
Minimum-Energy LDPC Decoder for Real-Time
Mobile Application

Weihuang Wang, Gwan Choi
Department of Electrical and Computer Engineering, Texas A&M University, TX 77840

Email: {whwang, gchoi}@ece.tamu.edu

Abstract— This paper presents a low-power real-time decoder
that provides constant-time processing of each frame using
dynamic voltage and frequency scaling. The design uses known
capacity-approaching low-density parity-check(LDPC) code to
contain data over fading channels. Real-time applications re-
quire guaranteed data rates. While conventional fixed-number
of decoding-iteration schemes are not energy efficient for mobile
devices, the proposed heuristic scheme pre-analyzes each received
data frame to estimate the maximum number of necessary
iterations for frame convergence. The results are then used
to dynamically adjust decoder frequency. Energy use is then
reduced appropriately by adjusting power supply voltage to
minimum necessary for the given frequency. The resulting design
provides a judicious trade-off between power consumption and
error level.

I. INTRODUCTION

There exists a multitude of applications that require real-
time content delivery for wireless portable devices, espe-
cially in multi-media domain. These applications require effi-
cient coding scheme, and one example is low-density parity-
check(LDPC) codes. These are special cases of error cor-
recting codes originally proposed by Gallager[1] in 1960’s
and rediscovered in late 1990’s[2]. LDPC codes have recently
gained a significant attention because of their near Shannon-
limit performance and high throughput, and there have been
a number of efficient implementations of LDPC decoders [3]-
[4]. LDPC has successfully been adopted in next-generation
standards, such as IEEE802.16e, DVB-S2, etc. Nevertheless,
implementation of LDPC in these applications imposes signif-
icant challenges for the real-time requirements.

The widely used message-passing algorithms exchange in-
formation between the bit nodes and check nodes (parity
checks constraining the bits) in an iterative fashion. In practice,
the LDPC decoder is typically set to run for data convergence
until a prescribed maximum number of iterations (e.g. 20)
depending on the code rate. There have been researches on
early termination of the frame that can not be decoded even if
the maximum iterations are applied[5]-[6]. In both of papers,
early termination of the iterative process is determined by
checking the messages during the decoding. Their attempts
were to dynamically switch off the hardware when no ad-
ditional iteration will amount to improvement in decoding
performance. Such architectures yield unpredictable frame-
completion time which makes interfacing with the application
modules rather difficult.

Real-time applications, however, pose restrictions on the

decoding time schedule. In addition, power consumption is
always an important design constraint for the mobile applica-
tions. In this paper, we propose a novel scheme to dynamically
configure the decoding hardware to achieve minimum energy
consumption for block-fading channel[7], while guaranteeing
quality of service (QoS) for time-sensitive data. In the pro-
posed scheme, an increased number of decoding iterations are
taken for lower-SNR data frames; thus the iteration process
is completed in less amount of time. The aim is to keep
the total decoding time constant for all data frames. This is
achieved by utilizing the recently developed dynamic volt-
age and frequency scaling (DVFS) techniques[8]-[9]. System
power dissipation is proportional to occurrence of activity
and quadratic voltage supply[10]. The number of decoding
iterations predicted from channel data is used to determine the
amount of energy and operating frequency necessary to decode
each frame, within a fixed time period. Thereby, making
available the output of each frame synchronized to the fixed
rate at which the data is consumed in real-time application
interface.

The rest of the paper is organized as following: In section
II, the background of LDPC code together with decoding
algorithm and DVFS are briefly described. Section III gives
the analysis of channel data to adaptively adjust the decoding
stages. The low-power real-time decoding policy is gener-
ated empirically. Coding performance, as well as savings in
decoding iterations of such policy is shown. In section IV,
ASIC design of the voltage and frequency scaling controller
is presented. Section V gives conclusion and future work.

II. BACKGROUND

This section describes the background of LDPC codes as
well as the belief-propagation decoding algorithm. The power
estimation technique is also introduced.

A. LDPCCodes

LDPC codes are defined by a sparse parity check matrix
H = [Hmn] that consists mostly of 0’s. First introduced by
Gallager[1], the H matrix of (n, dc, dv) regular LDPC code
has the following properties: Each column contains a small
fixed number dv of 1’s and each row contains a small fixed
number dc > dv of 1’s. The block length of this code n is
equal to the number of columns in the H matrix. Suppose
that the number of data bits before the channel encoding is k,
then the number of rows of this H matrix is m = n− k. Rate

978-3-9810801-2-4/DATE07 © 2007 EDAA

of this code is defined as k/n = 1 − dv/dc. The code words
consist of all one-dimensional row vectors that span the null
space of the parity check H matrix. The number for dv and
dc should be no less than 3 and 6, respectively, for acceptable
coding performance. Another type of LDPC code is irregular
codes, in which the number of 1’s in each row and column
is not constant. Such codes, though generally produce high
coding performance, is more complex for implementation.
LDPC codes can also be represented by a bipartite graph with
two sets of nodes: check nodes and variable nodes. The check
nodes correspond to parity check constraints, i.e. rows of the
H matrix, while the other set of nodes correspond to the data
symbols, i.e. the columns of the parity check matrix.

The decoding of LDPC codes is based on the iterative
message-passing algorithm, also known as belief-propagation
algorithm[11]-[12]. The algorithm consists of two phases,
a check-node processing and variable-node processing. In
the check-node processing, each row of the parity matrix
is checked to verify that parity constraints are satisfied. In
the second phase, the variable-node probability is updated
by summing up the other probabilities from the rest of
the rows and the a priori probabilities from the channel
output. The message-passing algorithm can be simplified to
the belief-propagation (BP) based algorithm (also called Min-
Sum algorithm)[13]. While significantly reducing the decod-
ing complexity in implementation, the Min-Sum algorithm
degrades the coding performance. The improved BP based
algorithm, Normalized-Min-Sum and Offset-Min-Sum [13]
eliminates this performance degradation. Specifically, this pa-
per is based on the VLSI design of LDPC decoder using
Offset-Min-Sum algorithm[3].

B. Circuit power estimation and reduction

There are three major sources of power dissipation in
CMOS circuit[10]:

Ptotal = Pswitching + PSC + Pleakage (1)

= αCL∆V Vddfclk + ISCVdd + IleakageVdd

Pswitching represents the switching power resulted from charg-
ing and discharging parasitic capacitances in the circuit. CL

is the loading capacitance, fclk is the clock frequency, and
α is the node transition factor defined as the probability
that a power consuming transition occurs. In most cases, the
voltage swing ∆V is the same as the supply voltage Vdd.
The short circuit power PSC is caused by direct-path short
circuit current ISC which arises when both NMOS and PMOS
are simultaneously turned on. This is caused by the finite
rising and falling time of input signal. The short circuit power
can be kept within 15% of the switching power if carefully
designed [14]. Pleakage is the leakage component of power,
where Ileakage is the total leakage current in CMOS circuit.
Further, delay of the circuit increase with decreased voltage
supply, as shown in (2):

τ =
1

fclk
=

CLVdd

Idsat
∝ Vdd

(Vdd − Vth)1.3
(2)

Typically, switching power is the main source of power
dissipation in the circuit. It should be noted that while power
consumption decreases linearly with the operation frequency,
the time for finishing the certain workload increases. As a
result, the total energy consumption remains constant for the
same workload if the power supply is not changed. Dynamic
voltage and frequency scaling is an effective method to address
this energy consumption problem, especially under wide vari-
ations in workload. A number of DVFS designs have been
presented in the literatures[8].

III. PROPOSED LOW-POWER REAL-TIME DECODING

A. Policy

The key observation made for adaptively decoding is that
for most of the data frames, the decoding process is fin-
ished before the maximum number of decoding iterations.
The decoder then stays idle waiting for next frame, which
comes at constant time interval. Significant energy saving
can be achieved by lowering the decoder performance level
when possible as discussed in section II. Such performance
adjustment is feasible because severity of noise corruption
of channel data, which has direct influence on number of
decoding iterations needed, can be estimated in advance from
the decoding process itself.

Based on statistical analysis of the received data from
channel, we propose a heuristic low-power real-time decoding
policy of LDPC codes. In the proposed scenario, the maximum
number of decoding iteration for each frame is dynamically
adjusted. The maximum number of decoding iteration is set
to be close to optimum in terms of energy and coding perfor-
mance, without violating the real-time constraint. In this paper,
simulation is carried out based on randomly constructed (3, 6)
rate 1/2 code with block length of 2048 over a block fading
channel, assuming Gaussian noise and code length equal to
fading block length. Our approach can be extended for other
LDPC decoder designs.

Severity of noise corruption is first observed from the
number of checks in error from the channel data. For a (dc, dv)
regular LDPC code, suppose there is one bit in error, the
number of checks violated will be dc if a hard decision is
made. When multiple data bits are flipped, depending on the
position of the flipped bits with respect to the H matrix, the
numbers of checks in error are analyzed statistically. Fig. 2
shows that at given SNR, the number of received bits in
error is consistent with Gaussian distribution. The average
number of check errors decreases linearly. Fig. 3 shows that
the number of soft decoding iteration required varies with
different number of checks in error. The more checks in error,
the more decoding effort is needed. Number of checks in error
carries part of the information about the severity of the damage
in the frame.

In addition, it is prudent to track the number of decoding
iterations of the past frames. That can be used to compensate
the large variance in decoding iterations from check-error
estimation. It is generally accepted that higher SNR level
requires less number of decoding iterations. Fig. 4 shows a

250 300 350 400 450 500
0

0.005

0.01

0.015

0.02

0.025

0.03

Numbe of Check Errors

P
ro

ba
bi

lit
y

SNR: 1.5, mean 409.1, std 18.34
SNR: 2.0, mean 385.7, std 18.88
SNR: 2.5, mean 358.9, std 19.25
SNR: 3.0, mean 329.1, std 19.63

Fig. 1. Probability density function of number of check error. (std: standard
deviation)

Fig. 2. Distribution of decoding iteration for different number of check errors

statistical relationship between SNR and number of decoding
iterations. The average number of decoding iterations for
multiple frames is highly correlated with SNR, and almost all
frames are decoded after 1.5 times of the average decoding
iterations. In a slowly fading communication channel, channel
condition is unlikely to change abruptly, which means that it is
possible to estimate the SNR level for incoming channel data.
Based on the information of average decoding iterations of past
few frames and number of checks in error for incoming frame,
we can estimate an upper bound for the decoding iteration with
high confidence level.

The adaptively decoding scheme is implemented by trun-
cating the distributions of decoding efforts at a point where
a tradeoff between performance and energy is achieved. The
policy is described in the following codes:

if(Num_Check_Err>=Check_Err_Theshold1)
Num_Dec_Iteration = num1;

elseif(Num_Check_Err>=Check_Err_Theshold2)
Num_Dec_Iteration = num2;

elseif(Num_Check_Err>=Check_Err_Theshold3)
Num_Dec_Iteration = num3;

5 10 15 20
0

20

40

60

80

100

Distribution of decoding iterations

P
er

ce
nt

ag
e

(%
)

SNR 2.0
SNR 2.0, average
SNR 2.5
SNR 2.5, average
SNR 3.0
SNR 3.0, average

Fig. 3. Distribution of decoding iterations at different SNR level for each
frame as well as average decoding iterations of every 10 frames

else
Num_Dec_Iteration = num4;

end if
if(Num_Dec_Iteration<1.5*Aver_Iteration)

Num_Dec_Iteration = 1.5*Aver_Iteration;
end if

It should be noted that Num Dec Iteration is the predicted
maximum decoding iterations, and it is used in the decoding
termination decision. The threshold values and numbers of
decoding iterations are chosen during simulation.

B. Design

The above policy can be implemented with low hardware
complexity. Even though it has been reported [15] that for
modern VLSI technology, the leakage power is becoming
so significant that the best solution for managing power is
maintaining the highest performance as long as possible and
then turning the circuit into sleep mode. In the case of LDPC
decoder, however, this is not feasible because of the real-
time constraints, constantly incoming data, as well as power
overhead associated turning off and on the circuit. The clock
frequency is determined by the constant decoding time, for
instance, the clock frequency for frames requiring 20 iterations
is twice as high as those requiring only 10 iterations. Operating
at low clock frequency, the voltage supply can be lowered
correspondingly.

Diagram of the adaptively decoding controller is presented
in fig. 4(a). Number of check errors in incoming data frame
is calculated as cHT , where c is the code word based on hard
decision of the incoming log-likelihood channel data. Since
cHT is also implemented inside the decoder for decoding
termination decision and it can be reused in the controller.
Therefore this unit does not impose any additional hardware
resource or power consumption. Because level of the voltage
supply can not be changed instantly, frame buffer is required
for incoming channel data, a frequency-selection buffer that
stores decoding iteration information for corresponding data
frames. The buffer size K is determined by time response of

Fi-1Fi

T

fsi-1fsi

j

Channel
Data

ctr

Frequency
Selection
Register

System Clock

dec

ctr

dec

To decoder

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

Vdd 1.8v

fctr

hold

Vdd 1.8v

Q

QSET

CLR

D

Q

QSET

CLR

D
Critical Path

Replica

Vdd

fctr

Te
st

 D
at

a

Mp2

ctr_out

Vddl

Q

QSET

CLR

D

Vddl
fctr

fctr

fctr

Fig. 4. Block diagram of controller and buck converter

voltage supply Vddl as well as expected decoding time, i.e.
throughput. As presented later in section IV, buffer size of 2
frames (K = 2) is needed typically. The overhead is buffer
of size 1 frame since a buffer size of 1 frame is intrinsic for
the decoder. cHT of the incoming data frame Fi, is used to
predict the number of decoding cycles, hence the decoding
frequency can be determined. Decoding frequency of frames
Fi−1 to Fi−K+1 also participate in the process because of
the finite voltage response time. The clock divider divides
the fast system clock into slower clock signals according to
the frequency selection register. Clock divider is preferred
over other designs such as phase-loop locker (PLL) in [9],
because it provides reasonable frequency resolution for the
decoding policy and capability to change immediately. fdec

clocks the decoder for current frame, and fctr is sent to the
voltage scaling controller. fctr is conservatively generated as
the fastest clock such that the voltage supply will be within
safe region for operation. A variety of VLSI implementations
of the voltage-scaling controller have been reported in the
literatures. Firstly, this paper adapted the design in [8] of the
buck converter, because it is of reasonable complexity. Other
control schemes can also be used. Secondly, a design based on
Min-Sum algorithm in [3] is used for the decoder. The critical
path of the decoder is extracted and replicated for the voltage
controller. Load capacitor of the voltage controller should be
large enough to maintain a steady voltage level in presence of
sudden change in the output current. The capacitor is chosen
to be 0.65µC. The power transistor Mp2 is 400µm in width,
which is driven by five stages of buffer, with a scaling up
factor of 4[8], considering the minimum power consumption.
Fig. 4(b) shows the diagram of the circuitry.

IV. RESULT

The design of voltage-scaling controller has been simulated
using TSMC0.13µm technology. With 1.5V voltage supply,
the decoder can be clocked as fast as 175MHz, as shown
in fig. III-B. Extra 5% timing margin has been added to the

50 100 150 200 250 300 350
1

1.5

2

2.5

Operating Frequency (MHz)

S
up

pl
y

V
ol

ta
ge

 (
V

)

Based on critical path delay
Critical path delay plus extra 5%

safe region

Timing violation

Fig. 5. Voltage supply requirement for different operating frequency

critical path replica in the controller to accommodate varia-
tions. Fig. IV demonstrates voltage response of the converter.
The buck converter can scale up the output voltage level to
a maximum of 60mV/µs. Results presented in [8] align with
our simulation results. Assuming a 500MHz system clock,
it can be divided into 167MHz, 125MHz, 100MHz and
84MHz for decoder. The voltage supply varies from 1.45V
to 1.05V within this frequency range. It takes about 10µs to
scale the voltage up by 0.4V . In the case of 2048 bits code-
length, the voltage controller is able to respond to as much
as 200Mbps decoder throughput with a frame-buffer size of
2. Current through the PMOS power transistor constitutes the
majority of power overhead of the controller. It is simulated
to be in the order of 10mW , which is small comparing to the
total power dissipation of the decoder, around 200mW .

Fig. 6. Simulated voltage response Vddl

Coding gain and energy saving is a multi-dimensional
function of threshold values and SNR. The effect of threshold
values is first explored. In the simulation, SNR of the channel
varies in a wide range, from 2.2 to 3.0, and the maximum
number of decoding iterations is fixed at 20. The resulting
bit-error rate (BER) is 1.5× 10−5, and frame error rate(FER)

320
340

360
380

400
420

320
340

360
380

400
20

25

30

35

40

Check_Err_Theshold2Check_Err_Theshold3

P
e

rc
e

n
ta

g
e

 o
f

d
e

co
d

in
g

 e
n

e
rg

y
re

d
u

ce
d

 (
%

)

320
340

360
380

400
420

320
340

360
380

400
1

1.5

2

2.5

x 10
−5

Check_Err_Theshold2Check_Err_Theshold3

(a)

(b)

Fig. 7. (a) Saving in energy based on different thresholds of check errors.
(b) Coding performance based on different thresholds of check errors.

is 6.4 × 10−4. The numbers of maximum decoding iterations
are set to be 24, 18, 14 and 12, based on analysis shown in
fig. 2 and fig. 3. The numbers are chosen based on complexity
of design and consideration of performance requirement.

As the frequency selections are 167MHz, 125MHz,
100MHz and 84MHz, the above numbers of decoding
iterations yield constant-time decoding. Other sets of choices
are also possible for different power-performance trade-offs. In
the power estimation, the relative weights of dynamic power,
which is proportional to the square of power supply, and
leakage power which is proportional to power supply, are
considered to be 70% and 30%, respectively.

Fig. IV shows the resulted coding performance as well as
power reduction corresponding to different choices of check-
error thresholds. The value checkErr threshold1 is always
set to be 420 empirically in this paper. BER is when the thresh-
old values checkErr threshold2 and checkErr threshold3
described in section III are 380 and 350 respectively. There
is 35% energy saving. Further decreasing the threshold values
will not improve coding performance much, while the saving
in number of decoding iterations decreases rapidly.

While the number of maximum decoding iterations is set
to be 20 for all data frames in the conventional decoding
scenario, the proposed decoding scheme discriminately varies
the number of iterations for each frame. The relationship
between coding performance and power saving is presented

24 26 28 30 32 34 36 38

10
−4

10
−3

Percentage of decoding energy reduced (%)

Bit Error
Frame Error

Frame−error rate for fixed 20 decoding
iterations

Bit−error rate for fixed 20
decoding iterations

Fig. 8. Coding performance at different level of energy saving for different
threshold value selection.

2.2 2.4 2.6 2.8 3
28

30

32

34

36

38

SNR (dB)

P
er

ce
nt

ag
e

of
 d

ec
od

in
g

en
er

gy
 r

ed
uc

ed
 (

%
)

Fig. 9. Energy saving for different SNR levels.

in fig. 8. It is clearly seen that up to 30% power is saved
without bit-error degradation and minimum frame-error rate
loss. Additional saving in energy is achieved for high SNR,
as shown in fig. 9. The increased saving is due to the fact that
the small probability of a bit being corrupted by channel noise
when SNR is high. Therefore, minimum number of decoding
iteration will correct all errors and power supply Vddl mostly
stays at low level, which results in very low power dissipation.

In summary, the presented adaptively decoding scheme
will achieve significant saving in decoding energy. Based on
different choices of control parameters and channel conditions,
different optimization objectives in terms of coding perfor-
mance and power are achievable.

V. CONCLUSION

A LDPC decoder scheme suitable for portable device
in real-time mobile communication is presented. Incoming
channel data is processed before decoding to determine the
decoding process. While larger number of decoding iterations
is used for critical data frames to maintain high coding

performance, smaller number of iterations, lower frequency,
and hence lower power supply are used for data frames less
severely damaged by noise in order to save power. Power
overhead of the adaptively decoding control unit mainly stems
from the power transistor, and it is found to be small compared
with power saved. Up to 30% power saving in decoding
process is achieved without performance degradation.

REFERENCES

[1] R. Gallager, “Low-density parity-check codes,” Inform. Theory, IRE
Trans., vol. 8, pp. 21-28, Jan. 1962.

[2] D. MacKay, R. Neal, “Near Shannon Limit Performance of Low Density
Parity Check codes,” Elec. Letters, vol. 32, pp. 1645-6, Aug 1996.

[3] K. Gunnam, W. Wang, E. Kim, G. Choi and M. Yeary, “Decoding of
Array LDPC Codes using On-The-Fly Computation,” Accepted for 40th
Asilomar Conference on Signals, Systems and Computers, October 2006.
Pre-print available: http://dropzone.tamu.edu/techpubs/2006/TAMU-ECE-
2006-05.pdf

[4] M. Mansour N. Shanbhag, “High-throughput LDPC decoders” Very Large
Scale Integrated (VLSI) System, IEEE Trans. on, vol. 11, no. 6, pp. 976-
996, Dec. 2003.

[5] F. Kienle, N. When, “Low Complexity Stopping Criterion for LDPC Code
Decoders,” VTC, 2005-Spring. vol. 1, pp. 696-609, 2005.

[6] G. Glikiotis, V. Paliouras, “A Low-Power Termination Criterion for
Iterative LDPC Code Decoder,” IEEE Workshop on Signal Processing
Systems Design and Implementation, pp. 122-127, Nov. 2005.

[7] L. Ozarow, S. Shamai, and A. Wyner, “Information Theoretic Consider-
ations for Cellular Mobile Radio,” Vehicle Technology, IEEE Trans. on,
vol. 43, no. 2, pp. 359-378, May 1994.

[8] T. Kuroda, et al. “Variable Supply-Voltage Scheme for Low-Power High-
Speed CMOS Digital Design,” Solid-State Circuit, IEEE Journal of, Vol.
33, No. 3, pp. 454-462, March 1998.

[9] P. Macken, M. Degrauwe, M. van Paemel, and H. Oguey, “A voltage
reduction technique for digital systems,” ISSCC Dig. Tech. Papers, pp.
238-239, Feb. 1990.

[10] A. Chandrakasan, et al., “Low-power CMOS Digital Design,” Solid-state
Circuits, IEEE Journal of, Vo1.27, Issue.4, pp. 473-484, 1992.

[11] T. Richarson, M. Shokrollahi, and R. Urbanke, “Design of Capacity-
approaching Irregular Low-Density Parity-Check Codes,” Information
Theory, IEEE Trans. on, vol. 47, pp. 619-637, Feb. 2001.

[12] F. Kschischang, B. Frey, and H. Loeliger, “Factor Graphs and the Sum-
Product Algorithm,” Inform. Theory, IEEE Trans. on, vol. 47, pp. 498-
519, Feb. 2001.

[13] J. Chen, M. Fossorier, “Near Optimum Universal Belief Propagation
Based Decoding of Low-Density Parity Check Codes,” Communications,
IEEE Trans. on, vol. COM-50, pp. 406-414, March 2002.

[14] M. Pedram, J. Rabaey, “Power Aware Design Methodologies”, Kluwer
Academic Publishers, 2002.

[15] R. Jejurikar, C. Pereira, R. Gupta, “Leakage Aware Dynamic Voltage
Scaling for Real-Time Embedded Systems”, Design Automation Conf.
2004, page 75-280, Jun. 2004.

	Main
	DATE07
	Front Matter
	Table of Contents
	Author Index

