

 1

Modeling and Simulation to the Design of Σ∆ Fractional-N Frequency Synthesizer

Shuilong Huang1, Huainan Ma2, and Zhihua Wang1
1Department of Electronics Engineering, Tsinghua University, Beijing 100084, China

2RFIC Corporation, Beijing 100084, China

Abstract

A set of behavioral voltage-domain verilogA/verilog models
allowing a systematic design of the Σ∆ fractional-N
frequency synthesizer is discussed in the paper. The
approach allows the designer to accurately predict the
dynamic or stable characteristic of the closed loop by
including nonlinear effects of building blocks in the models.
The proposed models are implemented in a three-order Σ∆
fractional-N PLL based frequency synthesizer with a 60MHz
frequency tuning range. Cadence SpectreVerilog simulation
results show that behavioral modeling can provide a great
speed-up over circuit-level simulation. Synchronously, the
phase noise, spurs and settling time can also be accurately
predicted, so it is helpful to a grasp of the fundamentals at
the early stage of the design and optimization design at the
system level. The key simulation results have been compared
against measured results obtained from an actual prototype
validating the effectiveness of the proposed models.

1 Introduction

 Fractional-N PLL based frequency synthesizer is widely
used in modern wireless communication system due to high
frequency resolution and fast settling time. However, it also
encounters some challenges. First, factional-N PLL
frequency synthesizer is a complicated mixed-signal system,
and there is no stable periodic solution, and even no tool can
effectively and quickly simulate the closed fractional-N PLL
frequency synthesizer, especially for transistor level circuit.
In addition, the time constants of different loop components
may vary over a very wide range, so that the total simulation
time must be at least one order of magnitude greater than the
largest time constant of the loop filter for the loop to be
locked. If phase noise needs to be studied, an even greater
simulation time is required to obtain a sufficiently large
sample space to accurately predict the random behavior.
This would lead to high cost and slow turnaround in design.

Much effort has been developed to solve the above
problem. In [1], Behavioral modeling with Matlab/C can
acquire system simulation result, but it makes system design
be independent to component circuit, and optimization can
not be realized in system level, so it is not suitable for top-
down design. Macromodel [2] is used for modeling the
digital part. The simulation speed is quickened, whereas the
phase noise/spur analysis is yet a problem. In [3], phase-
domain and voltage-domain model can effectively predict
the phase noise or jitter. However, the models do not include
the nonlinear effects like charge pump mismatch or output
delay difference of phase-frequency detector (PFD) etc., so
it can not predict spur performance. In addition, the voltage-
domain models can not be implemented in the fractional-N
architecture. The behavioral models [4] consider the effects
of charge pump mismatch and output delay difference of
PFD, but the jitter of component circuit is not included in the
model.
 The primary contribution of the paper is to demonstrate a
behavioral simulation methodology and a set of models
using verilogA/verilog description. Particular attention is
devoted to model the nonideal characteristics of the building
blocks. The circuit-level simulation results of the individual
building blocks can be back-annotated onto the behavioral
models for further verification. The models can be used to
accurately predict the phase noise/spur performance, and the
concepts introduced can be applied to a number of PLL
applications, which is especially applied in the design of the
Σ∆ fractional-N frequency synthesizer.
 The paper is organized as follows. Section 2 shows the
mixed-signal simulation flow and strategy. Section 3
presents the loop component models based on
verilogA/verilog language. Finally, Simulation results are
shown in Section 4, and conclusions are given in Section 5.

2 Mixed-signal simulation flow and strategy

The Σ∆ fractional-N frequency synthesizer modeled in the
paper is shown in Fig. 1, which can track phase/frequency of
input signal and output a series of high spectral purity
frequencies. The architecture consists of a reference
oscillator (OSC), a frequency doubler, a phase/frequency

978-3-9810801-2-4/DATE07 © 2007 EDAA

 2

detector (PFD), a charge pump (CP), a loop filter (LF), a
voltage-controlled oscillator (VCO), a Σ∆ modulator, and a
divider. The frequency doubler is used to extend the
reference frequency and the PFD is used to detect the
difference between the input reference frequency and the
output frequency of VCO. It exports the voltage signal
proportional to this difference, then drives the charge pump
circuit. The output current of charge pump is converted to
voltage by the loop filter to control the output frequency of
the VCO. The Σ∆ modulator is used to generate a random
sequence with the desired duty cycle to control the divider in
the feedback path.

Fig. 1: Σ∆ fractional-N frequency synthesizer.

 The proposed mixed-signal simulation flow is shown in
Fig. 2. The analog loop components like VCO are described
with verilogA language, and the digital loop components
like divider and Σ∆ modulator are modeled based on verilog
language. The loop filter remains a full circuit-level model
and the noise behavior of the filter is naturally included in
the resistor model. Due to the lack of periodic stable solution
in fractional-N architecture, PSS and PNOISE analysis fails
to predict stable performance, so the mathematical tool
Matlab is implemented to post-process the simulation data.
The behavioral model can be replaced by transistor level-
model or layout-level abstracted model on the hierarchy-
editor environment, so it is suitable for top-down design
flow.
 To be an effective behavioral model, some strategies are
needed to be considered. First, the parameters that can
represent the characteristics of circuit should be contained as
many as possible. Second, nonlinear effects should be
included in the behavioral model, which influence the spurs
and jitter of the closed loop. The spur is a deterministic
signal. The amount of which mainly depends on current
mismatch and leakage current of charge pump, output delay
difference of PFD, linearity of PFD/CP, and output of Σ∆
modulator. The design and optimization is easily realized at
system-level and circuit-level design. However, Jitter is an
uncertainty or randomness of signal timing, which can be
reformulated as a phase noise. Accurate analysis and
prediction of jitter is very difficult, so just simple
synchronous and accumulating jitter is considered here to
easily estimate jitter behavior of the PLL. Third, it is
desirable to combine jitter sources to the degree possible.
For instance, the output-referred noise of divider and the
input-referred noise of the PFD/CP are combined with the

output noise of OSC. The models after combination will run
more efficiently by removing support for jitter. Last, to
quicken simulation speed, it is possible to include the
frequency division ratio of divider as part of the VCO by
adjusting the VCO gain and jitter. If the division ratio of
divider is large, the simulation runs much faster because the
high VCO output frequency is never generated. But the
simple mergence of the two blocks is just suitable for
integer-N frequency synthesizer. In the fraction-N
architecture, the transient ratio is not constant, so the
mergence should consider the effects of Σ∆ modulator.

Fig. 2: Mixed-signal simulation flow.

3 Circuit model based on verilogA/Verilog

3.1 OSC Model

The model is given in Fig.3, which supports two jitter
parameters. The accJitter parameter is used to model the
accumulating jitter of the OSC, and the syncJitter parameter
is used to model the synchronous jitter of divider, PFD, and
charge pump. The duty parameter is used to model the duty
cycle ratio of the OSC signal. The timer() function is used to
model accumulating or synchronous jitter of OSC. At every
output transition, the next transition is scheduled using the
timer () function to be KJKT // δ+ in the future, where
δ is the unit-variance zero-mean random process and K is
the number of output transitions per period, typically, K=2.

`include "constants.vams"
`include "disciplines.vams"
module OSC_behav(out);
output out; electrical out;
parameter real freq=19.2M from(0:inf);
parameter real Vlo=0,Vhi=2.7;
parameter real tt=0.1n;
parameter real accJitter=30f from[0:0.1/freq); parameter real
syncJitter=400f from[0:0.1*ratio/freq);

 3

Fig. 3: OSC model.

3.2 PFD Model

 The PFD shown in Fig. 4(a) employs sequential logic to
create three states and responds to the rising edges of the two
inputs. When reference signal ref leads feedback signal fbk,
the output UP remains high until fbk goes high, at which
point UP returns to zero. The behavior is similar for the fbk
input. Fig.4(b) illustrates the modeling approach for the PFD.
@cross statement is triggered when the input crosses the
threshold in the user specified direction, used to model two
D triggers shown in Fig. 4(a). On every transition of the fbk
or ref input in direction dir, the output is set to “1”. The
outputs of the two D triggers are resetted to “0” on every
transition of reset input in the direction dir. The transition ()
function is used to model reset path delay and output delay
difference. The td1 parameter represents the reset path delay,
which is relative to the dead band of the charge pump. The
td2 parameter and td3 parameter are the delay of output path,
which is responsible for spurs in locked state.

(a)Circuit structure of PFD

(b) Model of PFD

Fig. 4: Circuit and model of PFD.

3.3 Charge Pump Model

 Charge pump in Fig. 5(a) pumps current into the loop
filter. The action is controlled by the UP and DOWN signals
from the PFD. When the UP signal is low, Iup is pump into
the filter and results in an increase in the voltage to VCO.
Similarly, when the DOWN signal is high, the current Idown
discharges from the filter resulting in a decrease in the
voltage to the VCO. The corresponding model is shown in
Fig. 5(b). For a simple model, just up/down current
mismatch and dead band of charge pump are considered in
the proposed model. The former is responsible for reference
spurs, and the latter is caused by the very narrow pulse of
UP or DOWN input, which is relative for phase noise. The
other nonlinearities like clock feedthrough, charge sharing,
charge injection, clock injection can be equivalent to the
amount of current mismatch or dead band. The td parameter
is used to model the dead band. The Iextra parameter is used
to model the current mismatching characteristic of charge
pump. If the control voltage on the loop filter is out of the
saturation range of charge pump, the output current of the
current source is only one tenth of the cur.

(a) Circuit structure of charge pump

`include "constants.vams"
`include "disciplines.vams"
module pfd_behav(ref,fbk,up,down);
input ref, fbk;
output up,down;
electrical ref,fbk,up,down;
integer resetx,reset,ax,bx;
parameter integer dir=1 from[-1:1] exclude 0;

integer n,accSeed,syncSeed;
accSD=accJitter*sqrt(ratio/2);
 syncSD=syncJitter;
 next1=(1-duty)/freq+$abstime;

next2=duty/freq+$abstime;end
 @(timer(next1+dt))begin
 n=!n;
dT=accSD*$dist_normal(accSeed,0,1);
dt=syncSD*$dist_normal(syncSeed,0,1);
next1=next2+(1-duty) /freq+dT; end
@(timer(next2+dt))begin
 n=!n;
dT=accSD*$dist_normal(accSeed,0,1);
dt=syncSD*$dist_normal(syncSeed,0,1);
next2=next1+duty/freq+dT; end
V(out)<+transition(n?Vhi:Vlo,0,tt);
end endmodule

parameter real tt=0.01n from(0:inf);
parameter real td1=0.10n from(0:inf);
parameter real td2=0.1n from(0:inf);
parameter real td3=0.4n from(0:inf);
parameter real ttol=1p from(0:inf);
parameter real Vlo=0,Vhi=2.5;
analog begin
 @(cross(V(ref)-0.5,dir,ttol) or cross(reset-0.5,dir,ttol))
begin
 if(reset==0) ax=1; else ax=0; end
 @(cross(V(fbk)-0.5,dir,ttol) or cross(reset-0.5,dir,ttol))
begin
 if(reset==0) bx=1; else bx=0; end
 if(ax==1 && bx==1)resetx=1; else resetx=0;
 reset=transition(resetx,td1,0.1n,0.1n);
 V(up)<+transition(ax ? Vlo : Vhi,td2,0.1n,0.1n);
 V(down)<+transition(bx ? Vhi:Vlo,td3,0.1n,0.1n);
end
endmodule

 4

`include "constants.vams"
`include "disciplines.vams"
module chargepumpnew_behav(up,dn,Iout);
input up,dn;
electrical up,dn;
electrical Iout;
parameter real cur=200u;
parameter real tt=0.1n from(0:inf);
parameter real td=1.20n from(0:inf);
real out, upx,dnx, cur_mid;
analog begin
 upx=V(up); dnx=V(dn);
 if(V(Iout)>=0.4 && V(Iout)<=1.4) cur_mid=cur;
 else cur_mid=cur/10;
 if(upx<=0.50 && dnx<=0.5) out=-cur_mid;
 else if(upx>=2.2 && dnx>=2.2) out=cur_mid+6u;
 else if(upx<=0.5 && dnx>=2.2) out=cur_mid/100;
 else out=cur_mid/1000;
 I(Iout)<+transition(out,td,tt);
end
endmodule

(b) model of charge pump
Fig. 5: Circuit and model charge pump.

3.4 VCO/Divider Model

 Due to high output frequency of VCO in the radio
applications, it is very time-consuming to simulate the
closed-loop PLL frequency synthesizer at the circuit-level
and even the behavioral-level, so it is very necessary to
include the frequency division ratio of the divider as part of
the VCO to quicken the simulation speed. However, because
the transient division ratio is not fixed in the Σ∆ modulator
fractional-N architecture, the divider model can not be
simply included in the VCO model. A solution is proposed
in the paper. The output of VCO is divided into two parts.
One is to provide divided signal to PFD for comparing, and
the division ratio is the transient modulated result by the Σ∆
modulator. The other part is used to analyze the spectral
purity and the division ratio is the fixed averaging value.
Fig. 6 shows the model description of VCO/divider. It is
mainly constructed by using the three serial operations. First
the input signal is scaled to compute the desired output
frequency combining with the output of Σ∆ modulator (f1-
f5). Then the frequency is integrated to compute the output
phase. Finally, the phase is used to generate the desired
output signal by computing with idtmod () function. The
first two @cross statements are used to record the jitter at
every clock cycle, and write the jitter data into periods.m
file. The next two @cross statements are used to realize the
divider function. The dT parameter is updated twice in every
clock cycle, which represents the jitter of VCO and divider.
The divratio/N_div parameter is used to model the change of
the divide ratio in every clock cycle. The system function
$dist_normal() is used to produce the uniform distributed
random data, and the system function $abstime is used to
record the current time.

Fig. 6: VCO/Divider model.

3.5 Σ∆ modulator & Frequency doubler Model

 Σ∆ modulator [5] shown in Fig.7 is a key block in the
frequency synthesizer, used to produce the fractional part of
the division ratio. Due to a pure digital circuit, Σ∆ modulator
is modeled based on verilog language, shown in Fig. 8
where the LSB of the input sequence is dithered to improve
the noise performance. The assign statement is used to
assign wire variable, whereas always@ block is used to
model D trigger. Multiplying 2, 1.5 or 0.5 is realized by left-
shift or right-shift operation, to reduce the layout area. The
highest 4bits of the sum7 parameter is quantized. The
operation is based on complement and the MSB of the
operand is the sign bit.

`include "constants.vams"
`include "disciplines.vams"
module vco_div_behav(f1,f2,f3,f4,f5,vin,fout);
input vin, f1,f2,f3,f4,f5;
output fout;
electrical vin,fout, f1,f2,f3,f4,f5;
parameter integer dir=+1 from[-1:+1] exclude 0;
parameter real N=32, N_div=43.4375;
parameter real Vmin=0.5, Vmax=2.2;
parameter real Fmin=1.644G, Fmax=1.695G;
parameter real Vlo=0,Vhi=2.7;
parameter real tt=0.01/Fmax from(0:inf);
parameter real jitter=30.0f from[0:0.25/Fmax);
parameter real ttol=1u/Fmax from(0:1/Fmax);
parameter real outStart=120u from(1/Fmin:inf);
parameter real td=0.1n from(0:inf);
real freq, phase,dT,delta,prev;
integer n,seed,d1,d2,d3,d4,d5,fp1,divratio;
analog begin
@(initial_step) begin
 seed=-561;
 prev=$abstime; delta=jitter*sqrt(2*N_div);
 fp1=$fopen("periods.m");
end
 if(V(f1)>=2.2) d1=1; else d1=0;
 if(V(f2)>=2.2) d2=1; else d2=0;
 if(V(f3)>=2.2) d3=1; else d3=0;
 if(V(f4)>=2.2) d4=1; else d4=0;
 if(V(f5)>=2.2) d5=1; else d5=0;
 divratio=N+d1+2*d2+4*d3+8*d4+16*d5;
freq=(V(vin)-Vmin)*(Fmax-Fmin)/(Vmax-Vmin)+Fmin;
if(freq>Fmax) freq=Fmax; if(freq<Fmin)freq=Fmin;
freq=(freq/N_div)/(1+dT*freq/N_div);
phase=6.28*idtmod(freq,0.0,1.0,-0.5);
@(cross(phase+1.57,+1,ttol))

dT=delta*$dist_normal(seed,0,1);
@(cross(phase-1.57,+1,ttol)) begin
 dT=delta*$dist_normal(seed,0,1);
 if($abstime>outStart) $fstrobe(fp1,"%0.10e",$abstime-rev);

prev=$abstime;
 end

@(final_step) $fclose(fp1);
@(cross(phase+divratio/N_div,+1,ttol)) n=Vhi;
@(cross(phase-divratio/N_div,+1,ttol)) n=Vlo;
 V(fout)<+transition(n,td+dx,tt);
end
endmodule

 5

The frequency doubler shown in Fig.9 is a very simple
digital block, which modeling process is similar to that of
Σ∆ modulator, so it will not be repeated.

Fig. 7: Three-order Σ∆ modulator.

Fig. 8: Model of Σ∆ modulator.

Fig. 9: Frequency doubler.

4 Simulation result

 The ideas proposed have been applied to model and
simulate the fractional-N PLL frequency synthesizer shown
in Fig. 1. The synthesizer is chosen with a reference
frequency 19.2MHz, a 1.63GHz-1.69GHz output frequency
range, a 0.2mA charge pump current. The jitter of OSC is
35fs, and the phase modulation jitter in VCO is 40fs, and the
phase modulation jitter in other driven blocks is about 400fs.
The output delay difference of PFD is 0.3ns, and the
sink/source current mismatching is 15µA. The
SpectreVerilog simulator is used for model verification.
 Fig .10 shows the wave of the VCO control voltage. The
division ratio is 43.4375 and 43.4375→40.4375. There is
only a minute taken to complete the 120µs transient analysis
for the PLL loop, but the time is over 24 hours to complete
120µs at the circuit-level, so behavioral models can save
much more time. Fig. 11 is the simulated phase noise of the
closed loop. The simulation time length is 120mS, and the
consumed cpu time is 5 hours or so in a 64bits PC server.
Fig.12 is the measured phase noise of the prototype PLL,
which can be compared with the plot shown in Fig. 11. Both
plots show the noise contributions from the various blocks of
the system. The OSC noise contribution is clearly visible in
the lower-frequency range. The noise from PFD/CP and
divider is dominating in the range of cutoff frequency. The
amount of which depends on the level of synchronous jitter
exhibited by divider and PFD/CP and the loop bandwidth.
The in-band spurs can be observed in the low frequency
range in Fig. 11, which is caused by the poor linearity of
PFD/CP, especially the dead zone of PFD/CP. The spurs will
reduce and even disappear when the dead zone is narrowed
or the linearity is improved. The phase noise is dominated by
the VCO and Σ∆ modulator in the range that goes from the
cutoff frequency up to approximately 10-MHz offset
frequency. The noise becomes white beyond the range. The
fractional spurs out of the loop bandwidth is mainly caused
by the Σ∆ modulator, whereas the reference spur is caused
by the frequency doubler which is sensitive to the duty cycle
ratio. Due to the limited calculation accuracy, the location
and magnitude of the spur is a little different. There is a
duty-cycle corrector in the frequency doubler of the
prototype PLL, so the reference spur can be suppressed to
the noise level. The other parasitic effects have not
accounted in the proposed models can be easily added to
improve the prediction accuracy, so the proposed behavioral
models is helpful to optimization design at the system-level.

module modulator(clk, rst,dither_en, bout, k_dth);
input clk, dither_en;
input[21:0] k_dth;
output[4:0] bout;
reg[4:0] bout;
reg[3:0] bout_pre;
reg[21:0] A2, B3, A3, B2, A4;
wire[21:0] sum1,sum2,sum3,sum4,sum5,sum6,sum7,
 v_quan, v_back;
 assign sum1 ={k_dth[21:1],1'b0} + v_back;
 assign sum2 = sum1 + A2;
 assign sum3 = A2 + A3;
 assign sum4 = A3 + B2;
 assign sum6 = B3 + A4;
 assign sum7 = sum5 + sum6;
 always @(posedge clk or posedge rst) begin
 if(rst) A2 <= 22'h0;
 else A2 <= sum2;
 end
 assign B3 ={A2[20:0],1'b0}; //B3 = 2 * A2
always @(posedge clk or posedge rst)
begin
 if(rst) A3 <= 22'h0; else A3 <= sum3;
 end
 always @(posedge clk or posedge rst)
begin
 if(rst) B2 <= 22'h0;
 else B2 <= sum4; end
 assign A4= {B2[21],B2[21:1]};
 assign sum5 = A3 + {A3[21],A3[21:1]};
 always @(posedge clk or posedge rst)
 begin
 if(rst)
 begin
 bout <= 5'b00000;
 bout_pre <=4'b1101;
end
 else
 begin
 bout_pre <= sum7[21:18] +4'b 1000;
 bout <= bout_pre +5'b01011- 4'b 1000;
end
 end
assign v_quan = {sum7[21:18],18'h0};
assign v_back = ~v_quan + 1'b1;
endmodule

 6

Fig. 10: Closed-loop locked process.

Fig. 11: Phase noise of PLL.

Fig. 12: Measured phase noise of prototype PLL.

5 Conclusion

 A set of behavioral voltage-domain verilogA/verilog
models are presented in the paper, which are implemented in
a three-order Σ∆ fractional-N PLL based frequency

synthesizer with a 60 MHz frequency tuning range. The
behavioral modeling can provide a great speed-up over
transistor simulation, allowing an optimal building block
design and giving insight to the key characteristics
determining the overall performance by selectively
controlling and evaluating the contribution of each noise
source and nonideal element. The behavioral models can be
calibrated by circuit-level simulation, so the high-level
model can accurately analyze the characteristics of dynamic
locked process and stable spectral purity. Simulation and
measured results verify the flexibility and effectiveness of
the behavioral models.

Acknowledgements

 This research was partly supported by the National
Science Foundation of China (No. 60475018, No.
60372021) and National Key Basic Research and
Development Program (No.G2000036508)

References

[1] M. H. Perrot, M. D. Trott, and C.G. Sodini, A modeling
approach for Σ-∆ fractional-N frequency synthesizers
allowing straightforward noise analysis, IEEE J. Solid-State
Circuits, 37, 8, 1028-1038, 2002.

[2] Yiwu Tang and Mohammed Ismail, A methodology for fast
SPICE simulation of frequency synthesizers, IEEE Circuits
and Devices Mag., 16, 4, 10-15, 2000.

[3] K. Kundert, Predicting the phase noise and jitter of PLL-
based frequency synthesizer, Available from www.designers-
guide.com, May, 2003.

[4] Abhijit Phanse, Ramin Shirani, Behavioral modeling of a
phase locked loop, Southcon/96, 400-404, 1996.

[5] W. Rhee, B. S. Song and A. Al, A 1.1-GHz CMOS fractional-
N frequency synthesizer with a 3-b third-order ∆Σ
modulator, IEEE J. Solid-State Circuits, 35, 10, 1453-1460,
2000.

	Main
	DATE07
	Front Matter
	Table of Contents
	Author Index

