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Abstract 
 

To improve the performance of embedded processors, 

an effective technique is collapsing critical computation 

subgraphs as application-specific instruction set 

extensions and executing them on custom functional units. 

The problems of this approach are immense cost and long 

time of designing. To address these issues, we propose an 

adaptive extensible processor in which custom instructions 

(CIs) are generated and added after chip-fabrication. To 

support this feature, custom functional units are replaced 

by a reconfigurable matrix of functional units with the 

capability of conditional execution. Unlike previous 

proposed CIs, ours can include multiple exits. 

Experimental results show that multi-exit CIs enhance the 

performance by 46% in average compared to CIs limited 

to one basic block. A maximum speedup of 2.89 compared 

to a 4-issue in-order RISC processor, and a speedup of 

1.66 in average, was achieved on MiBench benchmark 

suite. 

 

 

1 Introduction 
 

An effective way to enhance the performance of a 

processor for embedded SoCs, is adding CIs to the 

instruction set of the base processor. A CI encapsulates the 

computation of a frequently executed subgraph of the 

program’s dataflow graph (DFG). While CIs can be 

effective, the time and cost of designing and verifying a 

base processor with added CIs causes many issues 

associated with designing a new processor from scratch, 

such as significant non-recurring engineering costs.  

To mitigate the immense design cost and time of each 

new extensible processor, we propose an ADaptive 

EXtensible processOR (ADEXOR) in which, CIs are 

generated and added after chip-fabrication automatically.  

Almost all methods for identifying and generating 

optimal set of CIs such as [1, 4, 7, 17, 20, 21] focus on CIs 

with a single entry and a single exit however, ours are 

single entry but multiple exits. Consequently, we can cover 

hot directions of several branches into the CI without 

being limited to selecting just one or all of the directions. 

This brings more instruction level parallelism (ILP) and 

can hide branch misprediction penalty. Moreover, we use a 

reconfigurable functional unit (referred in this paper as 

CRFU) instead of custom functional units, which enables 

us to implement more CIs, but results in more constraints 

that should be considered while generating them. In our 

approach, unlike other reconfigurable processors (e.g. [3, 8, 

10, 11, 14, 18]) there is no need to new opcodes, new 

programming model or new compiler which obviate 

rewriting or recompiling the source codes.  

Both [6] and [21] show that, by extending CIs over 

multiple basic blocks higher speedup can be obtained, but 

our approach is different. Our multi-exit CIs (MECIs) can 

be extended in multiple hot directions and unlike [6] can 

include the branch instruction itself. We have also added 

capability of conditional execution to the reconfigurable 

functional unit. In order not to increase the number of 

read/write ports of the register file after adding CRFU, we 

propose an architecture to share input/output resources 

between CRFU and processor functional units (Fig. 1). 

 

2 Related work 
 

PRISC [14], Chimaera[8], OneChip[3], MOLEN [18] 

and XiRisc [10] are some instances of tightly coupled 

integration of a general purpose processor with fine-grain 

programmable hardware and ADRES [11] is a sample of 

tightly coupled coarse-grain accelerator. Fine-grain 

accelerators allow for very flexible computations, but they 

have a long latency and reconfiguration time compared to 

coarse grain counterparts. Furthermore, they need a large 

amount of memory for storing configuration bits. 

ADEXOR falls in the coarse-grain category. However, we 

follow a quantitative approach to determine the 

specifications of our CRFU. 
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Adaptive dynamic optimization systems such as 

Turboscalar [2], rePLay [13], PARROT [15], and Warp 

Processors [19] select frequently executed regions of the 

code through dynamic profiling, optimize the selected 

regions and cache/rewrite the optimized version for future 

occurrences. The execution of the optimized version is 

carried out by extra tasks sharing the main processor 

and/or by extra hardware. Warp Processor uses fine-grain 

hardware for accelerating whole loops, while Turboscalar 

and PARROT use wide VLIW for accelerating hot paths 

and traces. Hot paths and traces used in [2], [13] and [15] 

are longer than MECIs but contain only one direction of 

branches and one exit point, however our MECIs can 

contain both directions of a branch.  

Clark et al. [5] detect hot portions of the application 

(limited to one basic block) using rePLay framework and 

execute them on a hardware accelerator. rePLay is not a 

good choice for our approach because it selects only one 

direction of branches and when both directions are hot and 

the branch does not bias in one direction, it terminates the 

hot trace. They extend their work in [6] and relax the CIs 

to cross over basic blocks. In this work, although a CI can 

include more than one basic block but it is atomic and 

does not include the branch instructions. To support the 

execution of their CIs, they modify the compiler to insert 

call instructions to the CIs before or after the branch. Code 

motion should be applied to the object code for supporting 

the misprediction of the branches. However, our multi-exit 

CIs are non-atomic and can include both directions of a 

branch. This feature can save the penalty cycles generated 

due to misprediction of branches. We do not need to any 

compiler modifications or code motions.  

 

3 Overview of ADEXOR architecture 
 

ADEXOR, targeted for embedded systems, is 

composed of four main components: i) a base processor 

which is a 4-issue in-order RISC processor, ii) a coarse 

grain reconfigurable functional unit (CRFU) whose 

functions and connections are controlled by configuration 

bits, iii) a configuration memory for keeping the 

configuration bits of the CRFU for each MECI and iv) 

counters for controlling the read/write signals of the 

register file and selecting between processor functional 

units and the CRFU (Fig. 1). 

CRFU is in parallel with other functional units. It is 

based on a matrix of functional units (FUs) with multiple 

inputs and outputs. CRFU reads (write) from (to) register 

file. Each FU of CRFU can support all fixed-point 

instructions of the base processor except multiply, divide 

and load. It can support MECIs including at most one 

store. CRFU uses configuration memory to update the 

program counter (PC) and find the valid exit point, after 

executing each MECI. CRFU specifications are 

determined using a quantitative approach at design phase. 

 
Fig. 1. Integrating the base processor with the CRFU 
 

The counters are activated as soon as a MECI is 

detected. At this time the required clock cycles for 

executing the corresponding MECI is loaded from 

configuration memory into the counters. During the 

specified cycles the counters select the configuration bits 

for choosing the input and output registers of the MECI for 

the CRFU and also select CRFU outputs as well.  

For using ADEXOR, there are two phases: 

configuration phase and normal phase (Fig. 2). In the 

configuration phase, done offline, target applications are 

run on an instruction set simulator (ISS) and profiled. 

Then, the start addresses of hot basic blocks (HBBs) are 

detected [22]. An HBB is a basic block with an execution 

frequency more than a given threshold. MECIs are 

generated by linking these HBBs. Mapping the MECIs to 

generate configuration bits for the CRFU is done in this 

phase. In the normal phase, the CRFU, its configuration 

memory and counters are employed for executing MECIs.  

Fig. 2. Different phases for designing and using 

ADEXOR 

 

4 Supporting conditional execution 
 

In the DFG of CIs, the nodes (primitive instructions) 

receive their input data only from one source whereas in 

the control dataflow graph (CDFG) of a MECI, nodes can 

have multiple sources. The valid source is selected at run 

time according to the outcome of branches. Fig. 3 shows 

the control flow graph (CFG) and DFG of a part of adpcm 

loop. Node 8 gets its input from nodes 5 and 7. The result 

of branch in node 6 determines which one should be 

selected. The nodes that generate output data and exit of a 

MECI alter according to the outcome of branches as well. 

The CRFU should have some facilities to support 

conditional execution and generate valid output data and 

exit point. Predicated execution is one such technique [9].  

We propose conditional data selection multiplexers 



 

(muxes) which are added to the inputs of FUs, outputs of 

the CRFU and exit point selectors. Fig. 4 (a) shows a 2x2 

CRFU without supporting conditional execution. In this 

architecture the selection bits for input muxes of FU3 and 

FU4 are controlled by configuration bits. To support 

conditional data selection, we have replaced configuration 

bits with Selector-Muxs (Fig. 4(b)). 

  
Fig. 3. CFG and DFG for a part of adpcm loop 

 

In the proposed architecture, the selector signals of 

muxes used for selecting data for FU inputs (the 

Data-Selection-Mux), along with the CRFU output and 

exit point, are each controlled by another mux (the 

Selector-Mux). The inputs of Selector-Mux (one-bit width) 

come from FUs (executing branches) of the upper rows 

and configuration bits to be able to control the selector 

signals conditionally, as well as unconditionally. The 

selectors of Selector-Mux are controlled by configuration 

bits. It should be noted that the outputs of FUs are only 

applied to the Selector-Mux of the FUs in the lower-level 

rows, not the same or upper rows. Similar structure is used 

for selecting valid output data of the CRFU and valid exit.  

 

       
                     

 

 

 

 

 

 

Fig. 4. Adding more hardware to the CRFU (a) to 

support conditional execution (b) 

 

5 Generating multi-exit custom instructions 
 

Fig. 6 shows the chain of main functions and tools that 

are used for generating MECIs. First the applications are 

run on the ISS and profiled. Using the profiling data, the 

HBBs are detected and linked to make hot instruction 

sequence (HIS). MECIs should not cross loop boundaries. 

Therefore, first we detect hot loops and sort them from the 

innermost loop to the outermost in the ascending order of 

their start addresses. To generate a HIS, the start address of 

the first HBB of the loop is passed and checked whether it 

has been covered by previous MECIs or not. If it has not 

been covered, the HBB is read from the object code and 

added to the current HIS. Reading an HBB terminates, 

when a control instruction is seen. Then the algorithm in 

Fig. 5 is applied to its last instruction: 

 
1 if (it is indirect jump, return or call) then 

terminate HIS;  

2 elsif (it is direct jump) then call recursively the 

function with the target address of jump; 

3 elsif (it is a branch) then  

3-1 if (it is hot backward) then terminate HIS; 

3-2 elsif (its not-taken direction is hot) then call 

recursively the function with the target address of 

not-taken direction else terminate HIS; 

3-3 if (its hot taken direction is hot) then call 

recursively the function with the target address of 

taken direction else terminate HIS; 

4 else terminate HIS; 

Fig. 5. Checking the control instruction of an HBB 
 

This process is repeated for each new added HBB until 

HIS reaches to the end (terminal) points in all directions. 

When generating HIS is done for the loops, the process is 

continued for the remaining HBBs.  

While generating CDFG for a HIS, we generate all 

possible sources for each input plus the effective branches 

for selecting those sources. The CDFG is passed to the 

MECI generator. In current implementation, each MECI 

can include only fixed-point instructions except multiply, 

divide and load. It can support at most one store 

instruction and up to five branches. 

 
Fig. 6. Tool chain for generating MECIs 

 

MECI generator looks for the largest sequence of 

instruction (subgraph) that can be executed on the CRFU, 

in the CDFG. Then, after checking the flow dependence 

and anti-dependence, executable instructions in each HBB 

are moved and added to the entry point (head) and exit 

point(s) (tails) of the detected largest instruction sequence 

(subgraph).  Executable instructions are those 

instructions that can be executed by the CRFU and 

non-executable (i.e. floating point, load, divide, multiply, 

second store) are those that are not supported by the 

CRFU. It should also be checked that the region where the 

instructions are going to be moved in the object code, are 

not target of branch instructions.  

For those parts that instructions are moved, the object 

code is rewritten (Fig. 7). Moving instructions should be 

 

(a). A 2x2 CRFU 

without 

supporting 

conditional 

execution 

(b). Replacing 

configuration bits 

with 

Selector-Mux  

Selector-Mux 



 

limited inside a basic block. In current version, a MECI 

can have up to four exit points. The exit points of a MECI 

are: i) branch with only one hot direction, ii) indirect jump 

and return, iii) call, iv) hot backward branch and v) an 

instruction where its next instruction is non-executable. 

Sometimes more than one MECI can be extracted from a 

HIS. MECIs with less than 5 instructions are rejected. 

Corresponding to the instructions movement in the object 

code, CDFG should be updated as well. Then it is passed 

to the integrated framework to partition large MECIs and 

map generated MECIs on the CRFU. The integrated 

framework and mapping tools are the extension of our 

previous work [23] for CDFGs instead DFGs.  

To support the execution of MECIs on the CRFU in the 

normal phase, the entry instruction of the subgraph of each 

MECIs is over written by mtc0 (move to coprocessor) 

instruction in the object code (Fig. 7). In the normal phase 

when the mtc0 is decoded, its operand is used for indexing 

and loading configuration bits from configuration memory 

of the CRFU for the corresponding MECI. 

 

 
Fig. 7. Generating a MECI 

 

6 Proposed architecture for the CRFU  
 

The tool chain in Fig. 6 was used for our quantitative 

approach to determine the CRFU architecture. 

Our simulation environment is based on Simplescalar 

(PISA configuration) [16]. 22 applications of Mibench 

[12] were selected as inputs for our quantitative approach. 

In this paper, we use mapping rate frequently by which we 

mean the percentage of generated MECIs for 22 

applications that can be mapped on the CRFU. We have 

considered the execution frequency of MECIs while 

calculating the mapping rate. All 22 applications of 

Mibench executed to completion. Since execution time 

varies for each application, a weight was assumed for each 

of them so that the product of the execution time and the 

weight is equal for all. 

The graphs in Fig. 8 and 9 show the mapping rate of 22 

applications for different numbers of input, output and 

FUs. These diagrams show that setting the number of 

inputs, outputs, and FUs to respectively 8, 6, and 16 results 

in a mapping rate of 88.21%. 

Two other parameters that should be determined for the 

CRFU are its depth and width. Width (number of columns) 

and depth (number of rows) show the maximum 

instructions that can be executed in parallel and the length 

of the critical path in MECIs (depth of MECIs), 

respectively. Six and five were selected for the width and 

depth of the CRFU, respectively. Measuring the mapping 

rate for different numbers of FUs in each row shows that 6, 

4, 3, 2 and 1 are proper numbers for the first to fifth rows. 
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Fig. 8. The effect of different number of inputs, outputs 

on the mapping rate for 22 applications 
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Fig. 9. The effect of different number of FUs on the 

mapping rate for 22 applications 

 

The same above approach was repeatedly employed to 

find the number of inputs connected to each row as well as 

the number of connections among different rows. The final 

architecture of CRFU is shown in Fig. 10. Considering all 

of these constraints, the mapping rate decreases to 81.43%.  

 
Fig. 10. Proposed architecture for the CRFU 

 

The 8 input ports have been replicated and distributed 

among different rows to facilitate data accesses (7, 3, 2, 2, 

and 1 for Row1 to Row5, respectively). In the CRFU, the 

output of each FU in a row can be used by all FUs in the 

subsequent row (connections with length one). Besides, 

there are four connections with length two, two 
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connections with length three and one connection with 

length four. The Selector-Muxes (Section 4) are available 

for Row3, Row4 and Row5 (not shown in the Fig. 10). 

Experiments show that all FUs do not need to support 

all functions. Table 1 shows the distribution of functions 

among rows according to the experimental results.  

 

Table. 1. Number of required function in each row 
 Row1 Row2 Row3 Row4 Row5 

and 2 3 1 1 0 

or 1 2 1 1 1 

xor 2 1 1 1 0 

nor 1 0 0 0 0 

add/sub 5 4 3 2 1 

shift 4 3 2 2 1 

compare 2 2 2 2 1 

 

The VHDL code of the proposed architecture was 

developed and synthesized using Synopsys tools and 

Hitachi 0.18 µm. The area of the CRFU is 2.1 mm
2
. Since 

each FU output can be accessed directly via the output 

ports of the CRFU and also the depth (length of critical 

path in the DFG) of each MECI is known after mapping, 

we can have a CRFU with variable latency which depends 

on the depth of each MECI. The delay of the CRFU for 

MECIs with various depths from 1 to 5 are 2.2 ns, 4.2 ns, 

6.1 ns, 7.9 ns and 9.8 ns, respectively. The required clock 

cycles for executing each MECI is determined according 

to these numbers, depth of DFG and base processor clock 

frequency. The CRFU needs 375 bits for control signals 

and 240 bits for immediate values and exit points. So each 

MECI needs 615 bits in total for its configuration.  

In order not to increase the number of read/write ports 

of the register file, the inputs and outputs of processor 

functional units (FU1 to FU4) are shared with the CRFU 

(Fig. 1). In a conventional processor, the signals for 

reading/writing registers are generated by decode stage. 

Here, two signals control the ports: i) signals from the 

decode stage and ii) configuration bits. When the mtc0 is 

detected, its operand is used for indexing configuration 

memory. Then specified number of cycles for executing 

the corresponding MECI is loaded to counters as well as 

CRFU configuration. The counters activate the selectors of 

muxes and select configuration bits for enabling input and 

output registers for the CRFU and select CRFU output 

simultaneously, during specified cycles. Fig. 1 shows that 

CRFU has four outputs but we mentioned that it needs 6 

outputs. To support CRFU with six outputs without adding 

more write ports to the register file, we added two registers 

to the CRFU. When a MECI has more than four outputs, 

extra writes are stored in these registers, four of them are 

done in one cycle and the remaining ones in the next cycle. 

 

7 Experiment results  
 

The configuration of the base processor is in Table 2. 

Table. 2. Base processor configuration 
Issue 4-way 

L1- I cache 32K, 2 way, 1 cycle latency 

L1- D cache 32K, 4 way, 1 cycle latency 

Unified L2  1M, 6 cycle latency 

Execution units 4 integer, 4 floating point 

RUU size & Fetch queue size 64 

Branch predictor bimodal 

Branch prediction table size 2048 

Extra branch misprediction latency 3 

 

To see the effectiveness of MECIs compared to CIs 

limited to one HBB, we limited the MECI generator to one 

HBB and regenerated the CIs. Then we redesigned the 

CRFU using the same quantitative approach. The number 

of inputs, outputs and FUs are the same as before, but it 

has simpler connections and FUs and does not support 

conditional execution. The area of CRFU reduces to 1.15 

mm
2
 and its delay for a CI with a critical length of five is 

7.66 ns. Each CI configuration needs 512 bits. The average 

number of instructions included in CIs (one HBB) is 6.39 

instructions and for MECIs is 7.85 instructions. Fig. 11 

shows the speedups obtained by MECIs and CIs compared 

to the base processor for some applications.  
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Fig. 11. Speedup for CIs (one HBB) and MECIs 

compared to base processor (clock freq 300 MHz) 

 

The reason for the high speedup obtained by adpcm is 

that it has a main loop with 56 instructions, including 12 

branches. For 7 of these branches, both taken and 

not-taken are hot, so that 27% of branches are 

mispredicted. Therefore a big part of executed clock 

cycles belongs to penalty of the mispredicted branches 

(18%). For those branches with both directions being hot, 

the MECIs include both directions, and hence, the CRFU 

architecture eliminates cycles of mispredicted branches. 

Also, since HBBs are linked and longer MECIs are 

generated, more ILP can be extracted. For applications like 

basicmath, susan, lame, patricia, and fft that most of the 

dynamic instructions are floating point, multiply, divide 

and load (69%, 45%, 79%, 44% and 57%, respectively), 

the speedup enhancement is less than average which is 

already expected.  

To see the effect of base processor clock frequency on 



 

the speedup obtained using MECIs, five different 

frequencies were tried (Fig. 12). The speedup diminishes 

in higher frequencies since clock period becomes smaller 

but the CRFU delay remains unchanged. 
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Fig. 12. Effect of the clock frequency on speedup 

 

To measure the required time for the configuration 

phase, the tool chain in Fig. 6 was run on a Pentium 4 

(CPU 3.6 GHz) with 1GB main memory. For the most 

complex benchmark, it takes less than 9 minutes (Table 3). 

For the applications with larger number of HBBs and 

branches, profiling is longer.  

 
Table. 3. Execution time of offline configuration 

Application 
Exec. time 

(Seconds) 
Application 

Exec. time 

(Seconds) 

adpcm 225 gsm 461 

bitcounts 331 lame 526 

blowfish  94 patricia 84 

basicmath 34 qsort 233 

cjpeg 75 rijndael 68 

crc 132 sha 29 

dijkstra 101 stringsearch 3 

djpeg 9 susan 122 

fft 36 Average 150.8 

 

To see the effect of connections of the CRFU with 

length more than one, all of them were deleted and only 

connections with length one were kept. In this architecture 

for passing data from one FU to another FU in a 

non-subsequent row, or for passing data of input ports to 

FUs placed in rows other than the first row, move 

instructions are inserted in the intermediate FUs (similar to 

[5, 6]). We applied MECIs generated for the proposed 

CRFU to this architecture. 24.2% of the MECIs could not 

be mapped due to the limitation of number of FUs.  

 

8 Conclusions 
 

We have presented an approach for generating and 

executing custom instructions including multiple basic 

blocks. These custom instructions can include branch 

instructions and have multiple exit points. We architected a 

reconfigurable functional unit with conditional execution 

capability to support the execution of these custom 

instructions. Our experimental results show that by 

extending custom instructions over multiple HBBs the 

average speedup increases by 46% compared to the 

custom instructions which are limited to only one HBB. 

This is achieved in return for 83% more hardware and 

20% more configuration bits. Utilizing connections with 

different length are helpful for supporting larger custom 

instructions with the available number of FUs. 
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