
Generating and Executing Multi-Exit Custom Instructions

for an Adaptive Extensible Processor

Hamid Noori
†
 Farhad Mehdipour

††
 Kazuaki Murakami

†
 Koji Inoue

†
 Maziar Goudarzi

†

†
Kyushu University, Fukuoka, Japan

††
Amirkabir University of Technology, Tehran, Iran

noori@c.csce.kysuhu-u.ac.jp mehdipur@ce.aut.ac.ir murakami,inoue@i.kyushu-u.ac.jp

goudarzi@slrc.kyushu-u.ac.jp

Abstract

To improve the performance of embedded processors,

an effective technique is collapsing critical computation

subgraphs as application-specific instruction set

extensions and executing them on custom functional units.

The problems of this approach are immense cost and long

time of designing. To address these issues, we propose an

adaptive extensible processor in which custom instructions

(CIs) are generated and added after chip-fabrication. To

support this feature, custom functional units are replaced

by a reconfigurable matrix of functional units with the

capability of conditional execution. Unlike previous

proposed CIs, ours can include multiple exits.

Experimental results show that multi-exit CIs enhance the

performance by 46% in average compared to CIs limited

to one basic block. A maximum speedup of 2.89 compared

to a 4-issue in-order RISC processor, and a speedup of

1.66 in average, was achieved on MiBench benchmark

suite.

1 Introduction

An effective way to enhance the performance of a

processor for embedded SoCs, is adding CIs to the

instruction set of the base processor. A CI encapsulates the

computation of a frequently executed subgraph of the

program’s dataflow graph (DFG). While CIs can be

effective, the time and cost of designing and verifying a

base processor with added CIs causes many issues

associated with designing a new processor from scratch,

such as significant non-recurring engineering costs.

To mitigate the immense design cost and time of each

new extensible processor, we propose an ADaptive

EXtensible processOR (ADEXOR) in which, CIs are

generated and added after chip-fabrication automatically.

Almost all methods for identifying and generating

optimal set of CIs such as [1, 4, 7, 17, 20, 21] focus on CIs

with a single entry and a single exit however, ours are

single entry but multiple exits. Consequently, we can cover

hot directions of several branches into the CI without

being limited to selecting just one or all of the directions.

This brings more instruction level parallelism (ILP) and

can hide branch misprediction penalty. Moreover, we use a

reconfigurable functional unit (referred in this paper as

CRFU) instead of custom functional units, which enables

us to implement more CIs, but results in more constraints

that should be considered while generating them. In our

approach, unlike other reconfigurable processors (e.g. [3, 8,

10, 11, 14, 18]) there is no need to new opcodes, new

programming model or new compiler which obviate

rewriting or recompiling the source codes.

Both [6] and [21] show that, by extending CIs over

multiple basic blocks higher speedup can be obtained, but

our approach is different. Our multi-exit CIs (MECIs) can

be extended in multiple hot directions and unlike [6] can

include the branch instruction itself. We have also added

capability of conditional execution to the reconfigurable

functional unit. In order not to increase the number of

read/write ports of the register file after adding CRFU, we

propose an architecture to share input/output resources

between CRFU and processor functional units (Fig. 1).

2 Related work

PRISC [14], Chimaera[8], OneChip[3], MOLEN [18]

and XiRisc [10] are some instances of tightly coupled

integration of a general purpose processor with fine-grain

programmable hardware and ADRES [11] is a sample of

tightly coupled coarse-grain accelerator. Fine-grain

accelerators allow for very flexible computations, but they

have a long latency and reconfiguration time compared to

coarse grain counterparts. Furthermore, they need a large

amount of memory for storing configuration bits.

ADEXOR falls in the coarse-grain category. However, we

follow a quantitative approach to determine the

specifications of our CRFU.

978-3-9810801-2-4/DATE07 © 2007 EDAA

Adaptive dynamic optimization systems such as

Turboscalar [2], rePLay [13], PARROT [15], and Warp

Processors [19] select frequently executed regions of the

code through dynamic profiling, optimize the selected

regions and cache/rewrite the optimized version for future

occurrences. The execution of the optimized version is

carried out by extra tasks sharing the main processor

and/or by extra hardware. Warp Processor uses fine-grain

hardware for accelerating whole loops, while Turboscalar

and PARROT use wide VLIW for accelerating hot paths

and traces. Hot paths and traces used in [2], [13] and [15]

are longer than MECIs but contain only one direction of

branches and one exit point, however our MECIs can

contain both directions of a branch.

Clark et al. [5] detect hot portions of the application

(limited to one basic block) using rePLay framework and

execute them on a hardware accelerator. rePLay is not a

good choice for our approach because it selects only one

direction of branches and when both directions are hot and

the branch does not bias in one direction, it terminates the

hot trace. They extend their work in [6] and relax the CIs

to cross over basic blocks. In this work, although a CI can

include more than one basic block but it is atomic and

does not include the branch instructions. To support the

execution of their CIs, they modify the compiler to insert

call instructions to the CIs before or after the branch. Code

motion should be applied to the object code for supporting

the misprediction of the branches. However, our multi-exit

CIs are non-atomic and can include both directions of a

branch. This feature can save the penalty cycles generated

due to misprediction of branches. We do not need to any

compiler modifications or code motions.

3 Overview of ADEXOR architecture

ADEXOR, targeted for embedded systems, is

composed of four main components: i) a base processor

which is a 4-issue in-order RISC processor, ii) a coarse

grain reconfigurable functional unit (CRFU) whose

functions and connections are controlled by configuration

bits, iii) a configuration memory for keeping the

configuration bits of the CRFU for each MECI and iv)

counters for controlling the read/write signals of the

register file and selecting between processor functional

units and the CRFU (Fig. 1).

CRFU is in parallel with other functional units. It is

based on a matrix of functional units (FUs) with multiple

inputs and outputs. CRFU reads (write) from (to) register

file. Each FU of CRFU can support all fixed-point

instructions of the base processor except multiply, divide

and load. It can support MECIs including at most one

store. CRFU uses configuration memory to update the

program counter (PC) and find the valid exit point, after

executing each MECI. CRFU specifications are

determined using a quantitative approach at design phase.

Fig. 1. Integrating the base processor with the CRFU

The counters are activated as soon as a MECI is

detected. At this time the required clock cycles for

executing the corresponding MECI is loaded from

configuration memory into the counters. During the

specified cycles the counters select the configuration bits

for choosing the input and output registers of the MECI for

the CRFU and also select CRFU outputs as well.

For using ADEXOR, there are two phases:

configuration phase and normal phase (Fig. 2). In the

configuration phase, done offline, target applications are

run on an instruction set simulator (ISS) and profiled.

Then, the start addresses of hot basic blocks (HBBs) are

detected [22]. An HBB is a basic block with an execution

frequency more than a given threshold. MECIs are

generated by linking these HBBs. Mapping the MECIs to

generate configuration bits for the CRFU is done in this

phase. In the normal phase, the CRFU, its configuration

memory and counters are employed for executing MECIs.

Fig. 2. Different phases for designing and using

ADEXOR

4 Supporting conditional execution

In the DFG of CIs, the nodes (primitive instructions)

receive their input data only from one source whereas in

the control dataflow graph (CDFG) of a MECI, nodes can

have multiple sources. The valid source is selected at run

time according to the outcome of branches. Fig. 3 shows

the control flow graph (CFG) and DFG of a part of adpcm

loop. Node 8 gets its input from nodes 5 and 7. The result

of branch in node 6 determines which one should be

selected. The nodes that generate output data and exit of a

MECI alter according to the outcome of branches as well.

The CRFU should have some facilities to support

conditional execution and generate valid output data and

exit point. Predicated execution is one such technique [9].

We propose conditional data selection multiplexers

(muxes) which are added to the inputs of FUs, outputs of

the CRFU and exit point selectors. Fig. 4 (a) shows a 2x2

CRFU without supporting conditional execution. In this

architecture the selection bits for input muxes of FU3 and

FU4 are controlled by configuration bits. To support

conditional data selection, we have replaced configuration

bits with Selector-Muxs (Fig. 4(b)).

Fig. 3. CFG and DFG for a part of adpcm loop

In the proposed architecture, the selector signals of

muxes used for selecting data for FU inputs (the

Data-Selection-Mux), along with the CRFU output and

exit point, are each controlled by another mux (the

Selector-Mux). The inputs of Selector-Mux (one-bit width)

come from FUs (executing branches) of the upper rows

and configuration bits to be able to control the selector

signals conditionally, as well as unconditionally. The

selectors of Selector-Mux are controlled by configuration

bits. It should be noted that the outputs of FUs are only

applied to the Selector-Mux of the FUs in the lower-level

rows, not the same or upper rows. Similar structure is used

for selecting valid output data of the CRFU and valid exit.

Fig. 4. Adding more hardware to the CRFU (a) to

support conditional execution (b)

5 Generating multi-exit custom instructions

Fig. 6 shows the chain of main functions and tools that

are used for generating MECIs. First the applications are

run on the ISS and profiled. Using the profiling data, the

HBBs are detected and linked to make hot instruction

sequence (HIS). MECIs should not cross loop boundaries.

Therefore, first we detect hot loops and sort them from the

innermost loop to the outermost in the ascending order of

their start addresses. To generate a HIS, the start address of

the first HBB of the loop is passed and checked whether it

has been covered by previous MECIs or not. If it has not

been covered, the HBB is read from the object code and

added to the current HIS. Reading an HBB terminates,

when a control instruction is seen. Then the algorithm in

Fig. 5 is applied to its last instruction:

1 if (it is indirect jump, return or call) then

terminate HIS;

2 elsif (it is direct jump) then call recursively the

function with the target address of jump;

3 elsif (it is a branch) then

3-1 if (it is hot backward) then terminate HIS;

3-2 elsif (its not-taken direction is hot) then call

recursively the function with the target address of

not-taken direction else terminate HIS;

3-3 if (its hot taken direction is hot) then call

recursively the function with the target address of

taken direction else terminate HIS;

4 else terminate HIS;

Fig. 5. Checking the control instruction of an HBB

This process is repeated for each new added HBB until

HIS reaches to the end (terminal) points in all directions.

When generating HIS is done for the loops, the process is

continued for the remaining HBBs.

While generating CDFG for a HIS, we generate all

possible sources for each input plus the effective branches

for selecting those sources. The CDFG is passed to the

MECI generator. In current implementation, each MECI

can include only fixed-point instructions except multiply,

divide and load. It can support at most one store

instruction and up to five branches.

Fig. 6. Tool chain for generating MECIs

MECI generator looks for the largest sequence of

instruction (subgraph) that can be executed on the CRFU,

in the CDFG. Then, after checking the flow dependence

and anti-dependence, executable instructions in each HBB

are moved and added to the entry point (head) and exit

point(s) (tails) of the detected largest instruction sequence

(subgraph). Executable instructions are those

instructions that can be executed by the CRFU and

non-executable (i.e. floating point, load, divide, multiply,

second store) are those that are not supported by the

CRFU. It should also be checked that the region where the

instructions are going to be moved in the object code, are

not target of branch instructions.

For those parts that instructions are moved, the object

code is rewritten (Fig. 7). Moving instructions should be

(a). A 2x2 CRFU

without

supporting

conditional

execution

(b). Replacing

configuration bits

with

Selector-Mux

Selector-Mux

limited inside a basic block. In current version, a MECI

can have up to four exit points. The exit points of a MECI

are: i) branch with only one hot direction, ii) indirect jump

and return, iii) call, iv) hot backward branch and v) an

instruction where its next instruction is non-executable.

Sometimes more than one MECI can be extracted from a

HIS. MECIs with less than 5 instructions are rejected.

Corresponding to the instructions movement in the object

code, CDFG should be updated as well. Then it is passed

to the integrated framework to partition large MECIs and

map generated MECIs on the CRFU. The integrated

framework and mapping tools are the extension of our

previous work [23] for CDFGs instead DFGs.

To support the execution of MECIs on the CRFU in the

normal phase, the entry instruction of the subgraph of each

MECIs is over written by mtc0 (move to coprocessor)

instruction in the object code (Fig. 7). In the normal phase

when the mtc0 is decoded, its operand is used for indexing

and loading configuration bits from configuration memory

of the CRFU for the corresponding MECI.

Fig. 7. Generating a MECI

6 Proposed architecture for the CRFU

The tool chain in Fig. 6 was used for our quantitative

approach to determine the CRFU architecture.

Our simulation environment is based on Simplescalar

(PISA configuration) [16]. 22 applications of Mibench

[12] were selected as inputs for our quantitative approach.

In this paper, we use mapping rate frequently by which we

mean the percentage of generated MECIs for 22

applications that can be mapped on the CRFU. We have

considered the execution frequency of MECIs while

calculating the mapping rate. All 22 applications of

Mibench executed to completion. Since execution time

varies for each application, a weight was assumed for each

of them so that the product of the execution time and the

weight is equal for all.

The graphs in Fig. 8 and 9 show the mapping rate of 22

applications for different numbers of input, output and

FUs. These diagrams show that setting the number of

inputs, outputs, and FUs to respectively 8, 6, and 16 results

in a mapping rate of 88.21%.

Two other parameters that should be determined for the

CRFU are its depth and width. Width (number of columns)

and depth (number of rows) show the maximum

instructions that can be executed in parallel and the length

of the critical path in MECIs (depth of MECIs),

respectively. Six and five were selected for the width and

depth of the CRFU, respectively. Measuring the mapping

rate for different numbers of FUs in each row shows that 6,

4, 3, 2 and 1 are proper numbers for the first to fifth rows.

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12

Number of Inputs/Outputs

M
a
p
p
in
g
 R
a
te

Inputs Outputs

`

Fig. 8. The effect of different number of inputs, outputs

on the mapping rate for 22 applications

0

10

20

30

40

50

60

70

80

90

100

1 3 5 7 9 11 13 15 17 19 21 23 31 38 58

Number of FUs

M
a
p
p
in
g
 R
a
te

Fig. 9. The effect of different number of FUs on the

mapping rate for 22 applications

The same above approach was repeatedly employed to

find the number of inputs connected to each row as well as

the number of connections among different rows. The final

architecture of CRFU is shown in Fig. 10. Considering all

of these constraints, the mapping rate decreases to 81.43%.

Fig. 10. Proposed architecture for the CRFU

The 8 input ports have been replicated and distributed

among different rows to facilitate data accesses (7, 3, 2, 2,

and 1 for Row1 to Row5, respectively). In the CRFU, the

output of each FU in a row can be used by all FUs in the

subsequent row (connections with length one). Besides,

there are four connections with length two, two

Detecting subgraphs

in a HIS

 largest

subgraph

Executable

instr

Executable

instr

mtc0

Overwriting

the entry point

 with

 mtc0

 instr

Moving instructions after checking

data dependency (binary rewriting)

connections with length three and one connection with

length four. The Selector-Muxes (Section 4) are available

for Row3, Row4 and Row5 (not shown in the Fig. 10).

Experiments show that all FUs do not need to support

all functions. Table 1 shows the distribution of functions

among rows according to the experimental results.

Table. 1. Number of required function in each row
 Row1 Row2 Row3 Row4 Row5

and 2 3 1 1 0

or 1 2 1 1 1

xor 2 1 1 1 0

nor 1 0 0 0 0

add/sub 5 4 3 2 1

shift 4 3 2 2 1

compare 2 2 2 2 1

The VHDL code of the proposed architecture was

developed and synthesized using Synopsys tools and

Hitachi 0.18 µm. The area of the CRFU is 2.1 mm
2
. Since

each FU output can be accessed directly via the output

ports of the CRFU and also the depth (length of critical

path in the DFG) of each MECI is known after mapping,

we can have a CRFU with variable latency which depends

on the depth of each MECI. The delay of the CRFU for

MECIs with various depths from 1 to 5 are 2.2 ns, 4.2 ns,

6.1 ns, 7.9 ns and 9.8 ns, respectively. The required clock

cycles for executing each MECI is determined according

to these numbers, depth of DFG and base processor clock

frequency. The CRFU needs 375 bits for control signals

and 240 bits for immediate values and exit points. So each

MECI needs 615 bits in total for its configuration.

In order not to increase the number of read/write ports

of the register file, the inputs and outputs of processor

functional units (FU1 to FU4) are shared with the CRFU

(Fig. 1). In a conventional processor, the signals for

reading/writing registers are generated by decode stage.

Here, two signals control the ports: i) signals from the

decode stage and ii) configuration bits. When the mtc0 is

detected, its operand is used for indexing configuration

memory. Then specified number of cycles for executing

the corresponding MECI is loaded to counters as well as

CRFU configuration. The counters activate the selectors of

muxes and select configuration bits for enabling input and

output registers for the CRFU and select CRFU output

simultaneously, during specified cycles. Fig. 1 shows that

CRFU has four outputs but we mentioned that it needs 6

outputs. To support CRFU with six outputs without adding

more write ports to the register file, we added two registers

to the CRFU. When a MECI has more than four outputs,

extra writes are stored in these registers, four of them are

done in one cycle and the remaining ones in the next cycle.

7 Experiment results

The configuration of the base processor is in Table 2.

Table. 2. Base processor configuration
Issue 4-way

L1- I cache 32K, 2 way, 1 cycle latency

L1- D cache 32K, 4 way, 1 cycle latency

Unified L2 1M, 6 cycle latency

Execution units 4 integer, 4 floating point

RUU size & Fetch queue size 64

Branch predictor bimodal

Branch prediction table size 2048

Extra branch misprediction latency 3

To see the effectiveness of MECIs compared to CIs

limited to one HBB, we limited the MECI generator to one

HBB and regenerated the CIs. Then we redesigned the

CRFU using the same quantitative approach. The number

of inputs, outputs and FUs are the same as before, but it

has simpler connections and FUs and does not support

conditional execution. The area of CRFU reduces to 1.15

mm
2
 and its delay for a CI with a critical length of five is

7.66 ns. Each CI configuration needs 512 bits. The average

number of instructions included in CIs (one HBB) is 6.39

instructions and for MECIs is 7.85 instructions. Fig. 11

shows the speedups obtained by MECIs and CIs compared

to the base processor for some applications.

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

bi
tc
nt
s

ba
si
cm

at
h

qs
or

t

su
sa

n

cj
pe

g

dj
pe

g
la
m
e

di
jk
st
ra

pa
tr
ic
ia

st
rin

gs
ea

rc
h

bl
ow

fis
h

rij
nd

ae
l

sh
a

ad
pc

m

cr
c fft

gs
m

A
ve

ra
ge

S
p
e
e
d
u
p

CIs

MECIs

Fig. 11. Speedup for CIs (one HBB) and MECIs

compared to base processor (clock freq 300 MHz)

The reason for the high speedup obtained by adpcm is

that it has a main loop with 56 instructions, including 12

branches. For 7 of these branches, both taken and

not-taken are hot, so that 27% of branches are

mispredicted. Therefore a big part of executed clock

cycles belongs to penalty of the mispredicted branches

(18%). For those branches with both directions being hot,

the MECIs include both directions, and hence, the CRFU

architecture eliminates cycles of mispredicted branches.

Also, since HBBs are linked and longer MECIs are

generated, more ILP can be extracted. For applications like

basicmath, susan, lame, patricia, and fft that most of the

dynamic instructions are floating point, multiply, divide

and load (69%, 45%, 79%, 44% and 57%, respectively),

the speedup enhancement is less than average which is

already expected.

To see the effect of base processor clock frequency on

the speedup obtained using MECIs, five different

frequencies were tried (Fig. 12). The speedup diminishes

in higher frequencies since clock period becomes smaller

but the CRFU delay remains unchanged.

1

1.5

2

2.5

3

3.5

bi
tc

nt
s

ba
si
cm

at
h

qs
or

t

su
sa

n

cj
pe

g

dj
pe

g
la
m

e

di
jk
st
ra

pa
tri

ci
a

st
rin

gs
ea

rc
h

bl
ow

fis
h

rij
nd

ae
l

sh
a

ad
pc

m

cr
c fft

gs
m

A
ve

ra
ge

S
p
e
e
d
u
p

200 MHz 250 MHz 300 MHz 350 MHz 400 MHz

Fig. 12. Effect of the clock frequency on speedup

To measure the required time for the configuration

phase, the tool chain in Fig. 6 was run on a Pentium 4

(CPU 3.6 GHz) with 1GB main memory. For the most

complex benchmark, it takes less than 9 minutes (Table 3).

For the applications with larger number of HBBs and

branches, profiling is longer.

Table. 3. Execution time of offline configuration

Application
Exec. time

(Seconds)
Application

Exec. time

(Seconds)

adpcm 225 gsm 461

bitcounts 331 lame 526

blowfish 94 patricia 84

basicmath 34 qsort 233

cjpeg 75 rijndael 68

crc 132 sha 29

dijkstra 101 stringsearch 3

djpeg 9 susan 122

fft 36 Average 150.8

To see the effect of connections of the CRFU with

length more than one, all of them were deleted and only

connections with length one were kept. In this architecture

for passing data from one FU to another FU in a

non-subsequent row, or for passing data of input ports to

FUs placed in rows other than the first row, move

instructions are inserted in the intermediate FUs (similar to

[5, 6]). We applied MECIs generated for the proposed

CRFU to this architecture. 24.2% of the MECIs could not

be mapped due to the limitation of number of FUs.

8 Conclusions

We have presented an approach for generating and

executing custom instructions including multiple basic

blocks. These custom instructions can include branch

instructions and have multiple exit points. We architected a

reconfigurable functional unit with conditional execution

capability to support the execution of these custom

instructions. Our experimental results show that by

extending custom instructions over multiple HBBs the

average speedup increases by 46% compared to the

custom instructions which are limited to only one HBB.

This is achieved in return for 83% more hardware and

20% more configuration bits. Utilizing connections with

different length are helpful for supporting larger custom

instructions with the available number of FUs.

9 Acknowledgments

This research was supported in part by the Grant-in-Aid

for Creative Basic Research, 14GS0218, Encouragement

of Young Scientists (A), 17680005, and the 21st Century

COE Program.

References
[1] K. Atasu et al, Automatic application-specific instruction-set
extension under microarchitectural constraints, DAC 2003.

[2] Black, and J. Shen, Turboscalar: A High Frequency High IPC
Microarchitecture, ISCA 2000.

[3] J. E. Carrillo E. and P. Chow, The effect of reconfigurable units in

superscalar processors, Proc. of the 2001 ACM/SIGDA FPGA, 2001.
[4] N. Clark et al., Processor acceleration through automated instruction

set customization, MICRO-36, 2003.

[5] N. Clark et al, Application-Specific Processing on a General-Purpose
Core via Transparent Instruction Set Customization, MICRO-37, 2004.

[6] N. Clark et al., An Architecture Framework for Transparent

Instruction Set Customization in Embedded Processors, ISCA 2005.
[7] D. Goodwin et al., Automatic generation of application specific

processors, CASES 2003.

[8] S. Hauck et al., The Chimaera reconfigurable functional unit, IEEE
Symp. FPGAs for Custom Computing Machines, 1997.

[9] J. Lee et al., Reconfigurable ALU Array Architecture with

Conditional Execution, International SoC Design Conference, 2004.
[10] A. Lodi et al., A VLIW Processor with Reconfigurable Instruction

Set for Embedded Applications, IEEE Journal of Solid-State Circuits, vol.

38, no. 11, pp. 1876–1886, 2003.
[11] B. Mei et al., Design Methodolody for a Tightly Coupled

VLIW/Reconfigurable Matrix Architecture: A Case Study, DATE 2004.

[12] Mibench, www.eecs.umich.edu/mibench
[13] S. Patel et al., rePLay: A Hardware Framework for Dynamic

Optimization, IEEE Trans.on Comp., vol. 50. no. 6, 2001.

[14] R. Razdan et al., A high-performance microarchitecture with
hardware-programmable functional units, MICRO-27, 1994.

[15] R. Rosner et. al, Power Awarness through Selective Dynamically

Optimized Traces, in Proc. ISCA-31, 2004.
[16] Simplescalar, www.simplescalar.com

[17] F. Sun et al., Synthesis of custom processors based on extensible

platforms, ICCAD 2002.
[18] S. Vassiliadis et al., The MOLEN Polymorphic Processor, IEEE

Transactions on Computers, vol. 53, no. 11, Nov. 2004.

[19] Warp Processors, http://www.cs.ucr.edu/~vahid/warp/
[20] P. Yu et al., Scalable Custom Instructions Identification for

Instruction-Set Extensible Processors, CASES 2004.

[21] P. Yu and T. Mitra, Characterizing Embedded Applications for
Instruction-Set Extensible Processors, DAC 2004.

[22] H. Noori et al., A General Overview of an Adaptive Dynamic

Extensible Processor, Workshop on Introspective Architectures, 2006.
[23] F. Mehdipour et al., Custom Instruction Generation Using Temporal

Partitioning Techniques for a Reconfigurable Functional Unit, Int.

Conference on Embedded and Ubiquitous Computing, 2006.

	Main
	DATE07
	Front Matter
	Table of Contents
	Author Index

