
Remote Testing and Diagnosis of System-on-Chips Using Network Management
Frameworks1

Oussama Laouamri & Chouki Aktouf
DeFacTo Technologies, 167 rue de Mayoussard, 38 430 Moirans, FRANCE

Abstract
This paper presents a new approach that allows remote
testing and diagnosis of complex (Systems-on-Chip) and
embedded IP cores. The approach extends both on-chip
design-for-test (DFT) architectures and network
management protocols to take full benefits from existing
networking infrastructures. By running intensive
experimentation on ITC’99 and ITC'02 design
benchmarks, the efficiency of the proposed testing and
diagnosis methodology is analyzed..

1. Introduction

The SoC design paradigm has been widely accepted
and implemented in practice during the last few years as
an enabling design methodology for the improvement of
productivity and the increase of design functionality. The
main issues to be faced when testing an SoC are
essentially related to the new challenges offered by the
growing design complexity. Semiconductor technology
feature sizes are getting deep in the submicron area, thus
allowing the integration of many complex cores within a
single design.

In the DSM (Deep Sub-Micron) arena, testing and
diagnosis become a major concern for quality and cost.
Testing costs are already significant part of the chips total
production cost and represent a bottleneck in the
successful completion of a design project and its final
market success. Unlike other silicon manufacturing costs,
the test cost has not benefited as much from the overall
downward trend over time. The cost of large automated
test equipments (ATE) have steadily risen to multi-
million dollars for cutting-edge capabilities. The length
and number of test vectors per design are increasing,
resulting in each design consuming more time on the
testers. The International Technology Roadmap for
Semiconductors (ITRS) reported in its 2001 analysis that
for some products in certain market segments, test may
account for more than 70% of total manufacturing cost, or
process technology. The solution to this predicament is
reducing the reliance on big testers and instead utilizes
more low-cost testers that are DFT-aware.1

1 This research work has been conducted under the support of the Institut
National Polytechnique de Grenoble (INPG)

Besides traditional manufacturing testing needs,
diagnosis and silicon debug can be required at various
stages in the lifecycle of an electronic product: during
development, qualification, production ramp-up, or in
maintenance-like activities. The root cause of the
problem-to-be-debugged can lie in the technology used,
as well as in the design implementation (or the
combination of these); the debugging process has to cover
both aspects.

Although it is clear that software tools and DFT are
gaining in importance, with the advent of SoC, diagnosis
and physical debug methods have still an important role
to play.

Given an SoC which is already integrated within an
electronic system, any mechanism that allows (i) remote
application of test vectors for any of the SoC blocks and
(ii) gathers related test results, is very beneficial. Beyond
simplifying the access to CUT (Chip Under Test) blocks
from external I/O pins, a remote access should be possible
during an SoC live time. Only network infrastructure can
allow such easy access. Making an SoC TCP/IP
compliant extends testing and diagnosis possibilities.
Such a compliance can take benefits from TCP/IP
network management protocols such as SNMP (Simple
Network Management Protocol).

Today, available network infrastructures allow secure
data transfer. Such infrastructure can serve as a powerful
vehicle to drive test vectors from a test engine to chips
and gather test results for a deep analysis. Furthermore,
the large experience in network management of electronic
and computer systems can assist the testing community in
monitoring the behavior of chips during execution of real-
life applications. Indeed, network management for local
TCP/IP networks is mainstream. To maintain and deliver
high service quality to end users, network performance
and reliability must be constantly monitored.

To date, several research works have addressed
hardware-based solutions using network protocols and
applications. In the Applied Research Lab (ARL) at
Washington University, a set of hardware components for
research in the field of networking, switching, routing and
active networking have been developed [1]. However,
hardware components of layered protocol wrappers
(UDP/IP wrappers) [1] have been proposed which process
Internet packets in reconfigurable hardware. Hence,
several network applications which use this wrapper
library [1] have been developed. For instance, an Internet
router or a firewall are important applications that use the

978-3-9810801-2-4/DATE07 © 2007 EDAA

wrapper library to route and filter packets [2, 3]. A single
chip has been used to filter internet SPAM and to guard
against several types of network intrusion. In such
research, work has not addressed a hardware-based
SNMP solution at the application layer. This is important
since such a feature has to be considered at the chip level.
SNMP is considered as an application layer protocol
which uses a TCP/IP suite (in practice UDP is used). In
this work, an SNMP agent is developed on a wrapper
library described in [1]. This agent is developed within an
SoC to help the external testing of the overall SoC.

In this work, a new DFT methodology named
SNMP/1500 which makes complex SoCs easily testable
and diagnosable is presented. By using existing network
infrastructure, the proposed methodology can interoperate
with existing DFT methodologies and network
technologies [4]. Using the IEEE 1500 DFT methodology
[5, 6], test logic is extended and made compliant with
SNMP TCP/IP management protocol.

SNMP is known as a simple and a very powerful
management protocol. It embeds a set of features that
allow the management of heterogeneous and complex
networks. In this research work, SNMP is considered
within SoCs to allow either remote testing or real-time
monitoring of embedded cores.

IEEE 1500 standard [5, 6] enhances testability of
SoCs. It helps isolating blocks or IP cores which allows
targeting their individual test or monitoring. The proposed
architecture embeds two kinds of interfaces. The first
interface extends a traditional IEEE 1500 wrapper. The
second interface embeds a SNMP proxy agent at the SoC
level. Starting from SNMP requests sent by a test engine
such as an ATE via TCP/IP network, the on-chip SNMP
agent is made capable to perform IEEE 1500 boundary
scan operations at the level of an embedded core. This
allows support for testing, diagnosis and monitoring of an
SoC or a block of an SoC with a full compliance to both
the IEEE 1500 and SNMP standards. It is noteworthy that
the proposed architecture reuses the existing Test Access
Mechanism (TAM).

The rest of the paper is organized as follows: Section 2
presents the SNMP/1500 compliant testing architecture.
Section 3 presents software considerations that help
implementing the proposed approach. In section 4, the
main approach which combines both management and
testing standards is presented. Section 5 summarizes the
implementation results and performance evaluation on
monitoring and testing operations. Finally, conclusions
are given in section 6.

2. SNMP/1500 Test architecture

In this architecture, IEEE 1500 wrappers are extended
and represent SNMP agents. An SNMP agent which is
illustrated in Figure 1.a is managed by a proxy agent. Test
data is carried between IP cores and the proxy agent via a
TAM. The proposed SNMP/1500 architecture is
compliant with existing TAM structures.

As previously detailed in [7, 8], such an architecture
embeds new registers such as IDIP (IDentifier of IP core),
TECTTEST (TECHnique of TEST) and OID (Object

Identifier). The Wrapper Instruction Register (WIR)
controls wrapper operations. Given control inputs, WIR
operations are directly controlled (WIP) by the proxy
agent. Furthermore, WIR is extended by new instructions
such as WS_GETREQUEST and WS_SETREQUEST.
Hence, a SNMP operation is indicated by two parameters:
PDU (kind of operation: get-request, set-request...) and
OID [9]. The same behavior is extrapolated at the level of
the IP cores test interfaces (extended 1500 wrapper)
which ensure a full compliance with the IEEE 1500
standard. During a SNMP operation, the semantics of a
IEEE 1500 instruction is completed by a flattened OID,
which is the equivalent to a hierarchical one.

Core 2

SC

IDIP

OID

TECTEST

PR OXY Agent

TAM (Test Access Mechanism)

WSI WSOWIP

Core 1

WSI

SC

IDIP

OID

WSO WIP

U DP/IP Wrapper

WIP OIDWSI WSO

Bus

Extended 1500
Wrapper

SoC

TECTEST
WIR WIR

WSI: Wrapper Serial Input
WSO: Wrapper Serial Output
WIP: Wrapper Interface Port
OID: Object IDentif ier

Data Input
From Gigabit
Ethernet or

SONET Line
Card

Functional
Data Input

Data output
to Gigabit

Ethernet or
SONET Line

Card

Functional
Data Output

(a) SNMP/1500 Architecture

C ore 2

SC

ID IP

OID

TEC TE ST

Age nt PR O XY

TA M (Te st Ac ce ss M echa nis m)
W SI W SO W IP

Cor e 1

W SI

S C

I DI P

OI D

W SO W IP

W rapper UD P/IP

W IP O ID W SI W SO

Bus

TECTEST
WI R W IR

Core 3

SC

I DI P

OID

TECTEST

W SI W SOWI P

W I R

C or e 4
SC

ID IP

OID

TEC TE ST

W SI W SO W IP

W IR

C or e 4
SC

ID IP

OID

TEC TE ST

W IR

W SOWI PW SI

…

TAM

WIR
OID

Core 1

IDIP

OID

TECTEST
WIR

BIST

Core 2

IDIP

OID

TECTEST
WIR

PROXY Agent

UDP/IP Wrappers

WIPOIDWSI WSO

Core 3

System-on-Chip

(i) (ii)

(iii)

(Test controler)

IDIP
TECTEST

(b) Various types of IP cores compatible

with SNMP/1500 architecture

Fig. 1– Proposed SNMP/1500 architecture

Through the use of network layered protocol UDP/IP
wrappers [1], a test operator has the ability to manage the
SoC infrastructure by using an SNMP proxy agent
module (Fig. 1.a). The proxy agent monitors and controls
the embedded cores under test. The proxy agent is used to
translate information between SNMP and IEEE std. 1500
protocols. It provides a protocol conversion function
which allows a management station to apply a consistent
management framework to all SoC and IP cores
infrastructures. The proxy agent can be considered as an
IP core, which gets SNMP requests coming from the

000000000000000000101 (logical address of the considered IP core = <5>)

00000111 (flattened OID = <7>)

get-request X.2.2.1.3.5
00000011000001010000010000000000(a succession of words (32bits) which constitutes SNMP get-request)

1 0

get-response X.2.2.1.3.5 “1010’b”

0 1 1 0

1 1 0 0 WS_GETREQUEST 1500 Instruction

00001010

The contents of TECTEST register

10101 10100 10000 00000 (1500 controls generate by proxy agent to wrapped IP)

Clock

Reset

DataEn_IN

Data_IN

DataEn_OUT

Data_OUT

Address

OID

WSI

WSO

WIP

It generates by proxy agent to Wrapped IP core

It generates by wrapped IP core to proxy agen

It generates by proxy agent to Wrapped IP core

It generates by proxy agent to TAM

a succession of words (32bits) which constitutes SNMP get-response

Fig. 2– Functioning of SNMP/1500 architecture

management station. Such requests are converted into
instructions in compliance with the extended 1500
standard. In a similar way, answers from the IP core are
converted into an SNMP protocol representation
(response). Finally, test results are sent to the ATE as
SNMP messages.

Figure 1.b shown various types of IP cores which are
compliant with the proposed SNMP/1500 architecture.
Figure 1.b.i shows an IP core including an internal Built-
In-Self-Test (BIST) structure. The SNMP/1500
architecture operates also with the IP cores using the scan
test infrastructure (Fig. 1.b.ii). To ensure hierarchical
testing, any IP core can be considered as an SoC with a
full compliance to the proposed SNMP/1500 architecture
(Fig. 1.b.iii).

3. Software design considerations

A MIB (Management Information Base) [9] data
model represents a software interface between SNMP
Framework and the design under test. Hence, a
correspondence must exist between the MIB knowledge
available to the manager (ATE) and what is really
implemented within the agent (SoC). The manager can
only carry out the operations which are envisaged in the
MIB.

Name OID Description

socIdentifier X.1.1.1.0 SoC Identifier

ipCoreIdentifier X.2.2.1.2.ipCoreIndex IPcore Identifier

techniqueTest X.2.2.1.3.ipCoreIndex test technique

functionalTestVT X.2.2.1.4.ipCoreIndex Functional test

exTestVT X.2.2.1.5.ipCoreIndex External test

simpleCoreTestVT X.2.2.1.6.ipCoreIndex Simple Internal test

coreBISTEnable X.2.2.1.8.ipCoreIndex Built-In Self-test

Tab. 1– Definition of main managed objects

A MIB basic element [7, 8] is called “mibSoCTest”.

Any new module is identified by the OID “1.3.6.1.4.1.X”,
for which X is a reference given by Internet Engineering
Task Force (IETF). Given an IP core or an SoC under
test, the MIB describes both features of the implemented
test techniques which are associated to the IEEE 1500
wrapper and information related to the testing process.
The MIB is divided into two parts: the information at the

SoC level and those at the level of IP cores. The first part
of the MIB is dedicated to the SoC: SoC identifier,
configuration of basic components, etc. The second part
of the MIB is dedicated to the IP cores. For instance, the
table called “ipCoresWrappedP1500Table” is related to
the information regarding IEEE 1500 test architecture of
each IP core. The index of this table is called
“ipCoreIndex”. It represents the logical address of IP
cores in the SoC environment. The table 1 shows
examples of managed objects.

4. Remote test protocol

4.1. Overview

The proposed SNMP/1500 interface (UDP/IP wrapper
and Proxy Agent) controls the internal and wrapper
boundary scan (WBR of IEEE std. 1500) via the TCP/IP
network. This interface assumes the connection of input
and output terminals of the scan chains (including the
boundary-scan chain), test control pins, and clock pins to
ATE channels (managed by existing TCP/IP bandwidths).

At the level of every IP core, the access to the rest of
the functional pins is achieved via the IEEE 1500 wrapper
boundary-scan chain. In this work, both the UDP/IP
wrapper and the Proxy Agent constitute an SNMP/1500
wrapper around an SoC (fig. 1). In this case, the DFT for
the SoC can be designed without even knowing about the
target ATE. Later, by using the re-configurable logic, the
number of scan chains and their length can be modified in
the embedded cores according to the ATE specification.
The basic idea behind the combination of DFT techniques
and the SNMP standard is to provide remote access not
only to the functional terminals, but also to the internal
scan chains via the boundary-scan architecture (IEEE
1500 wrapper), in order to enable even greater scalability
of the SoC-ATE interface. Given such an extension, the
SoC becomes capable of understanding SNMP requests.
SNMP requests (get-request, set-request…) retrieve or
modify the value of any managed objects (e.g. IP core
identifier, SoC identifier, test vector, tests techniques,
etc.) at an SoC level. Our proposed SNMP/1500 wrapper
around an IC truly converts the fixed number of external
test inputs and outputs, which represent a TCP/IP network
interface, into IEEE std. 1500 dedicated internal test
inputs and outputs.

The SNMP set-request message (set-request OID TV)
applies test vectors on the IP cores where both object
identifiers (OID) and test vectors are specified. The OID
distinguishes the type of the applied test. The SNMP get-
request message (get-request OID) retrieves information
of test or monitoring (e.g. IP core identifier, SoC
identifier, tests techniques, monitoring registers, etc.) of
either the IP core or the SoC by specifying the identity of
an instance of the managed object.

4.2. SNMP-IEEE 1500 relationships

The relationship between the SNMP requests and those
of IEEE 1500 is implemented at the level of the proxy
agent. The proxy agent converts SNMP requests into
IEEE 1500 instructions. For example, the SNMP request
“get-request X.2.2.1.3.5” is used to recover the contents
of the TECTEST register (4 bits which identify the used
test technique). This request is converted into
WS_GETREQUEST IEEE 1500 instruction (Fig. 2)
with a flattened OID that equals “7”. This flattened OID
relates to the hierarchical OID “X.2.2.1.3”. Given some
IP cores, the last number (ipCoreIndex) of the
hierarchical OID represents the logical address (number
“5”) of the considered IP core. To distinguish the type of
applied tests at the IP core level the flattened OID is
considered instead of the hierarchical OID. This choice is
motivated by the need for minimizing the processing
logic of the hierarchical OID for each IP core. Figure 2
illustrates this example. In this figure, the data enable
signals (DataEn_IN and DataEn_Out) indicate if 32 bit
databusses Data_IN and Data_OUT are a valid payload
of the SNMP message or not.

5. Simulation results

The considered design flow is based on Synopsys®
tools. Using a 0.18 µ CMOS technology, implementation
of a 200 MHz proxy agent requires 16369 gates. Given a
million gate SoC f2126 from ITC’02 [10] that embeds
four cores, 2% of the area overhead is estimated for the
SNMP/1500 architecture adapted to this SoC benchmark.
This seems reasonable knowing the number of added
features. The proxy agent analyzes at 33 MHz to 100
MHz or 200 MHz, suited to the production lines of
electronic component manufacturers, who require high
throughput. Therefore, the proxy agent can operate on
high-speed networks. The theoretical maximum network
throughput that can be supported is 3.2 Gb/s for a 100
MHz proxy agent. However, several experimentations at
IP core level have been conducted using twenty-two
design benchmarks known as ITC’99 benchmarks (b01 to
b22) for estimating the cost of area overhead of the
extended IEEE std. 1500 wrapper. In summary, the area
cost of the extended wrapper depends on the size of the
core, as well as the number of core terminals. We reported
1% additional silicon area for the extended wrapper at IP
core level, on top of 4.5% area costs in order to make all
cores fully testable with internal full scan.

A queueing model is used in the performance analysis
of the proposed approach. The OMNeT++® [11] is

considered for analyzing the performance of both
monitoring and testing. The implemented queueing
network (Fig. 3) is the model M/G/1/N FIFO queue
system. It has a Poisson arrival distribution, a general
service time, a single server and a finite queue (N: system
capacity). The service time is calculated for each SNMP
request received starting from its contents. The
parameters used in the calculation of the service time are:
service type, test type, size of monitoring registers, size of
test patterns, number of tests per message, chip speed
(clock frequency of test architecture), length of each core-
internal scan chain, etc. The setting of these parameters
typically influence the number of clock cycles needed to
apply one test pattern or to recover one monitoring
register.

Fig. 3– Queueing network of the proposed

approach

As shown in figure 3, three main components are
considered in the model that is proposed in this work:
system under test or monitoring, the generator of SNMP
requests and the system (sink) that processes and analyzes
SNMP responses. These two last components constitute
the testing station (ATE).

5.1. Monitoring performance analysis

Within larger digital systems, you often find a large
number of hardware registers (monitoring registers).
Generally, these kinds of registers control and monitor
hardware functions within the system. It is common
practice to spelling registers from the functional blocks
(FB) of each IP cores, and interconnect them with the
extended P1500 logic proposed in this approach. These
facilities allow complete remote management and
monitoring of the IP cores activities via simple SNMP
requests (get-request, etc.).

According to the size of monitoring registers that are
embedded within the SoC, the monitoring performance
has been estimated. The performance characteristics are
evaluated in terms of the response time (delay), traffic
intensity and loss rate. The proposed results also show the
influence of system parameters such as: queueing
capacity, chip speed and interarrival rate (1/λ, versus of
arrival rate λ).

As discussed earlier, an extensive simulation work has
been conducted to show how many parameters for
modeling are necessary to influence the performance of
monitoring operations. For instance, let us assume that a
mean arrival rate is λ=10000 SNMP messages per second,
i.e. on average one message appears every 1/λ=1/10000=
0.00001 second. This implies that the interarrival times
have an exponential distribution with an average
interarrival time of 0.00001 second. Moreover, when the
arrival rate λ increases the time of inter-arrival 1/λ

decreases. The system capacity (N) represents the number
of SNMP messages supported. Cq is the capacity of the
queue, therefore N=Cq+1. Figure 4 shows the end-to-end
response time (monitoring time) of the system according
to the size of monitoring register during the time.

0

10

20

30

40

50

60

70

80

0 500 1000 1500 2000 2500 3000 3500 4000

Size of m onitor ing reg is te r (bit) Size (t+1) = Size (t) + 4

R
es

po
ns

e
tim

e
(m

on
ito

rin
g

tim
e)

 (µ
s)

(a) λ=10000, Speed=100MHz and Cq=1

0

10

20

30

40

50

60

70

80

0 500 1000 1500 2000 2500 3000 3500 4000

Size of m onitor ing re gis ter (bit) Size(t+1) = Size(t) + 4

R
es

po
ns

e
tim

e
(m

on
ito

rin
g

tim
e)

 (µ
s)

(b) λ=10000, Speed=100MHz and Cq=2

0

10

20

30

40

50

60

70

80

0 500 1000 1500 2000 2500 3000 3500 4000

Size o f m on ito ring r e g is te r (bit) Siz e (t+1) = Siz e (t) + 4

re
sp

on
se

 ti
m

e
(m

on
ito

ri
ng

 ti
m

e)
 (µ

s)

(c) λ=10000, Speed=300MHz and Cq=2
Figure 4 -End-to-end response time(µs) analysis

Figure 4 shows high and intensive peaks which explain
the progression of the occupancy rate of the SoC under
monitoring. If a new message arrives at the input ports of
an occupied SoC, then the considered message is placed
at the tail of its queue from where it will possibly be
withdrawn. The latency between arrival and service is that
which constitutes the peaks shown in figure 4. When the
arrival rate λ increase, the number of peaks explodes.
Also, the monitoring register lengths are a determining
factor to regularize the occupancy rate of the SoC.

Each time the length of the monitoring registers grow,
the SoC load increases which causes increasingly higher
latencies. Note that the second curve (Fig. 4.b) presents
peaks higher than the first curve. This is due to the
waiting capacity Cq. With an increased capacity for
waiting, there is less loss, giving higher response times. In
figure 4.c, the clock frequency of the on-chip DFT is
increased to 300MHz. Note that the intensity of the
specific peaks decreases by a third which is why the clock
frequency constitutes an important parameter in

enhancing the monitoring performance of the proposed
SNMP/1500 architecture.

5.2. Testing performance analysis

Several simulations have been conducted using several
ITC’02 SoC Test Benchmarks [10]. The proposed results
also show the influence of system parameters such as:
queueing capacity (Cq), chip speed (clock frequency of
test architecture) and interarrival rate (SNMP messages
per second).

(a) λ =10000, Frequency=100MHz, Cq = 1

(c) λ =10000, Frequency =200MHz, Cq = 1

Fig. 5– Instantaneous testing time for SoC d695
(Duke University)

In figure 5, the instantaneous testing time is shown

according to characteristic of SoC test benchmark d695
(number of test patterns, number and length of scan
chains, etc.). The test of the SoC d695 is not complex and
its traffic intensity converges towards zero because it does
not use very long scan chains. Simulations of figure 5
show specific peaks of differing intensity. Such peaks
express the latency of the messages during the
functioning of the on-chip DFT. The clock frequency of
the architecture influences considerably the performance
of the test processes (Fig. 5.a and 5.b). Traffic intensity is

Test vectors processed (%) Testing time (ms)SoC #IP cores ∑ I/Os ∑ SFFs ∑ Test Patterns ATE Test data (Ko)
Cq = 0 Cq=1 Cq = 0 Cq=1

u226 10 376 1040 5148569 13.5 99.27 100 7.29 7.64
p22810 29 4283 24723 24890 814.3 96.2 99.16 98.06 137.97
p34392 20 2057 20948 66349 1802.5 97.41 99.03 178.22 295.54

Tab. 2– Performances analysis of testing operations for λ=10000, Clock frequency =100MHz

a measure of the congestion of the system. If it is near to
zero then there is very little queueing, and in general as
the traffic intensity increases (to near 1 or even greater
than 1) the amount of queueing increases.

Table 2 gives simulation results of three ITC’02 SOC
Test Benchmarks: u226, p22810, p34392. This table is
organized as follows. Column 1 gives the names of the
SoCs. In Column 2, the number of modules is listed.
Column 3 shows the total number of input/output
terminals in the SoC; this is the sum of input/output
counts for all modules. Column 4 shows the total number
of scan flip-flops in the SoC; this is the sum of scan chain
lengths of all modules. Column 5 lists the sum of test
pattern counts of all tests. Column 6 gives the test data
volume (in Kbytes) generated by the ATE; this is the data
volume which is needed for a 100% faults coverage, etc.
The next columns give the results in two cases: SoC
without a queue (Cq=0) and SoC with a queue where its
capacity is only one SNMP message (Cq=1). Column 7
presents the rates of test vectors processed by the SoCs
under test. The fault coverage can be deduced from the
number of test vectors processed. The testing time (in ms)
is given in the last column.

It is noteworthy that the benchmarks used have
differing test complexities. It is clear that a high pattern
count does not directly imply a large test time. The testing
time is dependent on the total test pattern time (the
number of clock cycles that it takes to load and unload
one test pattern). Some tests have fewer test patterns, but
utilize very long scan chains, whereas other test have
many patterns, but do not use scan chains at all.

6. Conclusion

A new approach to remote testing, diagnosis and
monitoring of System on Chips and their embedded IP
cores is presented. The approach is based on an
implementation of a hardware-based network
management application called a proxy agent. The proxy
agent is a part of a hybrid testing/management solution
that is based on a combination of the SNMP and a DFT
standard called IEEE 1500. Through the use of network
layered protocol wrappers, a test operator has the ability
to manage and precisely test the activities of embedded
cores (IP cores) by using existing TCP/IP networks. The
approach was analyzed at the levels of both the IP core
and the SoC.

In future research SNMPv3 capabilities will be used
where the approach will consider authentication and
privacy features to improve management critical hardware
applications. A more extensive validation of the approach
is also planned.

References
[1] F. Braun, J. W. Lockwood and M. Waldvogel, “Layered

Protocol Wrappers for Internet Packet Processing in
Reconfigurable Hardware”, Proc. of Hot Interconnects 9
(HotI-9), pp. 93-98, California, USA, Aug 2001.

[2] J. W. Lockwood, C. E. Neely, C. K. Zuver, J. Moscola, S.
Dharmapurikar and D. Lim, “An Extensible, System-On-
Programmable-Chip, Content-Aware Internet Firewall”,
Field-Programmable Logic and Applications (FPL’03), pp.
859-868, Lisbon, Portugal, October 2003.

[3] J. Moscola, J. W. Lockwood, R. P. Loui and M. Pachos,
“Implementation of a Content-Scanning Module for an
Internet Firewall”, 11th Annual IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM’03),
pp. 31-38, California, USA, April 2003.

[4] L. Miclea, Sz. Enyedi, G. Toderean, A. Benso and P.
Prinetto, “Agent Based DBIST / DBISR and its Web /
Wireless Management”, International Test Conference
2003, Charlotte, NC, USA, pp. 952-960, October 2003.

[5] E. J. Marinissen and Y. Zorian, “Challenges in Testing
Core-Based System ICs”, IEEE Communication Magazine,
Vol. 37, No. 6, pp. 104-109, June 1999.

[6] E.J Marinissen, R.Kapur, M. Lausberg, T. McLaurin, M.
Ricchetti, and Y. Zorian, “On IEEE P1500’s Standard for
Embedded Core Test”, Journal of Electronic Testing:
Theory and Applications, vol. 18, no. 4-5, pp. 365–383,
August-October 2002.

[7] O. Laouamri and C. Aktouf, “Enhancing Testability of
System on Chips Using Network Management Protocols”,
In Proc. of IEEE Design Automation and Test in Europe
(DATE’04), pp. 1370-1371, Paris, France, February 2004.

[8] O. Laouamri and C. Aktouf, “Towards a More Precise
Network Management Through Electronic Design”, In
Proc. of IEEE 3rd International Conference on Networking,
(ICN’04), pp. 45-49, Guadeloupe, France, February 2004.

[9] D. Harrington, R. Presuhn and B. Wijnen, “An Architecture
for Describing Simple Network Management Protocol
(SNMP) Management Frameworks”, RFC 3411, STD 62,
Category Standards Track, December 2002.

[10] E.J. Marinissen, V. Iyengar and K. ChAkrabarty, “A Set of
Benchmarks for Modular Testing of SOCs”, In Proc. of
IEEE International Test Conference (ITC’02), pp. 519-528,
Baltimore, MD, October 2002.

[11] OMNeT++ object-orie:nted discrete event simulation
system. URL reference: http://www.omnetpp.org, 2004.

	Main
	DATE07
	Front Matter
	Table of Contents
	Author Index

