count B1...Bn, FSM

delay constraint D
Output: Optimal unrolling factor OptU = (u1, u2, ..., un)

1: D′ = 0, U = {1, 1, ..., 1}
2: while available FSM delay budget D > D′ and all loops not handled

do {PASS 1}
3: Estimate FSM delay and compute priority function for each loop at

threshold unroll factor ui th

4: Select maximum priority loop lmax and unroll by max. pareto-
optimal factor up to umax th

5: Let D′ = new FSM delay
6: Stack.Push(U)
7: while available FSM delay budget D > D′ and all loops not handled

do {PASS 2}
8: Estimate FSM delay and compute prioirity function for each loop at

unroll factor Bi

9: Select max. priority loop lmax and unroll by up to Bi

10: Let D′ = new FSM delay
11: Stack.Push(U)
12: Valid = FALSE
13: while not Valid and not EMPTY (Stack) do {VERIFY}
14: Synthesize FSM corresponding to OptU = Stack.Pop()
15: if delay < D then
16: Valid = TRUE
17: return OptU

FSM does fit into the allowed budget D. If not, then we go
down the stack until we find a valid candidate – the optimal
unroll factor.

5 Experiments
We have implemented our exploration strategy on a SUIF-

based behavioral synthesis framework that takes a C-style
input and generates RTL-level VHDL datapath and FSM,
which are then synthesized with Synopsys Design Compiler
using a 0.13µ ASIC library. The exploration was carried out
on examples drawn from benchmark suites such as Media-
bench, MiBench, and HLSynth95.

Figure 5 shows a comparison of the actual and estimated
FSM delays for different unroll factors. On an average, we
observe an error of 7%, with the actual errors ranging be-
tween 4% to 9%. A comparison of the synthesis and estima-
tion times gives an idea of the suitability of our exploration
strategy. The estimate required less than 5 minutes indepen-
dent of unroll factors, whereas the synthesis times exceeded
6 hours for some benchmarks when larger unroll factors were
used.

In order to evaluate our exploration algorithm, we took
different FSM delay budgets for each application and ob-
served the latencies due to the solutions generated by our
algorithm, and compared it with those due to a relatively ex-
haustive method (Figure 6). For many examples, the exhaus-
tive algorithm (which was also subject to some pruning) did
not complete within 24 hours even after using relatively small
loop bounds and we used the best result generated within this
time. For examples with a single loop (Figure 5(a)-(c)), our
algorithm generated the same solution as that given by the

������

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

 0

 2

 4

 6

 8

 10

FS
M

 D
el

ay
 (

ns
)

Unroll factors tuple (_)

(1) (2) (4) (8) (16) (32)

Act. Delay
Est. Delay

(a) ADPCM

����

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

 0

 2

 4

 6

 8

 10

Unroll factors tuple (_)

(1) (2) (4) (8) (16) (32)

Act. Delay
Est. Delay

(b) Lowpass

����

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

 0

 2

 4

 6

 8

 10

Unroll factors tuple (_)

(1) (2) (4) (8) (16) (32)

Act. Delay
Est. Delay

(c) SOR

����

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

 0
 1
 2
 3
 4
 5
 6
 7

Unroll factors tuple (_, _)

(1
,1

)

(1
.2

)

(1
,4

)

(2
,1

)

(2
,2

)

(2
,4

)

(4
,1

)

(4
,2

)

(4
,4

)

Act. Delay
Est. Delay

(d) JFDCT
����

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

 0
 1
 2
 3
 4
 5
 6
 7

FS
M

 D
el

ay
 (

ns
)

Unroll factors tuple (_, _)

(1
,1

)

(1
.2

)

(1
,4

)

(2
,1

)

(2
,2

)

(2
,4

)

(4
,1

)

(4
,2

)

(4
,4

)

Act. Delay
Est. Delay

(e) CRC

����

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

 0
 1
 2
 3
 4
 5
 6
 7

Unroll factors tuple (_, _)

(1
,1

)

(1
.2

)

(1
,4

)

(2
,1

)

(2
,2

)

(2
,4

)

(4
,1

)

(4
,2

)

(4
,4

)

Act. Delay
Est. Delay

(f) Wavelet

��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

 0
 1
 2
 3
 4
 5
 6
 7

Unroll factors tuple (1, 1, 1, _, _)

(1
,1

)

(1
.2

)

(1
,4

)

(2
,1

)

(2
,2

)

(2
,4

)

(4
,1

)

(4
,2

)

(4
,4

)

Act. Delay
Est. Delay

(g) Histogram

������

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

 0
 1
 2
 3
 4
 5
 6
 7

Unroll factors tuple (1, 1, _, _, 1)

(1
,1

)

(1
.2

)

(1
,4

)

(2
,1

)

(2
,2

)

(2
,4

)

(4
,1

)

(4
,2

)

(4
,4

)

Act. Delay
Est. Delay

(h) Newlife

Figure 5. Predicted and Actual FSM delays

exhaustive approach, but was 2-4 orders of magnitude faster.
For examples with multiple loops (Figure 5(d)-(h)), our al-
gorithm generated solutions for which the latencies were off
by an average of 8% from those generated by the exhaus-
tive approach, with the maximum deviation being 13%. The
estimation was faster by a similar magnitude.

��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�

�
�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�
�
�

�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

 0

 500

 1000

 1500

 2000

 2500

L
at

en
cy

Adp. Low. SOR CRC Jfdct Hist. New. Wave.

Exhaustive Method
Proposed Method

Figure 6. Exploration Results

6 Conclusions and Future Work

We presented an exploration strategy to predict the opti-
mal loop unrolling factors in high-level synthesis that takes
into account the effect on controller delay. The prediction
is based on a priority function and associated techniques for
pruning the overall search space to limit the exploration to
promising unroll factor candidates, estimating the loop laten-
cies without doing an actual unrolling, and estimating FSM
delays from high level information. Experimental results in-
dicate good quality delay estimations and unroll factor pre-
dictions that are significantly faster than exhaustive enumer-
ation and synthesis. In the future, we plan to extend the cur-
rent formulation to determine the FSM delay budget as part
of the overall exploration, i.e., include datapath delays also.
Other possible extensions include finding optimal clock pe-
riods keeping in view controller delay and incorporating the

effects of other loop optimizations.

References

[1] V. Sarkar, “Optimized unrolling of nested loops,” in 14th international
conference on Supercomputing, 2000.

[2] S. Carr and K. Kennedy, “Improving the ratio of memory operations
to floating-point operations in loops,” ACM TOPLAS, 16(6), 1994.

[3] A. Koseki, et al., “A method for estimating optimal unrolling times for
nested loops,” Intl. Symp. on Parallel Arch. ISPAN), 1997.

[4] M. Kandemir, N. Vijaykrishnan, M. J. Irwin, and W. Ye, “Influence of
compiler optimizations on system power,” DAC 2000.

[5] R. Leupers and P. Marwedel, “Function inlining under code size con-
straints for embedded processors,” ICCAD 1999.

[6] M. Potkonjak, et al, “Multiple constant multiplications: efficient and
versatile framework and algorithms for exploring common subexpres-
sion elimination,” IEEE TCAD, 15(2), 1996.

[7] A. Hosangadi, et al., “Factoring and eliminating common subexpres-
sions in polynomial expressions,” in ICCAD 2004.

[8] M. Potkonjak and J. Rabaey, “Optimizing resource utilization using
transformations,” IEEE TCAD, 13(3), 1994.

[9] R. Cordone, et al., “Using speculative computation and parallelizing
techniques to improve scheduling of control based designs,” ASPDAC
2006.

[10] S. Gupta, et al., “Coordinated parallelizing compiler optimizations and
high-level synthesis,” ACM TODAES, 9(4), 2004.

[11] S. Park and K. Choi, “Performance-driven high-level synthesis with
bit-level chaining and clock selection,” IEEE TCAD, 20(2), 2001.

[12] M. C. Molina, et al, “Bitwise scheduling to balance the computational
cost of behavioral specifications,” IEEE TCAD, 25(1), 2006.

[13] S. Gupta, et al., “Loop shifting and compaction for the high-level syn-
thesis of designs with complex control flow,” DATE 2004.

[14] A. Kuehlmann and R. A. Bergamaschi, “Timing analysis in high-level
synthesis,” ICCAD 1992.

[15] R. A. Bergamaschi, “Bridging the domains of high-level and logic syn-
thesis,” IEEE TCAD, 21(5), 2002

[16] A. Srivastava et al., “Achieving design closure through delay relax-
ation parameter,” ICCAD 2003.

[17] G. R. Gupta, M. Gupta, and P. R. Panda, “Rapid estimation of control
delay from high-level specifications,” DAC 2006, pp. 455–458.

[18] V. H. Allan, R. B. Jones, R. M. Lee, and S. J. Allan, “Software pipelin-
ing,” ACM Comput. Surv., vol. 27, no. 3, pp. 367–432, 1995.

	Main
	DATE07
	Front Matter
	Table of Contents
	Author Index

