
Fast Memory Footprint Estimation based on
Maximal Dependency Vector Calculation

Q. Hu
�

A. Vandecappelle† P. G. Kjeldsberg
�

F. Catthoor†‡ M. Palkovic†�
Norwegian University of Science and Technology, Trondheim, Norway

�
qubo.hu,pgk � @iet.ntnu.no

† IMEC vzw, Leuven, Belgium
�
vdcappel,catthoor,palkovic � @imec.be

‡ also professor at Katholieke Universiteit Leuven, Belgium

Abstract
In data dominated applications, loop transformations have a

huge impact on the lifetime of array data and therefore on mem-
ory footprint. Since a locally optimal loop transformation may have
a detrimental effect somewhere else, many alternative loop transfor-
mations need to be explored. Therefore, estimation of the memory
footprint is essential, and this estimation has to be fast. This paper
presents a fast array based memory footprint estimation technique
based on counting of iteration nodes in an iteration domain con-
strained by a maximal lifetime. The maximal lifetime is defined by
the Maximal Dependency Vector (MDV) of the array for a given
execution ordering. We further present for the first time two ap-
proaches for calculation of the MDV: a general approach based
on an ILP formulation and a novel vertexes approach when itera-
tion domains are approximated by bounding boxes. Experiments on
practical test vehicles demonstrate that the estimation based on our
vertexes approach is extremely fast, on average two orders of mag-
nitude faster than the compared approaches, while still keeping the
accuracy high. This enables system-level data memory footprint ex-
ploration of many different alternative transformed program codes,
within interactive time limits, and on realistic complex applications.

1 Introduction

Modern real-time multimedia and telecommunication sig-
nal processing applications typically manipulate large multi-
dimensional arrays within deep loop nests. A direct trans-
lation of the corresponding application code in an embed-
ded system results in a design with large memory banks.
These result in a high production cost, they dominate the en-
ergy consumption and also create system performance bot-
tlenecks. System level optimization techniques such as loop
transformations have been presented with the goal to design
an optimized memory subsystem and/or to restructure the ap-
plication code to take advantage of a predefined memory sub-
system [2]. These techniques explore a huge search space
and in each point the effect on memory footprint has to be
evaluated. Therefore, the time required for memory footprint
estimation becomes critical, in addition to estimation accu-
racy.

Memory footprint estimation has been tackled in the past
at register transfer level (RTL) for scalars [9, 5, 11]. However,
these techniques break down when large multi-dimensional
arrays within deep loop nests are manipulated. To over-
come this, several research teams have instead developed
techniques for array-based memory footprint estimation.

Most array-based memory footprint estimation techniques
require that the execution ordering (the order in which loops
and statements are executed) is fixed. Verbauwhede et al.
propose to build a production axis for each array to model
the relative production and consumption time of the indi-
vidual arrays [14]. The difference between these two dates
equals the number of array elements produced in between and
the maximum difference defines the size requirement for the
array. It is calculated based on Pressburger formulas using
the OMEGA calculator [12]. De Greef et al. [4] and Darte
et al. [3] extend this approach with linearization of multi-
dimensional arrays. Zhao and Malik [15] present a method
that measures the number of simultaneous alive variables in
each iteration. This counting of live array elements is done
by set operations (union, intersection) which are the whole
or parts of the iteration domains. Grun et al. use the data de-
pendency relations between the array references in the code
to find bounds on the number of array elements produced or
consumed by each assignment [7]. Then, a memory trace as
a function of time is found. The peak memory trace con-
tained within the bounding rectangles yields the total mem-
ory footprint. If the difference of boundaries for the critical
rectangle is too large, the corresponding loop is split and the
estimation is rerun in order to improve the estimation accu-
racy. In the worst case, a full loop unrolling is required to
achieve a satisfactory estimate, which is unaffordable. Zhu
et al. [16] propose to first decompose the array references
into disjoint linearly bounded lattices. Then the memory size
at the boundaries between the blocks of code is calculated.
The maximum memory size inside each block is further es-
timated and the maximum found defines the overall mem-
ory footprint. Unfortunately, all the above listed techniques
are still too computationally expensive to be performed fre-
quently during system level design exploration. This is espe-
cially non-trivial when the applications become realistic and
hence large.

978-3-9810801-2-4/DATE07 © 2007 EDAA

Balasa et al. [1] do not assume a fixed execution ordering.
Data dependency analysis is performed and the total mem-
ory footprint is found through a greedy traversal of the rel-
ative graph. In order to deal with multiple read and write
statements for the same array, arrays are partitioned into non-
overlapping basic sets. During data flow graph traversal, each
basic set is treated as a single unit with a fixed size. Basic set
partitioning is however time consuming.

Kjeldsberg et al. [8] developed a fast technique which al-
lows a partially fixed execution ordering. They first esti-
mate the size of individual arrays by counting the number
of nodes in the iteration domain at where array is written,
constrained by the Extreme Dependency Vector (EDV). The
EDV is the maximal projection of all dependency vectors
(DVs), also called dependency distance vectors, on each iter-
ation dimension, indicating the maximal lifetime window of
all the array elements in each dimension. Then an inter-array
size estimation is performed between arrays in such a way
that arrays with non-overlapping lifetime can reuse the same
memory locations. Their approach results in upper and lower
bounds when the execution ordering is partially fixed. Their
approach by itself is very fast, assuming the EDV is already
given. However, calculating the EDV is still time consuming
with the existing techniques like the OMEGA calculator [12]
and Polylib library [10].

This paper contains two main contributions: array size es-
timation based on the Maximal Dependency Vector (MDV),
and a fast calculation of the MDV. First, Section 2 explains
how to estimate the array size based on the MDV. The MDV
is the maximal DV among all DVs for the given execution
ordering. As far as we know, we are the first using the MDV
for performing the memory footprint estimation. Compared
to previous work, the MDV based approach is very fast. The
estimation itself is performed in the similar way as the EDV-
based approach [8], but our MDV based approach is more
accurate because it takes into account the execution order-
ing. Section 3 presents the second main contribution: two
approaches for calculating the MDV (and EDV). The first is
a general approach based on an ILP formulation. In order
to perform a fast estimation, we also present an alternative
called the vertexes approach. This can be used to calculate
the MDV when the iteration domain is simplified to a bound-
ing box, as it is in our case. Experiments on multiple test
vehicles (Section 4) show that the estimation based on the
vertexes approach MDV calculation is accurate when com-
pared to the result achieved with the technique used in [4],
while it is two orders of magnitude faster than [4]’s approach
and the ILP approach MDV calculation. Finally, conclusions
are drawn in Section 5.

2 Array Size Estimation

Our array size requirement estimation is based on a data
dependency analysis between all array writes and reads. This
analysis is performed using a geometrical model of the data
and their accessing. We will use Fig. 1 to illustrate this and

for (x=0; x<=4; x++)
for (y=0; y<=7; y++)

for (z=0; z<=2; z++) {
A[x][y][z] = ...;
if (x>=z) && (y>=x-z)
... = f(A[x-z][y-x+z][z]);

}

Figure 1: Code example

other concepts in this section focusing first on a single data
write and read pair. The three loops in the code result in a
three dimensional iteration space of iteration nodes, as de-
picted in Fig. 2(b). At each node, the statements within the
loop nest are executed once, unless restricted by if-clauses.
The set of iteration nodes at which a given statement is ex-
ecuted constitutes its iteration domain. We will give a more
formal definition of this below. An array element is alive
from the time it is written and until the time it is read for
the last time. This lifetime can also be depicted as a lifetime
window in the iteration domain. Since the array index ex-
pressions are restricted to be affine function of surrounding
loop iterators in our targeted code, all array elements written
within the lifetime window of one element are alive simul-
taneously. The maximal lifetime window among all lifetime
windows constrains the maximal number of simultaneously
alive array elements for the array. It hence defines the size
requirement for the linearized array. For the given execu-
tion ordering, the maximum lifetime window is defined by
the MDV. We will now illustrate how to estimate the memory
footprint requirement using these principles.

For this example, array A is written in one statement and
read in another statement. Assuming it is not used anywhere
else, the array read consumes the data elements. x, y and z
refer to the values of the loop variables at the time the write
is performed and x � , y � and z � refer to the values of the loop
variables at the time the read is performed. The loop vari-
ables are used to define iteration domains, denoted as I and I �
respectively, within which the array is written and read.

I ����� x 	 y 	 z
�� 0 x 4 � 0 y 7 � 0 z 2 �
I � ����� x � 	 y � 	 z �
�� 0 x � 4 � 0 y � 7 � 0 z � 2� x ��� � z � � y ��� � x ��� z � �

In our case, all polyhedron representations of iteration do-
mains are simplified to bounding boxes. With this bounding
box simplification, the counting of the lattice points of a poly-
tope is much simpler and faster than for a general polytope.
The bounding box approach, as also used in [8], still gives
reasonable result as the data accesses for our targeted appli-
cations are quite regular. A bounding box iteration domain
for one statement is in general expressed as

I �����i ��� i1 	�������	 im
 T � m�
g � 1

Lg ig Ug � (1)

in which Lg and Ug means the lower bound and the upper
bound values at the gth loop dimension. In the above ex-

2

x

z
y2 4

2

1 3

1

DVs

MDV

EDV

1 2 3 4 5 y
0

x

1

2

3

4

6 7
z (0,1,2)

EDV

MDV

ID

1 2 3 4 5 y
0

x

1

2

6 7
z (0,1,2)

MDV

(a) (b) (c)

Figure 2: (a) DVs, EDV and MDV and (b) maximal lifetime constrained by EDV/MDV and (c) size requirement counting on MDV

ample, the bounding box expression for the write statement
exactly represents the original polytope shape given earlier,
while the bounding box of the read statement is an approxi-
mated of the original given by

I � ����� x � 	 y � 	 z �
�� 0 x � 4 � 0 y � 7 � 0 z � 2 �
Fig. 2(a) illustrates all the DVs between the array writes

and reads in our code example. In Fig. 2(a) some DVs are
negative in the y-dimension. In this case they appear because
of the bounding box simplification, but for other examples
they may appear in the original code. As long as they are
valid with the given execution ordering, they will in any case
be taken into account. As mentioned, the array size require-
ment is equal to the maximum lifetime window constrained
by the MDV. The MDV will always be one of the existing
DVs. The MDV must be one of the DVs with the largest de-
pendency distance at the outermost dimension. Among these
candidates, it must be one of the DVs with the largest de-
pendency distance at the second outermost dimension. This
continues until there is just one DV at one inner dimension.
For our example, the MDV is � 2 	 2 	 0
 w.r.t. the x-, y- and z-
loop dimensions and it is always larger than other DVs, e.g.,� 2 	 1 	 0
 , � 1 	 3 	 0
 , � 2 	 � 2 	 0
 and � 0 	 4 	 0
 as shown in Fig. 2(a).

As mentioned, the MDV defines the maximal lifetime
window among all array element accesses. When there is a
one-to-one mapping between the data elements and iteration
nodes, i.e., each iteration node accesses one data element, the
size requirement can be calculated by counting the number of
iteration nodes within the array write iteration domain con-
strained by the MDV. If there is not a one-to-one mapping,
e.g. data are accessed at every N iterations, the end size re-
quirement should be divided by the interval N. This can easily
be handled by postprocessing. As the array index expressions
are affine functions of the surrounding loop dimensions and
the iteration domains are represented as bounding boxes, the
counting procedure will start from the first iteration node at
where the array is written and continue to the node reached
by the MDV as shown in Fig. 2(b). The counting is formu-
lated as

size � m � 1

∑
g � 1

�
MDV � g
! m

∏
l � g " 1 # Ul � Ll $ 1 %'& $ MDV �m
 $ 1

(2)

in which m is the number of loop dimensions of the ar-
ray write iteration domain. In the formula, the counting is
summed over each loop dimension starting from the outer-
most dimension. Let us illustrate it on Fig. 2(c). The MDV
distance of the outermost x-dimension is first multiplied with
the bound difference, Ul � Ll $ 1, of all inner dimensions.
The resulting number of iteration nodes is 48 as the distance
is 2 and the bound ranges of y and z are 8 and 3 respectively.
This procedure is repeated at the y dimension where the num-
ber of nodes is 6. The innermost dimension, z, is treated
separately by the second part of the formula, since it is not
going to be multiplied with anything. In this case, the MDV
distance of the z-dimension is zero. The last constant one
is added in order to count the iteration node reached by the
MDV. The size requirement for this example is hence 55.

The EDV used in [8] is a somewhat different concept than
the MDV used here, but with many similarities. It is found
using the maximal dependency distance among all the DVs
at each loop dimension. This difference stems from the fact
that this technique does not take into account the applica-
tion’s (full) execution ordering. For our example, the EDV
is equal to � 2 	 4 	 0
 , which is in fact not one of the original
DVs. When using the EDV to calculate the storage size re-
quirement for the given execution ordering, we can count the
iteration nodes constrained by the EDV as shown in Fig. 2(b).
The size requirement turns out to be 61, which results in over-
estimation compared to the MDV based method. However, it
is still necessary to use the EDV in [8] since the execution
ordering in their cases can be partially fixed or even unfixed.
When the execution is partially fixed, their approach will give
lower bound and upper bound estimations. For a fully fixed
ordering, the MDV based approach would result in a more ac-
curate array size estimation when the EDV is different from
the MDV.

In cases where the distance of the MDV/EDV at any loop
dimension has a value negative or larger than the distance
difference of the upper bound and lower bound of this di-
mension, Eq. 2 cannot count the number of iteration nodes
constrained by the MDV correctly. This is easy to deal with,
and is included in our prototype tool implementation. Due to
page limitations we will not discuss it further.

The approximation to bounding boxes usually works very
well in practice. Iteration domains are typically very close to
rectangular. A major exception are skewed loops and trian-

3

gular loops: for these, the dependency size may be overesti-
mated with a factor of two. Typically, however, only a few
loop dimensions are not rectangular. It is then still possible
to use the MDV approach combined with exact counting of
the number of points in the iteration domain. In Eq. 2, the
non-rectangular factors of the product term should then be
replaced by the exact counting function. Note that the use
of MDV instead of the exact dependency relation still leaves
a degree of inaccuracy, but we believe this is negligible for
practical purposes.

Above we have discussed how to estimate the array size
requirement based on the EDV/MDV when there is a depen-
dency between one statement writing to an array and one
statement reading from the same array. In general, multi-
ple writes and reads of the same array may exist. Every
write-read pair may lead to a data dependency, if they ac-
cess the same elements. If two write-read pairs access non-
overlapping data, their sizes can be computed individually
and summed. If on the other hand they overlap, the overlap-
ping data needs to be stored only once. For the overlapping
part, only the maximum of the two sizes needs to be stored.
Basic set analysis [1] splits dependencies in this way. It needs
to be performed only once, since behavior-preserving trans-
formations cannot change the dependency relations. In our
implementation, however, we do not go to basic set analysis
but simply take the maximum of the two sizes if the depen-
dencies are overlapping.

3 MDV/EDV Calculation

In this section we discuss the other main contribution of
this paper: how to perform a fast calculation of the MDV.
First a general ILP approach is presented. This is followed by
a fast vertexes approach, which is a simplification of the gen-
eral ILP approach in such a way that we do not actually need
to solve the ILP problems. Both approaches also work for
the EDV calculation. For each approach, we will first present
how to calculate the EDV and then the MDV, as calculating
the MDV is the same as the EDV calculation but with extra
constraints added.(*),+ -/.1032546487:9;2=<�>

We now present the formal ILP formulation of calculating
the MDV/EDV for dependencies between each pair of array
write and read. Their iteration domains, denoted I and I � ,
consist of a set of inequality constraints. When data flow
dependencies exist, the index expressions of array write and
read, denoted E and E � respectively, must be equal at each
of the array dimensions. This is because both write and read
should access the same data elements. This results in a set of
equalities:

E �k � Ek � 1 k n (3)

in which n is the number of array dimensions. Note that in
this example, n is the same as the number of loop dimensions
m, but it is not necessarily the case in general.

For our example, the set of equalities are x � � z � � x, y � �
x � $ z � � y and z � � z for the three array dimensions.

To find the EDV distance at one loop dimension it is nec-
essary to calculating the maximal dependency distance pro-
jection at that dimension among all the DVs. This can be
achieved by solving for each loop dimension the ILP prob-
lem:

MAX # i �g � ig % (4)

based on the set of inequality constraints for I and I � and the
set of equality constraints expressed in Eq. 3. In the equa-
tion, g is the analyzing dimension of the array write iteration
domain. For the above example, we need to solve the ILP
maximal problems at each loop dimension, i.e., MAX # x � � x % ,
MAX # y � � y % , MAX # z � � z % . The EDV is hence equal to� 2 	 4 	 0
 . Note for this simple example, the ILP problem is
easy to solve. For the more general real-life applications,
there are usually more loop dimensions, and arrays can also
have more dimensions and/or more complex index expres-
sions. The complexity of the ILP problem will then grow
exponentially.

The MDV is similarly calculated by solving the ILP max-
imal problems at each loop dimension sequentially, starting
at the outermost dimension. In addition, the calculated max-
imum distances of the outer dimensions are propagated as
equality constraints to the calculation of the dependency dis-
tance at the inner loop dimensions. The reason for this is that
we want to calculate the actual dependency distance at the
analyzing dimension for the MDV, which is not necessarily
the projected maximal dependency distance at this dimen-
sion. The dependence distances calculated at the outer di-
mensions for the MDV with their equality constraint expres-
sions are therefore required to be taken into account. For the
above example, we first solve the ILP problem MAX # x � � x %
giving a dependency distance at the outmost dimension equal
to 2. By propagating the equality constraint x � � x � 2, we
then solve the ILP problem MAX # y � � y % and find the depen-
dency distance at the second outermost dimension to be 2.
We now propagate both outer equality constraints and solve
the ILP problem MAX # z � � z % . This gives a dependency dis-
tance at the innermost dimension equal to 0. From this we
get the MDV equal to � 2 	 2 	 0
 . With the ILP approach, the
EDV/MDV can be calculated using either the original itera-
tion domain or the bounding box iteration domain represen-
tation.(?)A@ BC>?DFEGDH7:IJDLK*DHMN2=46487�9G2=<�>

Above we have shown how to calculate the MDV/EDV
by solving an ILP problem at each loop dimension. Since
solving ILP problems is computationally expensive, we pro-
pose a simplified approach, named vertexes approach. We
exploit the special form of the ILP problem and the bound-
ing box approximation to directly calculate the MDV/EDV
values without having to solve the ILP problems.

We can partly solve the ILP problem by rewriting one of

4

the index equalities of Eq. 3:

eh O
g i �g $ O � � eh

g ig $ O (5)

in which eh
g and eh O

g are the index coefficients of the analyzed
loop dimension g for array write and read, at the analyzed
array dimension h. O and O � are the parts of the index ex-
pressions that do not contain ig or i �g. We can rewrite this
formula to isolate the difference between i �g and ig which we
want to maximize:

i �g � ig � # eh
g � eh O

g %P ig $ O � O �
eh O

g
(6)

If eh O
g is equal to zero, we have to use eh

g instead. The MAX
problem in Eq. 4 is hence converted to

MAX # i �g � ig %P�3QRS RT
MAX #/U eh

g � eh O
g VXW ig " O � O O

eh Og % when eh O
g Y� 0

MAX # eh
g W i Og " O � O O

eh
g

% when eh O
g � 0

(7)
If � eh O

g � Y� 1, Eq. 7 is only an approximation, because the con-
straint that all variables are integral is ignored. This, however,
only makes a difference for border cases of an array, which
contribute little to the total size. This does not occur much
in practice. If we make the real division and round the re-
sult up, we find a maximum which may be an overestimate.
This overestimation due to the border cases can be removed
if basic set analysis [1] is applied before our estimation is
performed.

The right-hand side of Eq. 7 is a linear combination of
loop variables. Because bounding box constraints are as-
sumed on the loop variables, we can easily find the maxi-
mum of this right-hand side by replacing a loop variable with
its upper bound if it has a positive coefficient, and its lower
bound if it has a negative coefficient. In other words, the
maximum is found at one of the vertexes of the bounding
box, and we can immediately find which vertex by looking at
the coefficients of Eq. 7.

If the array has more than one dimension, we can find a
formulation of Eq. 7 for each array dimension. We then have
to find a solution to the ILP which satisfies all array dimen-
sions simultaneously. The maximum difference will certainly
be smaller than or equal to the minimum of all maxima found
with Eq. 7. The minimum among the maxima is the depen-
dency distance for the EDV at that dimension.

For the example of Fig. 1, the vertexes approach is applied
as follows. At the outermost loop dimension x, we calcu-
late the maximal value at the first array dimension with the
equality x � � z � � x. Based on Eq. 6, which is transformed as
x � � x � z � . This leads to the ILP problem MAX # x � � x % , which
is equivalent to solving the problem MAX # z � % based on Eq. 7.
By taking the upper bound value of z’, the maximal value for
the first array dimension at the outermost loop dimension is
equal to 2. Similarly, the maximal value is 9 at the second
array dimension. The third dimension does not constrain x

or x � , so it does not affect the maximum. The minimal maxi-
mum among all array dimensions is the dependency distance
at the outermost loop dimension, that is 2. In a similar way,
the dependency distance for EDV at other loop dimensions
can be calculated. For the MDV calculation, the variables
which contribute to the actual dependency distance calcula-
tion at one loop dimension are propagated to the dependency
distance calculation at the inner loop dimensions using their
fixed values.

When the same array element is written multiple times,
calculation of EDV/MDV based on write-read pairs is not
fully accurate: it includes the time between the reading of
an element and its overwriting into the dependency. Prepro-
cessing the index expressions into dynamic single assignment
(DSA) form [13] avoids this problem. It has to be performed
only once so that is a quite acceptable overhead even in a
system exploration context. Indeed, once the initial code is
in DSA form, also the code transformations become simpler
and they will maintain the DSA form.

4 Experiments

We have developed a prototype tool in the script language
Python for the memory footprint estimation and also the two
approaches of the MDV calculation. For the ILP approach
based MDV calculation, the problems are created in Python
and then solved by calling the ILP solver. In this case, GNU
Linear Programming Kit (GLPK) [6] is called which is writ-
ten in language C. We have performed experiments on sev-
eral real life test vehicles and compare our results with what
Atomium/MC achieves. Atomium/MC is implemented based
on the techniques presented in [4]. In the current version, the
memory footprint for one application is simply the sum of
the size requirements for all arrays. To make a fair compari-
son, the size requirements for all arrays calculated by Atom-
ium/MC is also summed up. Their approach is different from
ours in that they calculate the maximal distance at the data
domain by solving ILP problems after linearization of the ar-
ray indices. The experiments are performed on a workstation
with Intel Pentium 4 2.4GHz processor and 1G memory.

Application declared MDV approach Atomium/MC

code size size tvertexes tILP size tMC

orig.c 2536880 1016984 124.0ms 5.8s 1016984 24.9s

Cavity lt 1.c 2536880 760987 114.3ms 6.0s 760987 27.1s

Detection lt 2.c 2536880 5743 166.4ms 6.0s 5743 26.5s

lt 3.c 2536880 3838 168.5ms 6.0s 3838 82.4s

QSDPCM orig.c 118906 117338 0.7s 14.9s 117338 73.1s

lt.c 118906 85128 1.1s 12.4s 85128 144.0s

Table 1: Estimation comparison for Cavity Detection & QSDPCM

The first application is the Cavity Detection Algorithm
used for detection of cavity perimeters in medical imaging.
The second is the QSDPCM algorithm, which is an inter-
frame compression technique for video images, involving hi-
erarchical motion estimation and a quadtree-based encoding

5

of the motion compensated frame-to-frame differences. Our
estimation is performed on a number of code versions re-
sulting from different loop transformations. In the Tab. 1, t
means the CPU execution time. As shown, our memory foot-
print estimates are identical to the optimized results reached
by Atomium/MC. When comparing the computation time,
our vertexes approach based estimation takes less than 200ms
for all versions of Cavity Detection codes. For QSDPCM, it
takes approximately one second. Our ILP based estimation
is in general one order of magnitude slower, while Atom-
ium/MC is two orders of magnitude slower than our vertexes
approach.

Application Declared MDV approach Atomium/MC

code size size tvertexes tILP size tMC

durbin.c (N=500) 502000 251498 135.0ms 6.2s 251003 56.8s

dynprog.c 1020001 19701 137.7ms 10.9s 19604 17.0s

gauss.c 5280008 1436016 25.5ms 4.4s 1436008 18.3s

reg detect.c 8392 4337 26.5ms 4.5s 4297 12.2s

Table 2: Estimation comparison for other applications

The memory footprint estimation is also performed for
several other applications. Our estimation is also very accu-
rate compared to what is achieved with Atomium/MC. When
comparing the execution time among different approaches,
the computational time of our vertexes approach is on aver-
age two orders of magnitude faster than our ILP approach
and Atomium/MC respectively. Remember that our proto-
type tool is implemented in the script language Python while
Atomium/MC is implemented in C++. Our algorithm will be
even faster when implemented in C/C++.

A comparative evaluation in terms of speed and accuracy
with other fast estimation techniques presented in Section 1
would be interesting. This is hard to do in the absence of their
benchmark algorithms. In general, both the MDV calculation
presented in Eq. 7 and the memory footprint estimation pre-
sented in Eq. 2 have very low complexity. This is not the
case for the other techniques as motivated in section 1. Our
approach should therefore still compare very favorably.

5 Conclusions

This paper presents a system level memory footprint esti-
mation technique based on the MDV calculation. Our MDV
based estimation produces accurate results as shown on mul-
tiple test-vehicles. We have also presented a new general ILP
approach and a novel vertexes approach for MDV calcula-
tion. Our vertexes approach is extremely fast compared to
other approaches. This makes our estimation approach espe-
cially useful during system level exploration, where estimates
must be frequently repeated. Our MDV calculation methods
can also be used for fast EDV calculation to save computation
time for existing estimation techniques. For future work, we
will focus on estimation when more complex execution or-
dering occurs between array writes and reads. Other impor-
tant issue is to consider in-place mapping between multiple

arrays and also to extend the estimation for multi-processors.

References

[1] F. Balasa, F. Catthoor, and H. De Man. Background mem-
ory area estimation for multi-dimensional signal processing
systems. IEEE Trans. on VLSI Systems, 3(2):157–172, June
1995.

[2] F. Catthoor, K. Danckaert, K. Kulkarni, E. Brockmeyer, P. G.
Kjeldsberg, T. V. Achteren, and T. Omnes. Data access
and storage management for embedded programmable pro-
cessors. Kluwer Academic Publ., Boston, MA, 2002. ISBN
0-7923-7689-7.

[3] A. Darte and Y. Robert. Lattice-based memory allocation.
IEEE Transaction on Compuaters, 54(10):1242–1257, Oct.
2005.

[4] E. De Greef, F. Catthoor, and H. De Man. Array placement
for storage size reduction in embedded multimedia systems.
In Proc. Int. Conf. on Applic.-Spec. Array Processors, pages
66–75, Zurich, Switzerland, July 1997.

[5] C. H. Gebotys and M. I. Elmasry. Simultaneous scheduling
and allocation for cost constrained optimal architectural syn-
thesis. In Proc. ACM/IEEE Design Automation Conf., San
Jose CA, USA, Nov. 1991.

[6] GLPK: GNU Linear Programming Kit,
http://www.gnu.org/software/glpk/.

[7] P. Grun, F. Balasa, and N. Dutt. Memory size estimation for
multimedia applications. In Proc. ACM/IEEE Wsh. on Hard-
ware/Software Co-Design (CODES), pages 145–149, Seattle,
WA, Mar. 1998.

[8] P. G. Kjeldsberg, F. Catthoor, and E. J. Aas. Data dependency
size estimation for use in memory optimization. IEEE Trans.
on Comp. Aided Design, 22(7):908–921, July 2003.

[9] F. Kurdahi and A. Parker. Real: a program for register allo-
cation. In Proc. ACM/IEEE Design Automation Conf., Miami
FL, USA, June 1987.

[10] V. Loechner. Polylib: A library for manipulating parameter-
ized polyhedra. Technical report.

[11] S. Y. Ohm, F. J. Kurdahi, and N. Dutt. Comprehensive lower
bound estimation from behavioral description. In Proc. IEEE
Int. Conf. Comp. Aided Design, San Jose CA, USA, Nov.
1994.

[12] W. Pugh. The omega test: a fast and practical integer program-
ming algorithm for dependence analysis. In Supercomputing,
pages 4–13, Aug. 1991.

[13] P. Vanbroekhoven, G. Janssens, M. Bruynooghe, H. Corpo-
raal, and F. Catthoor. Transformation to dynamic single as-
signment using a simple data flow analysis. In Proc. 3rd Asian
Symp. on Programming Languages and Systems (ASPLAS),
volume 3780 of Lecture Notes on Comp. Sc., pages 330–346,
Tsukuba, Japan, Nov. 2005.

[14] I. Verbauwhede, C. Scheers, and J. M. Rabaey. Memory es-
timation for high-level synthesis. In Proc. 31st ACM/IEEE
Design Automation Conf., pages 143–148, San Diego, CA,
June 1994.

[15] Y. Zhao and S. Malik. Exact memory size estimation
for array computations without loop unrolling. In Proc.
36th ACM/IEEE Design Automation Conf., pages 811–816,
New Orleans, LA, June 1999.

[16] H. Zhu, I. I. Luican, and F. Balasa. Exact computation of stor-
age requirements for multi- domensional signal processing
applications. In 11th Proc. IEEE Asia and South Pacific De-
sign Autom. Conf. (ASPDAC), Yokohamma, Japan, Jan. 2006.

6

	Main
	DATE07
	Front Matter
	Table of Contents
	Author Index

