
Non-fractional parallelism in LDPC Decoder implementations

John Dielissen, Andries Hekstra

NXP Semiconductors, High Tech Campus 31, 5656 AE Eindhoven, The Netherlands

E-mail: john.dielissen@nxp.com

Abstract

Because of its excellent bit-error-rate performance, the

Low-Density Parity-Check (LDPC) decoding algorithm is

gaining increased attention in communication standards

and literature. Also the new Chinese Digital Video Broad-

cast standard (CDVB-T) uses LDPC codes. This standard

uses a large prime number as the parallelism factor, lead-

ing to high area cost. In this paper we present a new method

to allow fractional dividers to be used. The method depends

on the property that consecutive sub-circulants have one

memory row in common. Several techniques are shown for

assuring this property, or solving memory conflicts, mak-

ing the method more generally applicable. In fact, the pro-

posed technique is a first step towards a general purpose

LDPC processor. For the CDVB-T decoder implementation

the method leads to a factor 3 improvement in area.

1. Introduction

Since the rediscovery of Low-Density Parity-Check

(LDPC) codes [8] in 1996, many publications of their im-

plementations have appeared. LDPC codes are included

in the DVB-S2 standard, which is a digital satellite video

broadcast standard. For this standard, implementations

have been suggested in [4, 5, 9]. Also for the Chinese Dig-

ital Video Broadcast standard (CDVB-T) LDPC codes are

proposed. Because of the excellent bit-error-rate (BER) per-

formance of the decoding algorithm, LDPC-codes are ex-

pected to be part of many future standards as well.

In the DVB-S2 standard, the interconnection be-

tween computation kernels is grouped in circulant blocks

of 360 codewords. Fully exploiting this circulant paral-

lelism results in an implementation with 360 computation

kernels. Such an implementation can achieve a through-

put rate of more than 800 Mbps while only 90 Mbps is

required. In [4] an architecture is proposed in which the par-

allelism factor is reduced, resulting in an area reduction

of more than a factor 2. However the choice of paral-

lelism factors is limited to dividers of the circulant size.

This limitation reduces the freedom of choosing a paral-

lelism factor, leading to higher implementation cost. More-

over, the technique cannot be applied for standards in

which the circulant size is chosen to be prime num-

ber. In this paper we propose a new method in which the

parallelism factor does not have to be a divider of the cir-

culant size. As an example we show the new method for

the CDVB-T standard, in wich the circulant size is cho-

sen to be a mersenne prime viz 127.

In this paper, we first discuss the state-of-the-art

in LDPC decoding implementations. In Section 3, we

briefly explain the LDPC algorithm. We explain the mix-

ture of known technologies that are used in our new

LDPC-decoder. The new LDPC architecture is based

upon an state-of-the art architecture [4] which is ex-

plained briefly in Section 4. Although the technology ex-

plained in this paper can be applied to a wider range of ap-

plications, the results and the benchmarks are presented for

the CDVB-T standard, which is explained in Section 5. Sec-

tion 6 shows that the state-of-the art architecture leads to

an area of 3 mm2, and that this can be improved by a fac-

tor 3 if CDVB-T had dividers. All area numbers are based

upon 90 nm technology and for logic only the synthe-

sis results are reported. In section 7, the method to allow

fractional dividers to be used is explained. In this sec-

tion we also present the resulting improvements in area for

the different achievable parallelism factors. We end this pa-

per with conclusions and recommendations for future

work.

2. State-of-the-art

One of the most common measures to compare LDPC

decoders, is the level of parallelism. This ranges from fully

parallel [1, 6], to (sub)circulant-level parallel [4, 5, 9],

grouped sequentially [3], and fully sequential. In a fully par-

allel implementation, all symbol and check-node calcula-

tions (see Section 3), are directly realised in hardware. All

978-3-9810801-2-4/DATE07 © 2007 EDAA

units are interconnected via many wires, leading to conges-

tion in the layout. A fully parallel implementation of the

CDVB-T decoder is impractical. For CDVB-T, even at 10

MHz, this solution yields a throughput of 1Gbps, perform-

ing 1012 operations/second. In a group-level parallel im-

plementation, the code needs the property that interconnect

between the symbol- and check-node calculations is struc-

tured. Two published implementations [5, 9] of a LDPC-

DVB-S2 decoder are examples of this group-level paral-

lelism. A decoder using sub-group-level parallelism is de-

scibed in [4]. This architecture divides the group of parity

equations into smaller sub-groups, processed sequentially,

allowing lower parallelism factors. The decoder architec-

ture described in this paper falls into this category.

In a grouped sequential solution [3], the algorithm

loops sequentially through all symbol-nodes, execut-

ing the connected check-node calculations simultaneously.

The grouped sequential solution requires as many mem-

ory accesses as there are check-nodes connected to the

symbol-node. Since in CDVB-T the number of con-

nected check-nodes varies from 3 to 16, this is not an

efficient solution. Moreover, it would lead to a through-

put of 10 Mbps (at 300 MHz) which is too low for

the CDVB-T application. Fully serial solutions, travers-

ing symbol-nodes and check-nodes consecutively, would

result in an even lower throughput, hence this solu-

tion is also out of scope for CDVB-T.

3. LDPC decoding algorithm

In this paper we use the min-sum LDPC decoding algo-

rithm, which is described in [2, 7]. This algorithm achieves

a performance level very close to, or sometimes even out

performing that of belief propagation (BP) decoding, while

offering significant hardware advantages. Note however that

the architectural solution can also be applied with other de-

coding algorithms.

Let N be the codeword length and M be the number

of parity check equations. The parity check matrix H con-

sists of M rows and N columns with elements ”0” or ”1”.

The rows in the matrix are the parity check equations, and

the set of elements which have a ’1’ in a row are the argu-

ments of the equation. For a parity check equation with in-

dex m, 0 ≤ m < M , define the set N(m) of codeword

symbol positions that it checks,

N(m) = {n|n = 0, 1, . . . , N − 1;Hmn 6= 0}.

The number of elements in N(m) is refered to as Km.

Similarly, for a codeword symbol position n, 0 ≤ n < N ,

define the set M(n) of indices of parity check equations that

check the symbol position n,

M(n) = {m|m = 0, 1, . . . ,M − 1;Hmn 6= 0}.

The number of elements in M(n) is refered to as Jn.

The parity check matrix can be associated with a bipar-

tite graph (V,E) called the Tanner graph, shown in Fig-

ure 1. The set of vertices (V) is the union of the set of N

symbol-nodes and the set of M parity check-nodes. The

set of edges (E) consisting of all edges (m,n) for which

Hmn = 1. Classical iterations of the LDPC algorithm con-

sist of information send from symbol-nodes (N) via the

edges (E) to the check-nodes (M), and back.

1

1

2

3

4

5

6

7

2

3

4

SYMBOL NODES

with degrees J=3

CHECK NODES
with degrees K=5

s
o
f
t

i
n
p
u
t
s

State

vector

Figure 1. Tanner graph of LDPC code

For a given iteration of the min-sum algorithm, we define

the following variables:

• Ln - The x bit, signed input message into symbol-node

n.

Ln =
2yn

σ2
(1)

yn being the received BPSK symbol value, and σ2 be-

ing the noise variance.

• λi
nm - The message sent from symbol-node n to

check-node m in the ith iteration.

λi
nm = Ln +

∑

m′∈M(n)\m

Λi−1
m′n (2)

• Λi
mn - The message sent from to check-node m to

symbol-node n in the ith iteration.

Λ0
mn = 0,

Λi
mn =

XOR
n′∈N(m)\n

{

sign(λi
n′m)

}

∗
MIN

n′∈N(m)\n

{

|λi
n′m|

}

(3)

XOR is defined as sign equivalent of the boolean

xor function, e.i. XOR(−,−) = +

• λn - The decoder output messages. Unlike the λnm’s,

the decoder output message λn uses all information

available in a symbol-node n, and is only necessary

in the last iteration I .

λn = Ln +
∑

m∈M(n)

ΛI
mn (4)

Additionally, we change this algorithm to include Gauss-

Seidel iterations, a technique also known as ”staggered de-

coding” [10], ”turbo decoding LDPC”, ”shuffled decoding”,

and ”layered decoding”. For this we use the check-node

centric processing of LDPC. A variable λi
n is used, which

consists of the sum of Ln and the most up to date messages

between check-nodes and symbol nodes:

λi
n(m) = Ln +

∑

m
′∈

U(n,m)

Λi
m′n +

∑

m
′∈

R(n,m)

Λi−1
m′n (5)

In this equation, the set U(n,m) ⊂ M(n), relates to the

messages which have already been updated in the current it-

eration i before processing check-node m, and R(n,m) =
M(n)\U(n,m) e.g. the remaining set. For Jacobi iteration

U(n,m) = ∅, and for Gauss-Seidel U(n,m) is defined as:

∅ = U(n,m1) ⊂ U(n,m2) ⊂ . . . ⊂ U(n,mJn
) (6)

For calculating λi
nm we use λi

nm = λi
n(m) − Λi−1

mn , and

after calculating Λi
mn in the current check node m, λi

n is up-

dated as:

λi
n(mx+1) = λnmx

+ Λi
mxn (7)

4. State-of-the-art (sub)group LDPC decod-

ing architecture

The kernel of the architecture in [4] is formed by

the data path, shown in Figure 2. As explained in Sec-

tion 3, the Km λi−1
nm ’s are formed by subtracting the Λmn

from the sequentially arriving λi
n(m)’s. The λnm’s are

used to calculate Equation (3) by means of running mini-

mum, one-but minimum, index, and xor calculations. As

a result all Λi
mn’s are compressed into a vector Λi

m con-

taining the mentioned elements. Simultaneously λnm’s are

stored in a FIFO for later use. During the next Km cy-

cles this is repeated for the next parity check equation,

while for the current parity check equation, the individ-

ual Λi
mn’s are calculated by decompressing the vector Λi

m.

These Λi
mn are added to the λnm from the FIFO, which re-

sults in the new λi
n(m) (Eq. 7). The data path thus

produces the Km λn’s of one parity equation, while re-

ceiving the Km λn’s for the next equation. This data-path

can handle one connection between a check-node and a

symbol-node per clock cycle. To avoid a read of λn1
be-

fore a write of λn2
for n1 = n2 the order of the parity equa-

tions must be statically scheduled. When not achieving this

no-operations must be inserted, leading to lower through-

puts.

vector

decompress

vector

decompress

running vector

calculation

λn(mx) Λmn

λnm

Λmn

Λm Λm

λn(mx+1)

Figure 2. data path of architecture

Most LDPC codes are composed of circulant struc-

tures such that parity equations can be calculated simulta-

neously. When complying to the parallelism factor of the

LDPC-code, the decoder can compute multiple parity check

equations without memory conflicts1. The top-level ar-

chitecture, which includes D data paths is shown in Fig-

ure 3.

barrel

shifter

(bs)
data

path

(dp)

0

data

path

(dp)

1
data

path

(dp)

D-1

IO

controller

address

generator

λ-memory

Λ-memories

barrel

shifter

Figure 3. top-level architecture

The (memory) efficiency of the proposed architecture is

achieved by using the property that the set of data to/from

the data paths always exists in one word in the memory.

When applying the technique described in [4], the circu-

lants are split into multiple smaller sub-circulants, for which

the diagonal property prevails.

5. LDPC code for CDVB-T

The specification of a LDPC code can in general be done

by presenting its H-matrix. The rows in the matrix are the

parity check equations, and the set of elements which have

1 multiple diagonals per circulant are excluded

a ’1’ in a row are the arguments in that equation. If e.g.

there is a ’1’ in the second column of a row, and a ’1’ in

the column 365, the symbols ’2’, and ’365’ participate in

one equation. The CDVB-T code is specified for 3 differ-

ent rates (0.4, 0.6 and 0.8) by means of 3 different matri-

ces. The structure of the CDVB-T H-matrices, can be ob-

served from Figure 4. Note that the code consists of cir-

culants of size z = 127. The height of the H-matrix, and

thus the number of parity equation groups equals 35, 23,

and 11 respectively. The codeword length is in all 3 cases

59 ∗ 127 = 7493 bits. The diagonals should be seen as the

line of ’1’s in the matrix, and contrary to DVB-S2, no mul-

tiple diagonals per circulant occur. The position where the

diagonal starts is refered to as the angle of the circulant.

H=

{11, 23, 35}

 *

 127

codeword length = 127 * 59 = 7493

Parity = {11, 23, 35} * 127

127

Figure 4. H-matrix of CDVB-T LDPC code

The distribution of the check-node degree differs for

each rate, and for equations within a rate two values for

the check-node degree are used. Note that check-node de-

gree is also the number of circulants participating in a equa-

tion group. The distribution of the symbol-node degree dif-

fers for each rate, and for symbols within a rate values be-

tween 3 and 16 are used.

The architecture presented in this paper can handle all

codes where the parity matrix has the single diagonal quasi

cyclic structure shown in Figure 4.

6. Opportunities of fractional divider solution

The state of the art LDPC decoding architecture has been

discussed in section 4 and in [4]. This architecture only al-

lows for parallelism factors which are a divider of the circu-

lant size z. For CDVB-T this leads to only one solution,

namely with D = z = 127 data paths. The λ-memory

height of this instantiation is only 59 words, which is low

for efficient SRAM memory design. Such a memory will

not exceed an efficiency rate of 23%, leading to 0.3 mm2 in

a 90 nm technology. The total area cost for D = 127 equals

3 mm2 (including overhead).

The instantiated decoder with D = 127 data paths has a

throughput which is too high. The ratio between the max-

imum throughput and the required throughput can be cal-

culated by F∗C
T∗I∗g∗Km

. In this equation F is the clock fre-

quency (300MHz), T is the throughput (45 Mbps), I is the

number of iterations (25), C is the codeword length (7493

bits), and g is the number of equation groups. For CDVB-

T the most critical rate is 0.6 with g = 23 groups and

Km ≤ 13, resulting in overdimensioning ratio of 6.6. In

order to reduce control overhead, equations are calculated

group-wise. Figure 5 shows how this factor 6.6 relates to

the calculation time per group. A decoder with D = 127
data paths could consume the data in Km clock cycles, pro-

duce data in Km clock cycles, and being idle for 5.6
6.6 of its

time.

Km

computation time is 6.6* more than required

start

of new

group

1input

output

Km

Figure 5. Timing diagram for processing one
group of equations

In order to calculate the possible area gain, we assume

no problems with the fractional divider, and choose to pro-

cess a equation group in r = 6 sub-groups, resulting in

D = ⌈ 127
6 ⌉ = 22 data paths. Note that the 127 symbol-

nodes of a circulant are then divided over r memory rows,

each containing D symbol-nodes. The area cost of such a

decoder equals 0.9 mm2 in 90 nm technology. This shows

that potentially a factor 3 can be gained by using sub-group

parallelism.

7. Method to allow fractional divider solution

When choosing D such that D ∗ r > z, there are always

rows containing less symbol-node variables. As a tutorial-

example take a circulant size of z = 7, and a parallelism

factor of D = 3. This leads to r = 3 sub-circulants. No

matter how it is organized, it is not possible to find a mem-

ory mapping such that, independent of the 7 rotation an-

gles, the required [3;2;2] variables are each in one row of

the memory. At best, these exist in two rows. When using

the given circulant and grouping the equations linearly e.i.

first the (row)equations (0 . . . D − 1), then (D . . . 2D − 1)

etc. a solution is found. For this solution, the memory is or-

ganised as rows containing D or D − 1 symbols, organised

linearly, as is shown in Figure 6. In fact this memory organ-

isation occurs automatically after writing the results of an

equation set. Note that the property only holds if each equa-

tion set contains either D or D − 1 equations.

The method we propose here uses the property that con-

secutive (modulo ⌈ z
D
⌉) rows are read during processing.

More restrictive, we require that when one sub-circulant

uses rows x − 1 and x, the next sub-circulant uses data

from rows x and x + 1. The usage of row x in both sub-

circulants leads to advantages in memory access. When ac-

A

C

F

B

D

G

E

A

D

F

B

E

G

C
r

D

B

E

G

C

F

A

D A

D

G

B

E

C

F D-2

Figure 6. Possible and impossible memory al-
locations for z = 7, D = 3, and r = 3

cessing rows x − 1 and x for one sub-circulant, row x is

placed into a FIFO. When processing the next sub-circulant

after Km cycles, row x is to be retrieved from the FIFO, and

only row x + 1 must be retrieved from the λ memory. The

double access during the first sub-circulant is solved by fill-

ing the FIFO during an initial phase. The proposed architec-

ture, shown in Figure 7, has a throughput efficiency of r
r+1 .

In this architecture only data routing is different.

sub

set

λ-memory

IO

controller

address

generator

New part

data

path

(dp)

0

data

path

(dp)

1
data

path

(dp)

D-1

Λ-memories

Figure 7. top-level architecture with buffering

Note that the word is written back in a different order

compared to the read order. To illustrate this, take the left

most memory organisation in Figure 6. When processing

this circulant starting with symbols CDE, followed by FG

and AB, the result after writting back is represented by the

second memory organisation in Figure 6. When initiating

the circulant memory allocation similarly as the last ac-

cess in one iteration leaves it, the subset selections are the

same for all iterations. The starting address might be dif-

ferent for iterations and needs to be stored. Note that the

second ”barrelshifter/sub-set selection” can be removed in

those cases, where it gives an advantage in area.

As stated before we require that when one sub-circulant

uses rows x−1 and x, the second sub-circulant uses rows x

and x+1. The left part of Figure 8 shows a tutorial-example

which results in a violation of the requirement. When using

HIJK (from row 1 and 2) in one sub-circulant, and LMNA

(from row 3 and 0) in the following, 4 instead of 3 rows are

required.

A

E

I

L

B

F

J

M

C

G

K

N

conflict for

angle at 8

D

H

M

B

F

J

N

C

G

K

A

D

H

L

conflict for

angle at 9

E

I

Figure 8. Memory allocations leading to 4-
row-conflicts

In order to find the number of 4-row-conflicts and the

circulant rotation angle under which it occurs, all situations

are simulated. Under the constraint that all equations us-

ing D columns are executed first, followed by the equations

with D−1 columns the number of conflicting angles equals

(m−1)(r−m−1), where m = z mod r. This number is in-

dependent of how the memory is (linearly) ordered. Where

the left example in Figure 8 gives a conflict for the angle

at 8, organizing the memory as shown in the right exam-

ple in the figure gives a conflict for angle at 9. If multiple

conflicts occur, the number of conflicts and the relation be-

tween the conflicting angles remains the same. Simulations

further showed that multiple conflicting angles per alloca-

tion can occur if z is very small.

When opting for no conflicts, e.g. by means of m = r−1
which is equal to r ∗ D = z + 1 this limits the choice of D

significantly. For the CDVB-T case, the options for D are 32

and 64. The area of the D = 32 solution equals 1.12 mm2.

The decomposition of the area is shown in Table 1 and in-

cludes an additional 0.05 mm2 for the FIFO. Note that the

choice of 32 data paths results in having 5 ∗ Km cycles per

equation group, whereas we calculated a budget of 6.6∗Km

cycles per group before. This gives space to finish the pro-

cessing of one group before continuing with the next, as is

shown in Figure 9.

init

start

of new

group

1 2 3 4

input

input

output 1 2 3 4

init

Figure 9. Timing diagram with initialisation

for D = 32

The 4-row-conflict can be solved by slightly modifying

the control of the architecture in the case of conflict: when

retrieving row x from the memory, the next clockcycle row

x + 1 is retrieved and this one is pushed into the FIFO in-

stead of x. This solution leads to a no-operation in the data

paths, leading to lower throughputs. The occurence of the 4-

row-conflict depents on the memory organisation at the mo-

ment of reading and the rotation angle of the circulant. Both

can be influenced by rotating equations groups and schedul-

ing the order of equations and equation groups.

Since the 4-row-conflict can be fully circumvented in

CDVB-T by means of compile time scheduling, also the

D = 26 case can be used. This choice leads to an area of

1.03 mm2, including the 0.04 mm2 for the FIFO. e.g. a gain

of 0.1 mm2 compared to D = 32, and 0.1 mm2 away from

the target presented earlier.

init

start

of new

group
1 2 3 4

initinput

input

output 1 2 3 4

5

5

Figure 10. Timing diagram for D = 26

The timing of the D = 26 solution is shown in Fig-

ure 10. This figure also shows that the initialisation of the

next group starts while the first group is still busy. When

the two groups use the same variables, this leads to con-

flicts. Analysis of the CDVB-T case showed that the over-

lap between groups after scheduling for minimum overlap

remains 15 of the 27 participants(for rate 0.8). Since each

group is divided into 5 sub-groups, the probability that the

initial phase reads the word that must still be written by the

output of the last sub-group equals 1
5 . For the D = 26 case

in Figure 10 this implies that the output part ”5” and the sec-

ond ”init” part have -on average- 3 rows in common. Care-

full scheduling and adjusting the group angles might reduce

this. Scheduling the common rows early in the output part

”5” and late in the ”init” part, combined with the additional

space of 0.6 ∗ 27 = 16 cycles2 of empty space gives more

than enough room for avoiding the conflicts at all.

λ Λ dp bs/ Total incl

subset overhead

D mm2 mm2 mm2 mm2 mm2

127 .30 .30 1.0 1.2 3.00

32 .36 .20 .26 .05 1.12

26 .34 .20 .21 .04 1.03

22 .30 .20 .17 .03 0.90

Table 1. Estimated area cost of LDPC decoder
for various parallelism factors.

Table 1 summarizes the area cost in 90 nm technology of

all options discussed in this paper. The separated elements

can be found in the architectures in Figure 3 and 7. Note that

the D = 22 is only a target area, not presenting a valid de-

sign point. The resulted areas show that proposed fractional

divider solution leads (for CDVB-T) to an area improve-

ment of a factor 3.

2 Note that 2 additional cycles are necessary due to pipelining, and ad-
ditional cycles could be necessary for angle conflict solving

8. Conclusions

In this paper we showed a method to divide the big

groups of equations of the CDVB-T standards into smaller

sub-groups. The method depends on the relation that con-

secutive sub-circulants have one memory-row in common.

By means of an initialisation phase the first row is retrieved

resulting in a situation where sub-circulants only need to re-

trieve one additional row from the memory. Unfortunately

there are violations of this property and we showed several

ways to solve them, making the method more generally ap-

plicable.

This method improves the area by a factor 3 compared

to a straighforward method. It is the aim of future research

to incorporate this method in a multistandard LDPC de-

coder that will be able to process all standards. The pro-

posed methode can be applied to find lower parallelism fac-

tors both for standards with prime numbered parallelism

and for standards with non-prime parallelism factors.

References

[1] A.J. Blanksby and C.J. Howland. A 690-mW 1-Gb/s 1024-

b, rate-1/2 low-density parity-check code decoder. In IEEE

Journal of Solid-State Circuits, volume 37, pages 404–412,

3 2002.

[2] J. Chen, A. Dholakia, E. Eleftheriou, M. Fossorier, and X Hu.

Reduced-complexity decoding of LDPC codes. In IEEE

Transactions on Communications, volume 53, pages 1288–

1299, 2005.

[3] M. Cocco, J. Dielissen, M. Heijligers, A. Hekstra, and

J. Huisken. A scalable architecture for LDPC decoding. In

IEEE Proceedings of DATE, pages 88–95, 2004.

[4] J. Dielissen et.al. Low cost LDPC decoder for DVB-S2. In

IEEE Proceedings of DATE, 2006.

[5] P. Urard et.al. A 135Mb/s DVB-S2 compliant codec based

on 64800b LDPC and BCH codes. In IEEE Proceedings of

ISSCC, 2005.

[6] L. Fanucci, C. Pasquale, and C. Giulio. VLSI design of

a full-parallel high-throughput decoder for turbo gallager

codes. In IEICE Transactions on Fundamentals of Electron-

ics, Communications and Computer Sciences, volume E89,

pages 1976–1986, 2006.

[7] M. Fossorier and Jinghu Chen. Near optimum universal be-

lief propagation based decoding of low-density parity check

codes. In IEEE Transactions on Communications, vol-

ume 50, pages 406–414, 2002.

[8] R.G. Gallager. Low density parity check codes. In IRE

Transations on Information Theory, volume 8, pages 21–28,

1962.

[9] F. Kienle, T. Brack, and N. Wehn. A synthesizable IP core

for DVB-S2 LDPC code decoding. In IEEE Proceedings of

DATE, 2005.

[10] E. Yeo, P. Pakzad, B. Nikolic, and V. Anantharam. High

throughput low-density parity-check decoder architectures.

In IEEE proceedings of GLOBECOM, volume 5, pages

3019–3024, 2001.

	Main
	DATE07
	Front Matter
	Table of Contents
	Author Index

