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Abstract

Reconfigurable architectures provide the user the capa-
bility to couple performance typical of hardware design
with the flexibility of the software. In this paper, we present
the design of AES/Rijndael on a dynamically reconfigurable
architecture. We will show a performance improvement of
three order of magnitude compared to the reference code
and up to 24× speed-up figure wrt fast C implementations
over a RISC processor. A maximum throughput of 546
Mbit/sec is achieved. Compared to prior art, we show bet-
ter energy efficiency with respect to the other programmable
solutions, obtaining up to 3 Mbit/sec/mW.

1. Introduction

Security of data is becoming an important challenge for
a wide spectrum of applications, including communica-
tion systems (with high privacy requirements), secure stor-
age supports, digital video recorders, smart cards, cellular
phones. Resistance against known attacks is one of the
main properties that an encryption algorithm needs to pro-
vide. When a new attack is demonstrated as effective (also
in term of computation time), the update of the encryption
system is a real necessity to guarantee the security of data.

In November 2001, the National Institute of Standard
Technology (NIST) announced the Advanced Encryption
Standard (AES) [1], as a replacement of the Data Encryp-
tion Standard (DES). The Rijndael algorithm [2], selected
among 15 candidates, is a symmetric key algorithm based
on a substitution-permutation network, where most of the
calculations are done using Galois Field (GF) arithmetic de-
fined over the field GF(28) with the irreducible polynomial
x8+x4+x3+x+1.

Applications requiring high performance and/or low
power consumption are today implemented using dedicated
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hardware accelerators with the downside of higher devel-
opment costs and lack of flexibility (i.e. algorithm update
or parameter changes) with respect to software implementa-
tions. In this context, reconfigurable hardware such as Field
Programmable Gate Arrays (FPGAs) seems to bridge the
gap between performance and flexibility required to guar-
antee the necessary updates. For complex System-on-Chip,
where the area budget dedicated to a single computational
island is a constraints, reconfigurable architectures (RAs)
for embedded applications were proposed as hardware ac-
celerators, including embedded FPGAs, reconfigurable pro-
cessors and reconfigurable data-paths.

In this papers we show an implementation of the
AES/Rijndael algorithm on the DREAM architecture. The
DREAM architecture is composed of a reconfigurable data-
path (the 3rd generation Pipelined Configurable Gate Ar-
ray, or PiCoGA-III) controlled by a 32-bit RISC processor.
PiCoGA-III is directly interfaced to a high-bandwidth mem-
ory sub-system through programmable address generators,
featuring for example vectorized and modulo addressing.
An important key point is that the PiCoGA-III features a
native support for operations in GF(24), thus allowing easy
and effective implementations of composite fields that pro-
vide the mathematical back-ground for many applications,
including Reed-Solomon Codes.

2. Overview: the AES/Rijndael algorithm

The Rijndael algorithm [2] is a symmetric key cipher im-
plementing a substitution-permutation network. The size of
both ciphered block and key depends on the security level
required, as well as the number of iterations (rounds) re-
quired to encrypt the plain-text. As an example, the U.S.
Government requires 128-bit keys for SECRET data, while
the TOP-SECRET level requires 196 and 256-bit keys.
While Rijndael supports a large range of block and key
sizes, the NIST standardized a subset of them, using only
128-bit blocks and 128, 196 and 256-bit keys [1]. For ci-
phering a stream, AES/Rijndael can be applied in many
schemes, including ECB (Electronic Codebook) and CBC
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(Cipher Block Chaining) [3]. While the EBC mode ciphers
each block independently to the other ones, the CBC XORs
the plain-text with the previously ciphered block, prevent-
ing the coding of equal plain-blocks with equal ciphered-
blocks. On one hand, the CBC mode introduces an ad-
ditional level of security wrt EBC, but on the other hand
we have an additional feedback that limit the peak perfor-
mance, especially for hardware implementation.

The encryption process starts arranging the block in a
matrix form termed State. Let us consider as reference the
128-bit (block and key) Rijndael. In this case, the State (S)
is a 4×4 array of bytes in which the 128-bit block is ar-
ranged by rows. The State is thus encrypted by the iterative
application of 4 operations, as described in the following
pseudo-code.

S=in; Nb = 128;
S=AddRoundKey(S, key[0,Nb-1]);
for (i=1; i<Nround; i++) {
S = SubBytes(S);
S = ShiftRows(S);
S = MixColumns(S);
S = AddRoundKey(S,key[i*Nb,(i+1)*Nb]);

}
S = SubBytes(S);
S = ShiftRows(S);
S = AddRoundKey(S,key[i*Nb,(i+1)*Nb]);
out = S;

The number of iteration (Round) depend on the key size,
and ranges from 10 to 14. Four basic operations are applied
to the State:

SubBytes: is a non-linear substitution step applied to each
byte of the State array, that is substituted with its
inverse multiplicative over GF(28). Then, an affine
transformation (a′ = M × a + c) is applied, as de-
scribed by the following equivalent equation:

a′
i = ai + a(i+4) mod 8 + a(i+5) mod 8 + (1)

a(i+6) mod 8 + a(i+7) mod 8 + ci

where a′ and a are bytes of the State array, c is the vec-
tor (01100011). The non-linear substitution applied to
each byte is also known as S-Box.

ShiftRows: operates on the rows of the State, rotating them
to the left by a shift step equal to the row index.

MixColumns: operates on the four bytes of each column
of the State array, that are treated as the coefficient of a
4-th order polynomial over GF(28). The MixColumns
step performs a multiplication (modulo x4 + 1) with
the fixed polynomial 3x3 + x2 + x + 2.

AddRoundKey: represents the last operation of each
Round and performs an addition over GF(28) between
the State and the Round Key, a 4×4 array generated
from the original key by an expansion step in order to
provide different key-words to different rounds.
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Figure 1. Common AES-Round block diagram

The key expansion step, also known as Key Schedule,
is performed before the encryption, and is described with
mathematical operations, mainly based on the application
of S-Box and word rotation [1, 2].

All the operations previously described are invertible in
a very straightforward manner, resulting a decoding schema
very similar to the encoding one. In particular, the compu-
tational complexity is more or less the same, since the kind
of applied operations is the same.

3. Related work

The Advanced Encryption Standard implemented by the
Rijndael algorithm can be efficiently implemented in both
software and hardware. 8-bit processors can directly imple-
ment most of the operations required by AES since they are
natively working on 8-bit variables (e.g. ShiftRows, Ad-
dRoundKey and MixColumns), while the S-Box is more
efficiently implemented using a 256-entry 8-bit hash ta-
ble. 32-bit processors implement fast Rijndael combin-
ing the different step of a round transformation in a sin-
gle set of hash-tables. As a result, 4 tables with 256 32-bit
values (termed T-Box) substitute most of the round opera-
tions, leaving to the dynamic computation XORs and rota-
tions [2]. Comparing this optimized version with the basic
one, about one order of magnitude in performance is gained
on a RISC processor. Implementations on TI DSPs are dis-
cussed in [6]: a 112.3 Mbit/sec throughput (@ 200MHz)
is achieved on the C62x architecture for the encoder, 1.6×
faster than a Pentium-Pro working at the same frequency.
Moreover, instruction set extensions dedicated to Rijndael
are present in the literature, such as [4, 5].

Hardware implementations of AES are optimized by the
exploitation of the available parallelism. Hence, the de-
sign of hardware accelerators for AES begins from the 1-
to-1 unfolding of the Round definition, as shown in Figure
1. For the ECB mode, the Rijndael algorithm can be com-
pletely unrolled and pipelined, thus improving the available
throughput up to the technological limit. The undeniable
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drawback is the considerable augment in area occupation.
Examples of AES implementations for stand-alone FPGAs
are [7–11], providing 2-30 GBit/sec throughputs. Hybrid
solutions, coupling a processor with FPGA technology, are
implemented in the Xilinx Virtex II Pro platform [8, 12],
achieving performance up to 1.2 GBit/sec. For embedded
applications, where the area budget is a constraints, de-
vices with restricted size are proposed. Embedded FPGAs
(e.g. [14]) are the most direct “translation” of the traditional
field-programmable technology to the market of IPs suitable
for SoC integration. Alternatively, and depending on the ap-
plication field, reconfigurable data-paths (e.g. [15, 16]) are
used as hardware-programmable accelerators. As an exam-
ple, in [17] a reconfigurable datapath challenges a set of
cryptographic applications.

4. DREAM Architecture

DREAM architecture [18] is a dynamically reconfig-
urable platform coupling the PiCoGA-III reconfigurable de-
vice with a RISC processor using a loosely-coupled mem-
ory mapped co-processor schema. A high bandwidth mem-
ory sub-system provides/receives data to/from PiCoGA-III
allowing one to either maximize the throughput and in-
terface the DREAM architecture with for example exter-
nal computational blocks. Figure 2 shows the simplified
DREAM block diagram.

The processor, a 32-bit RISC core with 4+4Kbyte of
data/instruction memory, is responsible of DREAM man-
agement, although it could be also used to implement stan-
dard code, such as the control part of an application. The
high-bandwidth memory sub-system is composed of 16
4Kbyte 32-bit memory banks, each of them accessed inde-
pendently to the other ones by programmable address gen-
erators. A fully-populated interconnect cross-bar allows the
user to modify the connection with PiCoGA-III I/Os (12
32-bit inputs and 4 32-bit output). Furthermore, an addi-
tional simple 32-bit register file is provided. This memory
sub-system represent an evolution of that one implemented
in [19]. In particular, we have introduced the capability
of handling power-of-2 modulo addressing, with respect to
standard step/stride addressing modes. A 64-entry config-
uration cache is provided for the interconnect, allowing to
switch among different connection topologies without any
additional overheads, while the same is not provided for the
address generators.

PiCoGA-III is the 3rd generation of the Pipelined Con-
figurable Gate Array (PiCoGA) architecture described in
[20]. The current version is implemented in 90nm STM
technology (area ∼11mm2, frequency 200MHz). PiCoGA-
III is composed of an island-style 16x24 array of Recon-
figurable Logic Cells (RLCs) implementing the computa-
tional part of the logic, and a Row-based configurable Con-
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Figure 2. Simplified DREAM architecture

trol Unit responsible of the pipeline evolution under a data-
flow paradigm. Each RLC provides a 64-bit Look-Up Table
(LUT) capable of supporting many configuration schemes,
including 6×1 and 4×4, and a 4-bit ALU, including adder
and Galois Field multiplier over GF(24). Four contexts of
configuration can be stored in the PiCoGA-III, as in an in-
ternal configuration cache, and the configuration switch re-
quires only 1 cycle.

Operations on the PiCoGA (or PGAOPs) are described
using Griffy-C, a C subset featuring a single-assignment
manually-dismantled sequential form [21]. Extra instruc-
tions, such as the GF(24) multiplication, can be referred by
means of built-in functions (e.g. out = GFmult(a,b);). Ex-
tensions to the basic C language (by #pragma directives)
are introduced to resize at bit-level the size of each variable.
Griffy-C, and the corresponding tool-chain, was designed to
provide the user a C-based algorithm development environ-
ment, where standard C operators and built-in functions can
be mapped 1-to-1 into PiCoGA. The developer describes
the PGAOP using a fully sequential code, while tools are
responsible of the pipeline organization, through an auto-
matic scheduling phase (based on ASAP policy) capable to
optimize routing-only operations (e.g. shift with constant
amount). Optimizations of the pipeline structure (e.g. tree
balancing) can be made in Griffy-C by the insertion of re-
timing registers.

5. Implementation of basic GF(28) operations

An important property of Galois Fields is that they are
univocally defined by the number of elements. What can
be changed, depending on the irreducible polynomial, is
the representation. Therefore, the GFs are isomorphic with
respect to an irreducible polynomial change and a trans-
formation matrix can be defined in order to change the
representation. As described in Paar’ PhD Thesis [22],
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this implies that GF(28) can be seen as a composite field
GF((24)2) whose elements are represented by 1-order poly-
nomials αx + β with α, β ∈ GF(24). PiCoGA-III features
a native support of GF(24) with the irreducible polynomial
x4+x+1. This means that each RLC can be programmed to
perform both the sum (⊕) operation, implemented by LUT
as a 4-bit XOR, and the multiplication (⊗) operation, im-
plemented by the dedicated GF multiplier.

The AES/Rijndael algorithm requires to implement three
operations on GF(28): the sum, the multiplication by con-
stant amount, and the inverse multiplicative. While the
sum and the multiplication with constant amount can be
described (in Griffy-C) and implemented (on the PiCoGA)
with standard C (XORs, ANDs and shifts), the implementa-
tion of the inverse multiplicative over GF(28) benefits from
the GF capabilities of PiCoGA-III. By definition [23], the
inverse multiplicative on the composite field GF((24)2) (us-
ing the irreducible x2 + x + ω14) is:

(αx + β)−1 = α ⊗ θ−1x + (α ⊕ β)θ−1 (2)

θ = α2 ⊗ ω14 ⊕ α ⊗ β ⊕ β2

Figure 3(a) shows the straightforward implementation of
the inverse multiplicative obtained from equation (2). Basic
blocks are aligned per pipeline stage, and each basic block
can be mapped on one RLC (the inverse on GF(24) is a 4-
in 4-out function implemented by LUT). The full retiming,
needed to maximize the throughput, requires 7 additional
registers (dashed-line blocks), for a total of 17 RLCs dis-
tributed over 5 rows. Figure 3(b) shows an optimized in-
verse multiplicative generated by re-writing the equation (2)
in the following form:

(αx + β)−1 = (α−1 ⊗ δ)−1x + ((α ⊕ β)−1 ⊗ δ)−1

δ = α2 ⊗ ω14 ⊕ β ⊗ (α ⊕ β) (3)

In this second case we have an issue-delay of 2 cycles,
requiring only 4 additional registers (for a total of 15 RLCs)
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Figure 4. AES/Rijndael selected kernel and
implementation

for the full retiming. The max-width of this implementation
schema is 4 RLCs, allowing a better packing of multiple in-
stances of the inverse multiplier in the PiCoGA rows (each
of them composed by 16 RLCs). To complete an S-Box,
we need to add the isomorphism matrix and the successive
affine transformation. Two rows with respectively 4 and 2
RLCs are required for the input isomorphism, while the out-
put isomorphism and the affine transformation can be col-
lapsed together, with the same resources occupation (4+2
RLCs).

6. Implementation of AES/Rijndael

A goal of our AES/Rijndael implementation is to be flex-
ible for both block and key size. Hence, we have analyzed,
in relation with DREAM capabilities, the following proper-
ties of Rijndael algorithm. First of all, since the SubBytes
operation does not depend on the position of each byte, the
ShiftRows can be performed before the SubBytes. In ad-
dition, ShiftRows performs a rotation which can be imple-
mented using modulo addressing. Hence, using different
memory banks for storing the different rows of the State
matrix, PiCoGA is able to load a new State column for each
cycle. The rotation applied by ShiftRows is handled by
changing the starting address of each bank, while the differ-
ent number of columns (for the generic Rijndael) is handled
by setting the address generator end-of-count. The organi-
zation by column allows the packing of the MixColumns
function in the same PiCoGA operations.

Figure 4 shows the corresponding implementation
scheme. This PGAOP performs AddRoundKey, SubBytes
and MixColumns for the 4 bytes in a column concurrently,
leaving the addressing engine to handle the ShiftRows for
both block and key access. A different set of buffers is used
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Clock cycles per 1 block
block/key Scalable Optimized Key

size Version Version Expansion
128/128 408 285 192
128/192 466 329 216
128/256 524 373 240
256/128 455 - 319
256/192 521 - 367
256/256 587 - 415

Table 1. AES/Rijndael encoder performance

to store PGAOP results, since it is not possible to read-and-
write a memory bank in the same cycle. This implemen-
tation requires 4 PGAOP call in order to accomplish one
AES/Rijndael Round, after that we need to re-configure the
interconnect cross-bar in order to swap the used I/O buffers.
Although this operation could be performed in parallel to
the PGAOP computation (destination port are stored inter-
nally to the PiCoGA during the PGAOP triggering), this
reconfiguration break the best pipeline evolution. For the
EBC mode, there is not dependency among the encryption
of successive blocks, thus it is possible to interleave the en-
cryption of more than one block in order to mitigate the im-
pact of the interconnect reconfiguration. The stride factor
allows the address generator to jump to the next block when
the Round is finished. The last Round requires the imple-
mentation of a dedicated PGAOP, without MixColumns and
within an additional AddRoundKey before the SubBytes
needed by the loop transformation introduced before. Only
11 pipeline stages are required for this goal, but the area
occupation is increased to 17 rows because of an unfavor-
able requirement of additional retiming registers necessary
to maintain the issue-delay equal to 1.

For 128-bit block only, the PiCoGA-III is able to out-
put a whole 4x4 block, then it is possible to implement an
optimized PGAOP using only the simple registers. When
blocks interleaving is not applicable (e.g. in CBC mode),
we can achieve a further 1.4× speed-up reducing the con-
figuration overhead, through the utilization of simple regis-
ters instead of address generators to exchange data with the
PiCoGA. Two additional shift registers (and the correspond-
ing control logic) shall be mapped on the PGAOP because
the ShiftRows requires to be implemented internally. Data
are loaded at the first PGAOP trigger, while other 3 three
additional triggers are required to provide the correct result.

7. Experimental results and comparisons

We have implemented the AES/Rijndael algorithm on
the DREAM cycle-accurate Instruction Set Simulator (ISS),
based on CoWare technology. The RISC processor is mod-
eled using LISA language, while the memory sub-system
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and the PiCoGA are modeled using a mix of SystemC and
C/C++. Frequency and power consumption figures are es-
timated starting from measurement on the silicon prototype
in [19], featuring a comparable design complexity. Both
scalable and optimized implementations presented in the
previous section were considered in our analysis and the
cycle count obtained is reported in Table 1. Results are pro-
vided for the encryption of a single block, considering var-
ious block and key sizes. At the frequency of 200MHz, it
is possible to achieve a throughput up to 90Mbit/sec using
a scheme appliable in both EBC and CBC modes.

In EBC mode, the scalable solution can interleave the
encryption of more than one blocks, exploiting as much as
possible the computational efficiency of DREAM. Pipelin-
ing the computation on the PiCoGA-III, the obtained speed-
up figures raises from 100× to 930× wrt the ANSI-C Refer-
ence Code (v. 2.2) running on a RISC processor at the same
frequency, while it raises from 3× to 24× wrt a fast soft-
ware implementation (by C. Devine, on-line available at the
Rijndael Home Page [2]) working on the same RISC pro-
cessor. Figure 5 shows the achieved speed-ups versus the
level of interleaving applied, hence in relation to the num-
ber of block concurrently elaborated.

Figure 6 shows an analysis of the throughput with re-
spect to the interleaving factor applied. As a consequence,
ciphering 64 or 128 blocks, the benefit of pipelining the
computation inside the PiCoGA-III mitigates the overhead
due to interconnect configuration changes, allowing one to
obtain up to 546 Mbit/sec of throughput. Considering the
case of AES-128, the throughput increases from 63 to 546
Mbit/sec in a way that is proportional to the average num-
ber of active rows inside the PiCoGA. In fact, the average
number of active rows growth from 1.5 rows/cycle to 12.8
rows/cycle, respectively corresponding to 10% and 85% of
the PGAOP. With 256-bit block size, the memory utiliza-
tion growths faster, then the 128-block interleaving cannot
be applied.

Comparisons with other AES-128 implementations are
reported in Table 2, including both fast software (with an as-
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sembly handcoded Pentium-III) and hardware approaches.
Furthermore, a processor with custom-designed ISA [4] is
considered too. For the hardware approaches, we have
taken into account folded schemes implemented on both
FPGA and ASIC (0.18µm) prototype. The energy ef-
ficiency (Mbit/sec/mW) shows the density advantage of
DREAM with respect to the other “programmable” solu-
tions. For this purpose, the power consumption of DREAM
is estimated in a range from 80 mW (CBC) to 180 mW
(EBC), depending on the different PiCoGA-III utilization
and correlated memory activity.

8. Conclusions

In this paper we have presented an implementation of
AES/Rijndael (supporting different block and key sizes) on
a dynamically reconfigurable architecture, achieving up to
940× speed-up with respect to the reference code and up
to 24× speed-up wrt fast C code implemented on a RISC
processor. Powered by the hardware efficiency of a dynam-
ically reconfigurable data-path, our implementation obtain a
throughput of 546 Mbit/sec in the best case, while it shows
better energy efficiency figures (up to 3.03 Mbit/sec/mW)
with respect to other “programmable” solutions, including
FPGA-based folded implementations.
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