
Executable system-level specification models
containing UML-based behavioral patterns

Leandro Soares Indrusiak, Andreas Thuy, Manfred Glesner

Institute of Microelectronic Systems - Technische Universität Darmstadt
E-mail: <indrusiak, glesner>@mes.tu-darmstadt.de, a.thuy@gmx.net

Abstract

Behavioral patterns are useful abstractions to simplify the
design of the communication-centric systems. Such
patterns are traditionally described using UML diagrams,
but the lack of execution semantics in UML prevents the
co-validation of the patterns together with simulation
models and executable specifications which are the
mainstream in today's system level design flows. This
paper proposes a method to validate UML-based
behavioral patterns within executable system models. The
method is based on actor orientation and was
implemented as an extension of the Ptolemy II framework.
A case study is presented and potential applications and
extensions of the proposed method are discussed.

1 Introduction

Much of our capacity to design and optimize systems
depends on our ability to recognize patterns within design
problems and compare them with other problems we
already know how to solve. Based on such premise, the
software engineering community started in the late 90’s to
identify and catalogue well known solutions to recurrent
problems in object-oriented software development, calling
them design patterns. Flagships of such initiative include
the seminal book by Gamma et al [1] and the Portland
Pattern Repository [2]. While not particularly original, the
idea of documenting patterns and facilitating their
reusability was well accepted and surpassed the limits of
object-oriented software engineering, as evidenced by
applications in SoC design [3], real time systems [4],
reconfigurable computing [5] and wireless sensor
networks [6].

According to Gamma [1], patterns can be classified
regarding their purpose: creational, structural or
behavioral patterns. Creational patterns address the
process of object creation, while structural patterns deal
with the composition of classes or objects and behavioral
patterns characterize the ways in which classes or objects
interact and distribute responsibility. Traditionally, such

patterns have been described using UML diagrams. In [1],
all patterns are illustrated by UML class diagrams and
many of the descriptions of behavioral patterns also
include sequence diagrams covering the dynamics of the
message exchange among the participants of the pattern.

In this paper, we advocate for the usage of behavioral
design patterns (referred throughout the text as behavioral
patterns) as a means to foster reusability of
communication schemes within system-level specification
models. In order to keep with the de facto standard for
behavioral pattern representation and also to benefit from
legacy patterns, we will use standard UML diagrams in
our approach. However, in order to maximize the
potential usage of such patterns, we propose to integrate
them within executable and simulatable specification
models (such as Matlab/Simulink, SystemC, VHDL and
Verilog), which are mainstream in today's system level
design flows. By advocating for such integration, our
approach differentiates itself from the related work in
UML-based SoC specification, covered in Section 2 of
this paper. The proposed integration is based on the actor-
oriented paradigm [7], which is detailed in Section 3. The
proposed integration strategy is covered by Section 4, and
a case study implemented as an extension to the Ptolemy
II actor-oriented framework is reported in Section 5. The
paper is closed with a discussion of the achieved results
and potential extensions in Section 6.

2 Related Work

Most of the current approaches using UML as a

hardware/software system-level specification language
address either static analysis or code generation methods.
Oliveira et al [8] use static analysis to evaluate
performance, memory footprint and power consumption
of alternative embedded software behavioral patterns
modeled using UML sequence diagrams. In [9], UML
class diagrams are used as templates for design space
delimitation and exploration.

Different alternatives for code generation techniques
based on UML diagrams can be found in a number of
research initiatives (mainly driven by industry). Many of

978-3-9810801-2-4/DATE07 © 2007 EDAA

them advocate for the joint usage of UML and SystemC.
In [10], a team of researchers from University of Catania
and ST Microelectronics stated that UML should be seen
as a high level modeling language and SystemC as a low
level system language. In order to allow the
interoperability of both languages, they proposed a set of
stereotypes that allow the modeling of SystemC concepts
using UML diagrams. The stereotypes were grouped
together in the so-called UML 2.0 profile for SystemC.
Similar approaches – with different strategies on the
definition of stereotypes – were presented by researchers
from Politecnico de Milano and Siemens ICM [11] and
Fujitsu [12]. In all three cases, the stereotypes were
created to support code generators, which should be able
to generate SystemC code out of UML models. Code
generation is also explored in [3] and [13]. The former
targets the automatic generation of component wrappers
according to UML models, while the later addresses the
modeling and code generation targeting a FPGA-based
execution platform.

The proposed method differs from all the
forementioned approaches because it allows the validation
of UML diagrams together with additional
system/subsystem models (legacy models, hardware-in-
the-loop, etc.). Static analysis of UML models can only
provide information that may aid the designer on
constructing the actual design model. Code generation
approaches require radical model transformation in order
to allow the validation of the system specification using
UML. The proposed approach, however, supports the
direct validation of UML models by including them
within executable and simulatable system models. This
allows for a more realistic design flow, because it is very
unreasonable to expect that a system could be completely
modeled in UML alone, and its implementation will be
completely generated a posteriori in a pure model-driven
fashion. The most likely scenario, which is the target of
the approach presented here, allows for heterogeneous
specifications in different languages and different levels
of abstractions. In such scenario, UML can be used only
when it is the best suitable method (for instance, to model
behavior patterns).

3 Actor-oriented System Specification

The inclusion of UML diagrams within executable and

simulatable models is not straightforward. Firstly, because
different types of executable and simulatable models can
present significant differences in syntax and semantics.
Secondly, because UML comprehends a number of
different diagrams focusing on different views of a
system, and each of them will interact with an executable
specification in a different way. The approach presented
in this paper tackles the two difficulties by restricting (a)

the type of executable models it supports and (b) the types
of UML diagrams it uses. The first restriction, which
limits this approach to actor-oriented models, will be
justified as follows, while the restriction on the types of
UML diagrams will be covered in Section 4.

 Actor orientation was initially proposed as a model
for concurrent computation by Hewitt and further
developed by Agha [14]. It is based on actors, which are
concurrent elements that communicate through
asynchronous message passing. More recently, the model
was revisited by Lee within his work on the Ptolemy II
framework [7]. Lee's approach supported the
implementation of heterogeneous actor-oriented models,
allowing experimentation with different models of
concurrency and communication in a single system model
through hierarchical composition.

To support such heterogeneity, Lee separated
completely the syntax and the semantics of the models.
The model structural features are represented by the so-
called abstract syntax, which comprehends the actor
placeholders, their input and output ports and the
relations that establish connections between ports (Figure
1). The actor placeholders are generic enough to
encapsulate actors specified in different languages, which
actually provide the particular semantics of each actor. In
the Ptolemy II framework the actors can be specified
using Java, C/C++, Cal, Matlab, Python, among others.
Available extensions to that framework are known to
support also VHDL, Verilog, SystemC [15] and even
FPGA-based hardware-in-the-loop modules [16].

Figure 1. Actors, ports and relations in

Ptolemy II

For the purposes of this paper, however, the major

feature of Lee’s view on actor orientation is the
possibility to compose heterogeneous models
hierarchically. Such approach allows different execution
semantics to be associated to each hierarchical level of the
model, in opposition of the commonly used global
scheduler. This means that actors can be contained inside
of other actors (so-called composite actors), and the inner
actors are allowed to inherit the execution semantics from
its container or to be assigned their own. The execution
semantics, which defines how and when each actor can
communicate, compute and update its internal state, is
defined by a director. Many directors were implemented
within Ptolemy II, representing well known concurrent

input
port

output
port

Actor1

input
port

output
port

Actor2

relation

models of computation (MoCs) such as discrete events,
synchronous dataflow and Kahn process networks.

In summary, actor orientation within Ptolemy II
allows for experimentation on concurrent execution of
actors, which can be specified in a variety of languages or
as a composition of other actors, and in each hierarchical
level of composition a new definition of execution
semantics can be considered. In the following section,
such features are used to allow the inclusion of actor-
encapsulated UML diagrams representing behavioral
patterns within Ptolemy II models.

4 Integrating Behavioral Patterns to Actor-
oriented Models

Behavioral patterns are traditionally described using

UML class and sequence diagrams. Class diagrams define
the types of participants of the patterns and which
messages each of them can receive, while sequence
diagrams detail the precedence and concurrence
relationships among the exchanged messages. A simple
example is shown in Figure 2, representing a distributed
consensus pattern according to the Chandra-Toueg
algorithm [17], which is widely used in fault-tolerant
distributed systems. The class diagram in Figure 2a shows
the two participating classes - Coordinator and Process –
as well as their interrelation (generalization) and the
message signatures for each of them. The dynamics of the
pattern is shown on Figure 2b, where the vertical lines
represent the lifelines of three instances of the classes
shown in the corresponding class diagram, and the arrows
represent asynchronous message calls between them.

Coordinator

+estimate()
+ack()
...

Process

+proposal()
+decision()

[]

par

[]

par

[]

par

[]

par

: Coordinatorcoord : Processp2: Processp1

proposal()3:

proposal()4:

decision()7:

decision()8:

estimate()2:

ack()6:

estimate()1:

ack()5:

[]

par

[]

par

[]

par

[]

par

(a) (b)

Figure 2. Behavioral pattern in UML

The correspondence of the modeling constructs from
UML to those in actor-oriented models is somehow
straightforward, but can give margin to distinct
interpretations. In this paper, we follow an initial
approach from [18] and start making the following
assumptions for the integration of sequence diagrams into
actor-oriented models:

(1) all sequence diagrams are contained by a
composite actor;

(2) each instance of a class represented as a lifeline in
a sequence diagram is statically and bijectively mapped to
an actor contained by the composite actor mentioned in
assumption 1;

(3) each message between instances in a sequence
diagram is statically mapped as ports and relations into
the corresponding actor, as follows:

(3.1) asynchronous messages are mapped to an
output port in the actor associated to the instance
on the sending side of the message, an input port
in the actor associated to the instance on the
receiving side of the message, and a relation
between them;
(3.2) synchronous messages are mapped the
same way as defined for asynchronous
communications, additionally to an input port in
the actor associated to the instance on the
sending side of the message, an output port in the
actor associated to the instance on the receiving
side of the message, and a relation between them,
in order to allow the return of the control flow to
the sending actor which must be suspended upon
the synchronous call.

Figure 3 illustrates the application of the basic set of
assumptions. Figure 3.a shows a simple sequence diagram
with one synchronous and one asynchronous message,
which are encapsulated within the composite actor shown
in Figure 3.b.

Some of these assumptions were already taken into
account on two different approaches for the integration of
sequence diagrams and actor-oriented models reported in
[18] and [19]. In [18], the sequence diagram was
integrated as a composite actor that uniquely schedules
the message calls to its ports according to the sequence
diagram it encapsulates. The mapping between lifelines
and actors is done by linking the ports of the actors with
those ports associated to the message calls (Figure 3.c).
Differently, in [19] the sequence diagram is implemented
as an attribute to the director associated to a given
composite actor. It means that the sequence diagram
lifelines are created in accordance to the actors contained
within the composite actor, and the sequence of messages
can be either enforced or verified by the director.

 A B C

x

y

yr

(a)

Ax
By
Cyr

Bx
Cy
Byr

(b)

(c)

Figure 3. Integration of sequence diagrams
and actor-oriented models

While such assumptions are sufficient for allowing the

inclusion of simple behavioral patterns within actor-
oriented models, there are still some limitations:

- the structure of the pattern can’t be completely
modeled, as only the signatures of (part of) the messages
can be derived from the sequence diagram. No definition
of types are explicitly modeled, so nominal subtyping
can’t be explored and only a limited form of structural
subtyping is available;

- the mapping between instances and actors in
assumption 2 prevents dynamic polymorphism, which
may be required in a number of behavioral patterns. For
instance, in the example of Figure 2, Coordinator inherits
from Process (denoted by the generalization relationship),
which means that every instance of Coordinator is also an
instance of Process. Such relationship is actually needed
in the actual execution of the Chandra-Toueg algorithm,
because a different process takes up the role of
coordinator on every consensus round. Following the
basic set of assumptions, the complete implementation of

the algorithm using the pattern shown in Figure 2 would
not be possible, because a single actor would be
permanently mapped to the coordinator role.

In order to overcome the limitations, we update the set
of assumptions as follows:

(2) each instance of a class represented as a lifeline in
a sequence diagram is statically or dynamically mapped to
an actor contained by the composite actor mentioned in
assumption 1. The dynamic mapping function must
observe assumption 5;

(4) class diagrams can be included as attributes to
composite actors; lifelines in a sequence diagram can be
assigned a class or interface from those available as
attributes on its container, or recursively up to its top-
level container; ports in an actor can be assigned a class
or interface from those available as attributes on its
container, or recursively up to its top-level container. For
input ports, the assignment denotes the required interfaces
of that port, while for output it denotes the provided
interface, in a similar fashion as in a UML 2.0 composite
entity diagram;

(5) dynamic mapping of lifelines and actors is
conditional to type checking, which means that a lifeline
will only be associated to an actor that was assigned a
type (class, interface) which is the same, or a subtype, of
its own.

By relying on the extended set of assumptions, system
specification can be done using three types of UML
diagrams – class, sequence and composite structure –
which are fully integrated to an actor-oriented model.

Figure 4. Actor-oriented model including
encapsulated sequence diagram and explicit

interface definitions as attributes

Figure 4 depicts a new usage of the sequence diagram

from Figure 3.a, but this time exploring the extended set
of assumptions. Notice the class diagram appearing as an
attribute of the model in the upper left side, so that the
type and subtype definitions are done explicitly and

 Ax
By
Cyr

Bx
Cy
Byr

adaptation

C

error

filter_weight

filter

B

signal_in

set_weight

errorsource
A

RND

()

()

<< >>

By
Cyr

Bx
Cy
Byr

direction
control success

navigation

system

 position

ack

redirect

GPS
receiver

A

redirect

Galileo
receiver

M

A C

y()

B

x()

M

A

nominally. The model itself, which is still an actor-
oriented model, now follows the visual syntax of a
composite structure diagram, with decorators for provided
and required interfaces on the ports. The presented
example also includes static relations between actors and
lifelines through port connections as in the example of
Figure 3, but in this case both “GPS Receiver” and
“Galileo Receiver” actors can be dynamically associated
to the lifeline A embedded within the composite actor,
because both satisfy the interface requirement of the
corresponding port (“GPS Receiver” provides interface A,
while “Galileo Receiver” provides interface M, which is a
subtype of A).

5 Case study

The validation of the proposed assumptions described

in the previous section was partially achieved with the
implementation of an extension to the Ptolemy II
framework. Additional constructs were added to the
Ptolemy data model and corresponding user interface
components were added to Vergil (Ptolemy II GUI) in
order to allow the entry of sequence diagrams by the user
and the correct execution of the modeled communication
behavior. Extensions to the Ptolemy II director library
were also needed, in order to support the sequential
dependency constraints imposed by the sequence
diagrams.

The extended framework was used to model the
behavioral pattern from Figure 2. It was encapsulated
within a composite actor according to the approach
described in the previous section. To verify its
functionality within an application scenario, we modeled
a testbench using Ptolemy II actors representing a
distributed system composed of three sensor nodes
observing a particular feature (for instance, the amount of
infrared radiation in a given location or the license plate
of a car in a highway). The three nodes use the distributed
consensus pattern to check if their readings are consistent
(in normal operation, all three readings must be the same).
In the modeled testbench, each node is associated to a
process, one of them being the coordinator. The sensors
send data to the processes periodically, and the processes
use the behavioral pattern to obtain consensus regarding
the read value. The implemented actor-oriented model is
shown in Figure 5, where the larger actor on the center-
right side encapsulates the UML sequence diagram.

The execution of the model showed the correct
functionality of the sequence diagram, which enforced the
proper exchange of messages between the coordinator and
the two other processes, and the consensus was correctly
achieved. In order to validate the modeled system under
more realistic circumstances, we included two types of
faults: delays of the sensor readings and faulty readings.

The first fault represents the non-deterministic time
intervals which can arise, for instance, due to image
processing or data compression functionality at the sensor
side, while the second models a transient fault that
affected the sensed value itself.

The delay was modeled as a uniformly distributed
variable, while the sensor reading error was modeled as a
poisson process characterized by a mean time between
faults (MTBF). Table 1 shows the obtained simulation
results for the number of failures to achieve consensus in
a batch of 1000 readings per sensor (one reading per
sensor per time unit) under different reading delays and
different MTBFs. Each result was obtained by averaging
the number of failures obtained in 10 simulation runs.

Figure 5. Case study in Ptolemy II

MTBF delay
 20 30 40 50 60

0-0.2 6.4 2.5 1.1 0.0 0.0
0-2.0 6.0 2.7 0.3 0.0 0.0

Table 1. Failures to achieve consensus

among sensor readings

It is possible to conclude that the system is reliable
when the mean time between faulty sensor readings is
larger than 50 time units, as the consensus pattern worked
100% of the times in such scenario, even under presence
of faults in one of the sensors (the algorithm is designed
to tolerate f < n/2 faults). It is also important to notice that
the behavioral pattern ensured the correct communication
behavior even under delays of the same order of
magnitude as the sensor throughput.

6 Conclusions and future work

This paper presented an approach to model and

execute UML-based behavioral patterns together with
actor-oriented system specifications. The approach differs
from related work by relying on the joint execution of
UML-based patterns and actor models. Such integrated
approach has the potential to increase the acceptance of
UML within system-level designers by allowing them to
explore only the features of UML which can bring
immediate benefit to the design methodology they are
already familiar. Instead of learning a new (and relatively
complex) language from scratch, they can learn some of
the features of UML and understand it from the point of
view of a classic block-based modeling and execution
framework.

In order to bring this approach into practice, a number
of assumptions were made to link basic UML concepts to
actor-orientation constructs, and such assumptions were
used as guidelines to extend a well-known framework –
Ptolemy II – so that designers can graphically enter
executable system specification models containing UML-
based behavioral patterns. A case study was implemented
on top of this framework, modeling a distributed
consensus pattern applied to a distributed sensor system.
Simulation results were obtained on the robustness of the
system under two types of faults: sensor reading delays
and faulty readings.

The presented extension to Ptolemy II is still work in
progress, as it doesn't implement completely the extended
set of assumptions presented in Section 4. For instance,
the possibility of dynamic mapping between actors and
lifelines in a sequence diagram was not yet fully explored.
Such possibility, to be addressed in future work, is of
particular interest for the modeling of emerging
behavioral patterns in ad-hoc wireless networks (patterns
which are formed dynamically when nodes of particular
types are in each other's neighborhood) or in multi-
processor systems containing reconfigurable processors
(processors can reconfigure their datapath dynamically in
order to implement a given type which is needed to
establish a desired pattern). Furthermore, the presented
techniques would also benefit from a formal approach to
the mapping of UML and actor orientation concepts at the
metamodel level.

References

[1] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,
Design Patterns: Elements of Reusable Object-Oriented
Software. Reading: Addison-Wesley, 1995.
[2] H. G. Cunningham et al., “Portland Pattern
Repository”, January 2006, http://c2.com/ppr .

[3] R. Damaševičius, G. Majauskas, and V. Štuikys,
“Application of design patterns for hardware design,” in Proc.
40th Design Automation Conf., 2003, pp. 48-53.
[4] B. P. Douglass. Real-Time Design Patterns: Robust
Scalable Arch. for Real-Time Systems. Addison Wesley, 2003.
[5] André De Hon et al, “Design Patterns for
Reconfigurable Computing”, in Proc. IEEE Symp. Field-
Programmable Custom Computing Machines, 2004, pp. 13-23.
[6] D. Gay, P. Lewis, and D. Culler, “Software design
patterns for TinyOS,” in Proc. ACM SIGPLAN/SIGBED Conf.
on languages, compilers, and tools for embedded systems
(LCTES), 2005, pp. 40-49.
[7] E. A . Lee, S. Neuendorffer, and M. J. Wirthlin,
“Actor-Oriented Design of Embedded Hardware and Software
Systems,” Journal of Circuits, Systems, and Computers, vol. 12,
n. 3, pp. 231-260, 2003.
[8] M.F. S. Oliveira, L. Brisolara, F.R. Wagner, L. Carro.
“Embedded SW Design Exploration Using UML-based
Estimation Tools,” presented at DAC Workshop on UML for
SoC Design (UML-SOC), Anaheim, USA, 2005.
[9] L. S. Indrusiak, M. Glesner, M. E. Kreutz, A. A.
Susin, and R. A. L. Reis, “UML-Driven Design Space
Delimitation and Exploration: A Case Study on Networks-on-
Chip,” in Proc. IEEE Workshop on Design and Diagnostics of
Electronic Circuits and Systems, 2004, pp. 5-12.
[10] E. Riccobene, P. Scandurra, A. Rosti, S. Bocchio. “A
SoC Design Methodology Involving a UML 2.0 Profile for
SystemC,” in Proc. of IEEE/ACM Design Automation and Test
in Europe, 2005, pp. 704-709.
[11] F. Bruschi, D. Sciuto. “A SystemC based design flow
starting from UML models,” presented at European SystemC
Users Group Meeting (ESCUG), Lago Maggiore, Italy, 2002.
[12] Q. Zhu, R. Oishi, T. Hasegawa, T. Nakata. “System on
Chip Validation using UML and CWL,” in Proc. of
IEEE/ACM/IFIP Int. Conf. on Hardware/Software Codesign and
System Synthesis, 2004, pp. 92 – 97.
[13] T. Schattkowsky, W. Mueller, and A. Rettberg, “A
Generic Model Execution Platform for the Design of Hardware
and Software” in UML for SOC Design, G. Martin and W.
Müller, Eds. Dordrecht: Springer, 2005, pp. 63-88.
[14] G. A. Agha. ACTORS: A Model of Concurrent
Computation in Distributed Systems. Cambridge: MIT Press,
1986.
[15] Mirabilis Design Inc. „VisualSim“, July 2006,
http://www.mirabilisdesign.com/ .
[16] D. F. Jimenez-Oróstegui, L. S. Indrusiak, and M.
Glesner, "Proxy-Based Integration of Reconfigurable Hardware
Within Simulation Environments". In Proc. IEEE Int. Conf.
Microelectronic Systems Education, 2005, pp. 59 – 60.
[17] T. D. Chandra, S. Toueg, „Unreliable Failure
Detectors for Reliable Distributed Systems,“ Journal of the
ACM , 43(2), pp. 225-267.
[18] L. S. Indrusiak, A. Thuy, and M. Glesner, „On the
Integration of UML Sequence Diagrams and Actor-Oriented
Simulation Models,” presented at DAC Workshop on UML for
SoC Design (UML-SOC), Anaheim, USA, 2005.
[19] A. Thuy, L. S. Indrusiak, and M. Glesner, „Applying
Communication Patterns to Actor-Oriented Models with UML
Sequence Diagrams“, in Proc. Forum on Spec. and Design
Languages, 2006.

	Main
	DATE07
	Front Matter
	Table of Contents
	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

