
Mapping Multi-Dimensional Signals
into Hierarchical Memory Organizations∗

Hongwei Zhu Ilie I. Luican Florin Balasa

Dept. of Computer Science, University of Illinois at Chicago, {hzhu7,iluica2,fbalasa}@uic.edu

Abstract

The storage requirements of the array-dominated and loop-
organized algorithmic specifications running on embedded sys-
tems can be significant. Employing a data memory space much
larger than needed has negative consequences on the energy con-
sumption, latency, and chip area. Finding an optimized storage of
the usually large arrays from these algorithmic specifications is an
important step during memory allocation. This paper proposes an
efficient algorithm for mapping multi-dimensional arrays to the
data memory. Similarly to [13], it computes bounding windows
for live elements in the index space of arrays, but this algorithm is
several times faster. Moreover, since this algorithm works not only
for entire arrays, but also parts of arrays – like, for instance, ar-
ray references or, more general, sets of array elements represented
by lattices [11], this signal-to-memory mapping technique can be
also applied in multi-layer memory hierarchies.

1 Introduction

Many signal processing systems, particularly in the multimedia
and telecom domains, are synthesized to execute mainly data-
dominant applications. Their behavior is described in a high-level
programming language, where the code is typically organized in
sequences of loop nests having as boundaries (usually affine) func-
tions of loop iterators, conditional instructions where the argu-
ments may be data-dependent and/or data-independent (relational
and/or logic expressions of affine functions of loop iterators). The
data structures are multi-dimensional arrays; the indices of the
array references are affine functions of loop iterators. The class
of specifications with these characteristics are often called affine
specifications [2].

In these targeted VLSI systems, data transfer and storage have a
significant impact on both the system performance and the major
cost parameters – power consumption and chip area. During the
system development process, the designer must often focus first on
the exploration of the memory subsystem in order to achieve a cost
optimized end product [2]. The optimized mapping of the multi-
dimensional signals (arrays) from these behavioral specifications
to the data memory is an important step during memory alloca-
tion. Employing a data memory space much larger than needed
has several negative consequences: (a) the energy consumption

∗This research was sponsored by the U.S. National Science Foundation (DAP
0133318).

per access increases with the memory size [2], as well as (b) the
data access latency [9]; in addition, (c) large memories occupy
more chip area.

De Greef et al. choose one of the canonical linearizations of
the array (a permutation of its dimensions), followed by a modulo
operation that wraps the set of “virtual” memory locations into a
smaller set of actual physical locations [5].

Lefebvre and Feautrier, addressing parallelization of static con-
trol programs, developed in [6] an intra-array storage approach
based on modular mapping, as well. They first compute the lexi-
cographically maximal “time delay” between the write and the last
read operations, which is a super-approximation of the distance
between conflicting index vectors (i.e., whose corresponding array
elements are simultaneously alive). Then, the modulo operands
are computed successively as follows: the modulo operand b1, ap-
plied on the first array index, is set to 1 plus the maximal differ-
ence between the first indices over the conflicting index vectors;
the modulo operand b2 of the second index is set to 1 plus the
maximal difference between the second indices over the conflict-
ing index vector, when the first indices are equal; and so on.

Quilleré and Rajopadhye studied the problem of memory reuse
for systems of recurrence equations, a computation model used
to represent algorithms to be compiled into circuits [8]. In their
model, the loop iterators first undergo an affine mapping (into a
linear space of smallest dimension – what they call a “projection”)
before modulo operations are applied to the array indices.

Darte et al. proposed a lattice-based mathematical framework
for intra-array mapping, establishing a correspondence between
valid linear storage allocations and integer lattices called strictly
admissible relative to the set of differences of the conflicting in-
dices [4]. They proposed two heuristic techniques for building
strictly admissible integer lattices, hence building valid storage al-
locations.

In order to avoid the inconvenience of analyzing different lin-
earization schemes like in [5], Tronçon et al. proposed [13] to
reduce the size of an m-dimensional array A mapped to the
data memory, by computing an m-dimensional bounding window
WA = (w1, . . . , wm), whose elements can be used as operands
in modulo operations that redirect all accesses to the array A.
An access to the element A[index1] . . . [indexm] is redirected to
A[index1 mod w1] . . . [indexm mod wm] (relative to a base ad-
dress in the data memory). Since the mapping has to ensure a
correct execution of the code, two distinct array elements simul-
taneously alive should not be mapped by the modulo operations

978-3-9810801-2-4/DATE07 © 2007 EDAA

 // All the A-elements are
for (i=2; i<16; i++) // consumed in this loop nest
 for (j=2*i-18; j<=2*i+3; j++) {
 if (i+3*j >= 21 && i+3*j <= 34) A[i][j] = ...
 if (i+3*j >= 42 && i+3*j <= 55) ... = A[i-3][j-6] ;
 }

0

index2

index1

2

122 4 6 8 10

8

10

6

4

A[4][10]

Figure 1: The array space of signal A. The points represent the A-
elements A[index1][index2] which are produced (and consumed
as well) in the loop nest. The points to the left of the dashed
line represent the elements produced till the end of the iteration
(i = 7, j = 9), the black points being the elements still alive (i.e.,
produced and still needed in the next iterations) while the circles
representing elements already ‘dead’ (i.e., not needed as operands
any more). The light points to the right of the dashed line are
A-elements still unborn (to be produced in the next iterations).

to the same location. Each window element wi is the maximum
difference in absolute value between the i-th indices of any two
A-elements simultaneously alive, plus 1. The window WA deter-
mines the memory size required for storing the array.

In the illustrative example shown in Fig. 1 the window cor-
responding to the 2-D array A is WA = (4 , 6). Indeed, it
can be easily verified that the maximum distance between the
first (respectively, second) indices of two alive elements can-
not exceed 3 (respectively, 5). For instance, the simultaneously
alive elements A[4][10] and A[7][5] (see Fig. 1) have both in-
dices the farthest apart from each other. Therefore, a memory
access to the element A[index1][index2] can be safely redirected
to A[index1 mod 4][index2 mod 6]. Afterwards, this bounding
window will be mapped to the memory (starting at some base ad-
dress) with a typical linearization scheme, like row by row, or col-
umn by column.

According to this intra-array mapping model, the storage re-
quirement for the 2-D signal A is 4 × 6 = 24 memory locations.
It must be noticed that, actually, only 19 locations would be really
needed since not more than 19 A-elements can be simultaneously
alive: see, again, Fig. 1, where the black dots represent the live

elements at the end of the iteration (i = 7, j = 9). A minimum
array window is typically difficult to use in practical allocation
problems (in many cases, requiring a significantly more complex
hardware). On the other hand, a signal-to-memory mapping model
like the one described above trades-off an excess of storage for a
less complex address generation hardware.

This paper proposes an efficient algorithm for mapping multi-
dimensional arrays to the data memory. Similarly to [13], it com-
putes bounding boxes for live elements in the index space of ar-
rays, but this algorithm is several times faster. Moreover, since
this algorithm works not only for entire arrays, but also parts of
arrays – like, for instance, array references or, more general, sets of
array elements represented by lattices [11], this signal-to-memory
mapping technique can be also applied in a multi-layer memory
hierarchy.

In addition, the software tool implemented based on our model
can compute the optimal window for each multi-dimensional ar-
ray in the specification (therefore, the optimal memory sharing be-
tween the elements of the same array, also called the intra-array
in-place mapping [2]), and also the minimum storage require-
ment of the entire (procedural) algorithmic specification (there-
fore, the optimal memory sharing between all the array elements
and scalars in the code). In this way, our software tool can provide
an accurate evaluation of the absolute efficiency of the mapping
model. This is not done by [13] or any other works in the field,
which only make relative evaluations, comparing the performance
of one mapping model versus other models.

The rest of the paper is organized as follows. Section 2 ana-
lyzes the mapping model at the level of an array reference. Section
3 describes the global flow of the intra-array mapping approach,
focusing on the more significant algorithmic aspects. Section 4
discusses the application of the mapping model in a multi-layer
memory hierarchy. Section 5 presents basic implementation as-
pects and discusses the experimental results. Section 6 summa-
rizes the main conclusions of this work.

2 Computing an array reference window

In this section, a simpler problem will be addressed: given an ar-
ray reference M [x1(i1, . . . , in)] · · · [xm(i1, . . . , in)] of an m-
dimensional signal M , in the scope of a nest of n loops having the
iterators i1, . . . , in , and where the indices xi are affine functions
of the iterators, compute the dimensions of the bounding window
for live elements (as explained in Section 1), assuming that all the
M -elements of the array reference are simultaneously alive. The
technique for solving this problem will be illustrated on the fol-
lowing

Example 1: for (i = 1; i ≤ 3; i + +)
for (j = 0; j ≤ 2; j + +)

if(i+2∗ j ≤ 5) · · ·A[2∗ i+ j][i+3∗ j] · · ·
The iterators (i,j) satisfy a set of linear inequalities derived

from the loop boundaries and conditional expressions: P =
{ [i j]T | 1 ≤ i ≤ 3 , 0 ≤ j ≤ 2 , i+2j ≤ 5, i, j ∈ Z}. These in-

3x-y=5

3x-y=15

-x+2y=0

x+3y=25

2 3 4 5 6 71

x

y

1

2

3

4

5

6

7

Figure 2: The index space of the array reference A[2∗i+j][i+3∗j]
from Example 1 (where x and y are the two indices). Only the
black dots represent possible indices.

equalities define what is usually called a Z-polytope.1 The indices
(x,y) of the array reference are given by the affine vector mapping{[

x
y

]
=

[
2 1
1 3

] [
i
j

]
+

[
0
0

] [
i
j

]
∈ P

}

Such a set is usually called a lattice [11] (linearly bounded) and
it constitutes the array space or index space of the array reference
(see Fig. 2).

More general, the problem to be solved is the following: given
the lattice linearly bounded [12]

{ x = T · i + u ∈ Zm | A · i ≥ b , i ∈ Zn} (1)

where x∈ Zm is an index vector and i∈ Zn is an iterator vector,
compute the projection spans of the lattice on all the m coordinate
axes. The general idea for solving this problem is to find a transfor-
mation S such that the extreme values of first iterator correspond
to the extreme values of, say, the k-th index, for every value of k.
In this way, the problem reduces to computing the projection of a
Z-polytope, this latter problem being well-studied [7, 14].

Algorithm 1
Step 1 The k-th index has the expression: xk = tk · i + uk,
where tk is the k-th row of the matrix T in (1). Let S be a uni-
modular matrix2 bringing tk to the Hermite Normal Form [11]:
[h1 0 · · · 0] = tk · S. (If the row tk is null, then the window
reduces to one point: xmin

k = xmax
k = uk.)

Step 2 After applying the unimodular transformation S, the new
iterator Z-polytope becomes: P̄ = { ī ∈ Zn | A · S · ī ≥ b }.

Step 3 Compute the extreme values of ī1 (denoted īmin
1 and īmax

1)
by projecting the Z-polytope P̄ on the first axis [7]. Then,
xmin

k = h1ī
min
1 + uk and xmax

k = h1ī
max
1 + uk. �

The algorithm will be illustrated projecting the array reference
from Example 1 on the first axis and finding the extreme values of

the first index x. From Example 1, [x] =
[

2 1
] [

i
j

]
+ [0].

1In general, this iterator space can be a finite set of Z-polytopes; these can be
considered disjoint (since, otherwise, a polytope decomposition can be applied).

2A square matrix whose determinant is ± 1.

The unimodular matrix S =
[

0 1
1 −2

]
(see, e.g., [11] for

building S) brings t1 =
[

2 1
]

to the Hermite Normal Form:

t1 · S =
[

1 0
]
. Since

[
i
j

]
=

[
0 1
1 −2

] [
ī
j̄

]
, the ini-

tial iterator space P (see Example 1) becomes P̄ = {1 ≤ j̄ ≤
3 , 0 ≤ ī − 2j̄ ≤ 2 , 2ī − 5 ≤ 3j̄, ī, j̄ ∈ Z}. Eliminating j̄
from these inequalities with a Fourier-Motzkin technique [3], the
extreme values of the exact shadow [7] of P̄ on the first axis are
īmin = 2 and īmax = 7, and those extreme points are valid projec-
tions (i.e., there exists j̄’s such that (̄imin, j̄) and (̄imax, j̄) satisfy
the inequalities defining P̄). Since h1 = 1 and u1 = 0, it follows
immediately that xmin = 2 and xmax = 7, which can be easily
observed from Fig. 2. Projecting the lattice on the second axis, the
second row of the affine mapping is t2 =

[
1 3

]
and the uni-

modular matrix is S =
[

1 −3
0 1

]
. With a similar computation,

it follows that ymin = 1 and ymax = 7. Therefore, the bounding
window of the array reference A[2 ∗ i+ j][i+3 ∗ j] is WA=(6 , 7).

3 Global flow of the mapping algorithm

In the previous section, we computed the bounding window for
the live array elements covered by a given array reference. How-
ever, the assumption we made – that all the elements in the array
reference are alive – does not always hold during the execution of
the algorithmic specification. In the illustrative example from Fig.
3(a), the array reference A[k][i] from the assignment marked with
(*) is entirely alive (4761 elements) at the beginning of the loop
nest, but it is not any more when the execution of the loop nest is
over: since 529 of its elements (A[0][i], 0 ≤ i ≤ 528) were con-
sumed for the last time during the loop nest execution, only 4232
A-elements are still alive at the end, needing thus storage.

Even more revealing, the array reference S[0][j − 16][33 ∗ k +
i − j + 17] from the same starred assignment covers 147,609 S-
elements. If all the elements were simultaneously alive, the neces-
sary bounding window would be WS = (1, 497, 297). However,
a closer look shows that, actually, only one single element is alive
at a time: each S-element produced in a certain iteration is imme-
diately consumed in the next iteration, being also covered by the
array reference S[0][j − 16][33 ∗ k + i − j + 16]. So, a window
WS = (1, 1, 1) would suffice: each access to the two array refer-
ences could be safely redirected to the same memory location.

The global flow of the mapping algorithm, computing the
bounding windows of the arrays while taking into account the life
span of the elements, is described below.

Algorithm 2
Step 1 Extract the array references from the given algorithmic
specification and decompose the array references for every in-
dexed signal into disjoint lattices.

The decomposition of the array references will allow to find out
which parts of an array reference are staying alive during the exe-
cution of a loop nest and which parts are consumed. This decom-

 T[0] = 0 ; // A[10][529] : input
 for (j=16 ; j<=512 ; j++)
 { S[0][j-16][0] = 0 ;
 for (k=0 ; k<=8 ; k++)
 for (i=j-16 ; i<=j+16 ; i++)
 S[0][j-16][33*k+i-j+17] = A[4][j] - A[k][i]
 + S[0][j-16][33*k+i-j+16] ; (*)
 T[j-15] = S[0][j-16][297] + T[j-16] ;
 }
 for(j=16 ; j<=512 ; j++)
 { S[1][j-16][0] = 0 ;
 for(k=1 ; k<=9 ; k++)
 for(i=j-16 ; i<=j+16 ; i++)
 S[1][j-16][33*k+i-j-16] = A[5][j] - A[k][i]
 + S[1][j-16][33*k+i-j-17] ;
 T[j+482] = S[1][j-16][297] + T[j+481] ;
 }
 out = T[994]; // out : output

A1 A2

A3

A4 A5

A6 A7

A8 A9

A10 A11

4761 4761

529 529

4232

1587 1587

32 32

497 497 A8

A9

A4 A5
A6 A7

A10 A11

0

15
16

512

528

513

0 94 5A[4][y] A[5][y]
16 <= y <= 512

A[9][y]
0 <= y <= 528

A[x][y]
4 <= x <= 5
0 <= y <= 15

(a) (b) (c)

A[x][y]
6 <= x <= 8
0 <= y <= 528

A[x][y]
1 <= x <= 8
0 <= y <= 528

A[x][y]
0 <= x <= 8
0 <= y <= 528

A[x][y]
1 <= x <= 9
0 <= y <= 528

A[x][y]
4 <= x <= 5

513 <= y <= 528

A[0][y]
0 <= y <= 528

Figure 3: (a) Example 2. (b) Decomposition of the array (index) space of signal A into disjoint lattices; the arcs in the graph show the
inclusion relations between lattices. (c) The partitioning of A’s array space according to the decomposition (b).

position into disjoint lattices – used also in [15] – can be performed
analytically, by recursively intersecting the array references of ev-
ery multi-dimensional signal in the code. Two operations are rel-
evant in our context: the intersection and the difference of two
lattices. While the intersection of lattices was addressed also by
other works (in different contexts, though) as, for instance, [12],
the difference operation is far more difficult. (Because of lack of
space, this operation will be described elsewhere.)

An inclusion graph is gradually built during the decomposition.
This is a directed acyclic graph whose nodes are lattices and whose
arcs denote inclusion relations between the respective sets. This
graph is used on one hand to speed up the decomposition (for in-
stance, if the intersection L1 ∩ L2 results to be empty, there is
no sense of trying to intersect L1 with the lattices included in L2

since those intersections will be empty as well), and on the other
hand, to determine the structure of each array reference in terms
of disjoint lattices.

Figure 3(b) shows such an inclusion graph and the result of
the decomposition of the four (“bold”) array references of the 2-
dimensional signal A in the illustrative example from Fig. 3(a).
The graph displays the inclusion relations (arcs) between the lat-
tices of A (nodes). The four “bold” nodes represent the four array
references of signal A in the code. For instance, the node A1 rep-
resents the lattice of A[k][i] from the first loop nest. The nodes
are also labeled with the size of the corresponding lattice, that
is, the number of array elements covered by it. In this example,
A1∩A2 = A3 and A1−A3, A2−A3 are also bounded lattices (de-
noted A4, A5 in Fig. 3(b)). However, the difference A3 − A10 is
not (due to the non-convexity of this set), so the resulting set had to
be decomposed further. At the end of the decomposition, the nodes
without any incident arc (A4, . . . , A11) represent non-overlapping
lattices (they are displayed in Fig. 3(c)). Every array reference in
the code is now either a disjoint lattice itself (like A[4][j] is A10
and A[5][j] is A11), or a union of disjoint lattices (e.g., the first

array reference A[k][i] is A1 = A4 ∪ A3 = A4 ∪ ⋃11
i=6 Ai).

Step 2 Using Algorithm 1, compute the extreme values of each
signal’s index for the live elements at the boundaries between
blocks of code.

The algorithmic specification is a sequence of nested loops, re-
ferred also as blocks of code. (Single instructions outside nested
loops are actually nests of depth zero.) After the decomposition
of the array references, one can easily find out the blocks where
each disjoint lattice was produced and consumed (i.e., used as
an operand for the last time).3 For instance, the disjoint lattice
A4 = {x = 0, y = j | 0 ≤ j ≤ 528} (see Fig. 3(b)) belongs to the
input signal A, so it is alive when the execution of the code starts.
A4 is consumed in the first loop nest since it is included only in
the array reference A[k][i] (the lattice A1) in the assignment line
marked with (*) in Fig. 3(a).

Based on the live lattices between the blocks of code, one can
compute using Algorithm 1 preliminary windows for each signal
(array). For instance, since the disjoint lattices A5, . . . , A11 are
alive before the start of the second loop nest, the extreme values
of the two indices of signal A are 1 and 9, and respectively, 0 and
528 (see Fig. 3(c)), A’s bounding window relative to that block
boundary being WA=(9 , 529). But since all the disjoint lattices
A4, . . . , A11 are alive before the start of the first loop nest, then
the bounding window for that boundary is larger: WA=(10 , 529).
Obviously, the maximal window must be selected. Similarly, sig-
nal T will have a window WT =(1) since only one T -element is
alive between the blocks of code (T [0], T [497], or T [994]). The
window of the 3-dimensional signal S is WS=(0, 0, 0) for the time
being since no S-element is alive at any boundary between blocks.

The index windows computed here are the final ones when every

3The algorithmic specifications are in the single-assignment form, that is, each
array element is written at most once, but it can be read an arbitrary number of
times.

block of code either produces or consumes (but not both!) the
array’s elements. This works for signal A in Example 2, but it
does not for S and T (see Fig. 3(a)).

Step 3 Update the extreme values of the signal’s indices for the
live elements within each block of code where array elements are
both produced and consumed.

In the illustrative example from Fig. 1, the A-elements are both
produced (A[i][j] = . . .) and consumed (. . . = A[i − 3][j − 6])
in the loop nest. In such a situation, the basic idea is to com-
pute the iterator vectors when array elements are accessed for the
last time (due to lack of space, this computation will be described
elsewhere) and, subsequently, apply Algorithm 1 to the live lattices
corresponding to those iterations.

There are quite frequently situations when array elements are
produced and consumed at every iteration. Such cases, conve-
niently exploited, occur when array references have one-to-one
correspondences between the iterators and the indices. For in-
stance, in Example 2, each iterator vector [j k i]T corresponds to a
unique (produced) array element S[0][j − 16][33 ∗ k + i− j + 17]
and a unique (consumed) element S[0][j−16][33∗k+ i− j +16]
(see the assignment marked with (*) in the first loop nest). Since
each iteration will produce and consume one element, the bound-
ing window of S is WS=(1, 1, 1). Similarly, each iterator j corre-
sponds to unique T -elements T [j−15] and T [j−16] which yields
a window WT =(1).

The storage requirement for Example 2 is obtained by sum-
ming up the individual window sizes: |WA| + |WS | + |WT |=
5290+1+1=5292 memory locations. It can be shown that this stor-
age requirement is really the minimum one, therefore, the mapping
model we adopted – based on the bounding windows of simulta-
neously alive array elements – was very effective for this code.
However, this is not always the case: as already mentioned in Sec-
tion 1, signal A’s window in the illustrative example from Fig. 1 is
(4, 6), whereas the minimum storage requirement is 19 locations.

4 Mapping signals to multi-layer memories

In embedded communication and multimedia processing applica-
tions, the manipulation of large data sets has a major effect on
both power consumption and performance of the system. This
is due to the significant amount of data transfers to/from large,
high-latency, energy-consuming off-chip data memories. The en-
ergy cost can be reduced and the system performance enhanced by
introducing an optimized custom memory hierarchy that exploits
the temporal locality of the data accesses [2]. The optimization of
the hierarchical memory architecture implies the addition of lay-
ers of smaller memories to which heavily used data can be copied.
Savings of dynamic energy can thus be obtained by accessing fre-
quently used data from smaller on-chip memories rather than from
large off-chip memories [1].

Our data reuse model identifies those parts of arrays which are
more intensely accessed. These parts of arrays – represented as
lattices as well – are copied in a scratch-pad memory (software-
controlled SRAM or DRAM, more energy-efficient than a cache),

achieving a reduction of the dynamic energy consumption due
to memory accesses. Since the bounding window of any lattice
(rather than whole array) can be computed as shown in this pa-
per (e.g., using Algorithm 1 if all its array elements are alive),
those lattices covering the most accessed elements of the arrays
are copied in the scratch-pad memory.4

For instance, in Example 2 from Fig. 3(a), the lattices A10 =
{x = 4, y = j | 16 ≤ j ≤ 512} and A11 = {x = 5, y =
j | 16 ≤ j ≤ 512}, covering roughly the center of the array
space of signal A (see Fig. 3(c)), are the most accessed array
parts: 179,867 memory accesses for each of the two lattices A10
and A11, therefore, an average of 361.90 accesses for each A-
element covered by them. Assuming A10 and A11 are copied in
the scratch-pad memory, their bounding windows computed with
Algorithm 1 (since all their elements are simultaneously alive) are
both W=(1, 497). Moreover, since both lattices are simultaneously
alive, the overall bounding window is W=(2, 497). Obviously, this
window is smaller than the window (10,529) of the whole array
A. This allocation solution with two memory layers implies, be-
sides the background memory of 5292 locations, another memory
of 2×497=994 locations closer to the processor. This increase of
data memory space is compensated here by savings of dynamic
energy of over 30%, according to the CACTI power model [10].

5 Experimental results

A software tool performing the mapping of the multi-dimensional
arrays from a given algorithmic specification (expressed in a sub-
set of the C language) into the data memory has been implemented
in C++, incorporating the algorithms described in this paper.

Table 1 summarizes the results of our experiments, carried out
on a PC with a 1.85 GHz Athlon XP processor and 512 MB mem-
ory. Columns 2 and 3 display the numbers of array references and
array elements in the specification code. Columns 4 and 5 show
the data memory sizes (i.e., the total window sizes of the arrays5)
after the signal-to-memory mapping and the CPU times. Column 6
displays the sum of the minimum array windows (optimized intra-
array memory sharing). Column 7 shows the minimum storage
requirements of the application codes, when the memory sharing
between elements of different arrays is optimized as well. For a
better understanding of the meaning of the data shown in this ta-
ble, the first test is the illustrative example in Fig. 1. The rest of the
benchmark tests are multimedia applications and typical algebraic
kernels used in signal processing.

Although our approach employs a mapping strategy simi-
lar to [13], the computation methodology is entirely different.
Tronçon et al. use, basically, sequences of emptiness checks for
Z-polytopes derived from the code [13], whereas our algorithm

4A more detailed presentation of our data reuse model is beyond the scope of
this paper which focuses on the signal-to-memory mapping.

5If two entire arrays have disjoint lifetimes, their bounding windows can be
mapped starting at the same base address. Then, the maximum of the two window
sizes is added to the other window sizes. Such situations, or even more general
ones, do not occur in the current tests; so, the sum of the window sizes is a reason-
able measure for the total storage requirement.

Application # Array # Array Memory size CPU Memory size Min. memory size
references elements after mapping [sec] (min. array windows) (optimal memory sharing)

Example Figure 1 2 44 24 < 1 19 19

Motion detection 11 318,367 9,525 (+1952) 12 9,525 9,524
Regularity detection 19 4,752 4,353 (+875) 3 2,449 2,304
SVD updating 87 386,472 17,554 (+1654) 18 10,204 8,725
Voice coder 232 33,619 13,104 (+912) 14 12,963 11,890

Table 1: Experimental results. Column 4 displays with bold fonts the total window sizes if one memory layer is used; it also displays in
parentheses the total window sizes of the array elements copied in the scratch-pad when two memory layers are used (see Section 4).

is based on the decomposition of the array references in disjoint
bounded lattices. As a result, our approach can be used in multi-
layer memory organizations and, in addition, it is several times
faster. The computation times reported in [13] are typically of the
order of minutes, whereas our implementation runs for the same
examples, or of similar complexity, in tens of seconds at most. For
instance, the voice coding application – component of a mobile
radio terminal – was processed by [13] in over 25 minutes (using
a 300 MHz Pentium II); in contrast, our running time is signif-
icantly shorter (in spite of the different computation platforms):
only 14 seconds (with a 1.85 GHz Athlon XP). Another com-
mon benchmark is a singular value decomposition (SVD) updating
algorithm, an algebraic kernel used in spatial division multiplex
access (SDMA) modulation in mobile communication receivers.
Tronçon et al. used, probably, in this test matrices of a smaller or-
der (or only part of the code) since their test has only 6,038 array
elements; their reported run time is 87 seconds. In our test with
386,472 array elements, the CPU time was 18 seconds.

Different from all the other signal-to-memory mapping tech-
niques, our computation methodology allows to determine the ad-
ditional storage implied by the mapping model by computing the
minimum bounding window of each array and the minimum stor-
age requirement of the whole code (the last two columns in the re-
sult table), providing thus useful information for the initial design
phase of system-level exploration. Table 1 shows that there are
applications, like the motion detection, where this mapping model
gives very good solutions, close (or, even, equal) to the optimal ar-
ray windows. On the other hand, there are also applications where
the window sizes result significantly larger than the optimal ones
(e.g., 72% larger for the SVD updating). The positive aspect is that
our tool is able to measure the quality of the mapping, whereas the
other works in the field do not provide similar information.

6 Conclusions

This paper has addressed the problem of intra-array mapping of
the multi-dimensional signals from multimedia behavioral speci-
fications to the data memory. The paper proposes a mapping al-
gorithm based on the computation of bounding windows for the
simultaneously alive array elements, technique that can be also ap-
plied in multi-layer memory hierarchies. Moreover, the software
tool implementing this algorithm can compute the optimal window

for each multi-dimensional array in the specification, providing an
accurate evaluation of the efficiency of the mapping model.

References

[1] E. Brockmeyer, M. Miranda, H. Corporaal, F. Catthoor, “Layer as-
signment techniques for low energy in multi-layered memory or-
ganisations,” Proc. 6th ACM/IEEE Design and Test in Europe Conf.,
pp. 1070-1075, Munich, Germany, March 2003.

[2] F. Catthoor, S. Wuytack, E. De Greef, F. Balasa, L. Nachtergaele, A.
Vandecappelle, Custom Memory Management Methodology: Ex-
ploration of Memory Organization for Embedded Multimedia Sys-
tem Design, Kluwer Academic Publishers, Boston, 1998.

[3] G.B. Dantzig, B.C. Eaves, “Fourier-Motzkin elimination and its
dual,” J. Combinatorial Theory (A), vol. 14, pp. 288-297, 1973.

[4] A. Darte, R. Schreiber, G. Villard, “Lattice-based memory alloca-
tion,” IEEE Trans. Computers, vol. 54, pp. 1242-1257, Oct. 2005.

[5] E. De Greef, F. Catthoor, H. De Man, “Memory size reduction
through storage order optimization for embedded parallel multime-
dia applications”, special issue on “Parallel Processing and Multi-
media” (ed. A. Krikelis), in Parallel Computing, Elsevier, vol. 23,
no. 12, pp. 1811-1837, Dec. 1997.

[6] V. Lefebvre, P. Feautrier, “Automatic storage management for paral-
lel programs,” Parallel Computing, vol. 24, pp. 649-671, 1998.

[7] W. Pugh, “A practical algorithm for exact array dependence analy-
sis,” Comm. of the ACM, vol. 35, no. 8, pp. 102-114, Aug. 1992.

[8] F. Quilleré, S. Rajopadhye, “Optimizing memory usage in the poly-
hedral model,” ACM Trans. Programming Languages and Syst., vol.
22, no. 5, pp. 773-815, 2000.

[9] J. Ramanujam, J. Hong, M. Kandemir, A. Narayan, “Reducing mem-
ory requirements of nested loops for embedded systems,” Proc. 38th
ACM/IEEE Design Automation Conf., pp. 359-364, June 2001.

[10] G. Reinman, N.P. Jouppi, “CACTI2.0: An integrated cache timing
and power model,” COMPAQ Western Research Lab, 1999.

[11] A. Schrijver, Theory of Linear and Integer Programming, John Wi-
ley, New York, 1986.

[12] L. Thiele, “Compiler techniques for massive parallel architectures,”
in State-of-the-art in Computer Science, Kluwer Acad. Publ., 1992.

[13] R. Tronçon, M. Bruynooghe, G. Janssens, F. Catthoor, “Storage
size reduction by in-place mapping of arrays,” Verification, Model
Checking and Abstract Interpretation, pp. 167-181, 2002.

[14] S. Verdoolaege, K. Beyls, M. Bruynooghe, F. Catthoor, “Experiences
with enumeration of integer projections of parametric polytopes,” in
Compiler Construction: 14th Int. Conf., pp. 91-105, 2005.

[15] H. Zhu, I.I. Luican, F. Balasa, “Memory size computation for multi-
media processing applications,” Proc. Asia & South-Pacific Design
Automation Conf., pp. 802-807, Yokohama, Japan, Jan. 2006.

	Main
	DATE07
	Front Matter
	Table of Contents
	Author Index

