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Abstract 

A set of behavioral voltage-domain verilogA/verilog models 
allowing a systematic design of the Σ∆ fractional-N 
frequency synthesizer is discussed in the paper. The 
approach allows the designer to accurately predict the 
dynamic or stable characteristic of the closed loop by 
including nonlinear effects of building blocks in the models. 
The proposed models are implemented in a three-order Σ∆ 
fractional-N PLL based frequency synthesizer with a 60MHz 
frequency tuning range. Cadence SpectreVerilog simulation 
results show that behavioral modeling can provide a great 
speed-up over circuit-level simulation. Synchronously, the 
phase noise, spurs and settling time can also be accurately 
predicted, so it is helpful to a grasp of the fundamentals at 
the early stage of the design and optimization design at the 
system level. The key simulation results have been compared 
against measured results obtained from an actual prototype 
validating the effectiveness of the proposed models.  

 
 

1 Introduction 

 Fractional-N PLL based frequency synthesizer is widely 
used in modern wireless communication system due to high 
frequency resolution and fast settling time. However, it also 
encounters some challenges. First, factional-N PLL 
frequency synthesizer is a complicated mixed-signal system, 
and there is no stable periodic solution, and even no tool can 
effectively and quickly simulate the closed fractional-N PLL 
frequency synthesizer, especially for transistor level circuit. 
In addition, the time constants of different loop components 
may vary over a very wide range, so that the total simulation 
time must be at least one order of magnitude greater than the 
largest time constant of the loop filter for the loop to be 
locked. If phase noise needs to be studied, an even greater 
simulation time is required to obtain a sufficiently large 
sample space to accurately predict the random behavior. 
This would lead to high cost and slow turnaround in design. 

Much effort has been developed to solve the above 
problem. In [1], Behavioral modeling with Matlab/C can 
acquire system simulation result, but it makes system design 
be independent to component circuit, and optimization can 
not be realized in system level, so it is not suitable for top-
down design. Macromodel [2] is used for modeling the 
digital part. The simulation speed is quickened, whereas the 
phase noise/spur analysis is yet a problem. In [3], phase-
domain and voltage-domain model can effectively predict 
the phase noise or jitter. However, the models do not include 
the nonlinear effects like charge pump mismatch or output 
delay difference of phase-frequency detector (PFD) etc., so 
it can not predict spur performance. In addition, the voltage-
domain models can not be implemented in the fractional-N 
architecture. The behavioral models [4] consider the effects 
of charge pump mismatch and output delay difference of 
PFD, but the jitter of component circuit is not included in the 
model. 
 The primary contribution of the paper is to demonstrate a 
behavioral simulation methodology and a set of models 
using verilogA/verilog description. Particular attention is 
devoted to model the nonideal characteristics of the building 
blocks. The circuit-level simulation results of the individual 
building blocks can be back-annotated onto the behavioral 
models for further verification. The models can be used to 
accurately predict the phase noise/spur performance, and the 
concepts introduced can be applied to a number of PLL 
applications, which is especially applied in the design of the 
Σ∆ fractional-N frequency synthesizer. 
 The paper is organized as follows. Section 2 shows the 
mixed-signal simulation flow and strategy. Section 3 
presents the loop component models based on 
verilogA/verilog language. Finally, Simulation results are 
shown in Section 4, and conclusions are given in Section 5. 

2 Mixed-signal simulation flow and strategy 

The Σ∆ fractional-N frequency synthesizer modeled in the 
paper is shown in Fig. 1, which can track phase/frequency of 
input signal and output a series of high spectral purity 
frequencies. The architecture consists of a reference 
oscillator (OSC), a frequency doubler, a phase/frequency 
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detector (PFD), a charge pump (CP), a loop filter (LF), a 
voltage-controlled oscillator (VCO), a Σ∆ modulator, and a 
divider. The frequency doubler is used to extend the 
reference frequency and the PFD is used to detect the 
difference between the input reference frequency and the 
output frequency of VCO. It exports the voltage signal 
proportional to this difference, then drives the charge pump 
circuit. The output current of charge pump is converted to 
voltage by the loop filter to control the output frequency of 
the VCO. The Σ∆ modulator is used to generate a random 
sequence with the desired duty cycle to control the divider in 
the feedback path.  

 
Fig. 1: Σ∆ fractional-N frequency synthesizer. 

 The proposed mixed-signal simulation flow is shown in 
Fig. 2. The analog loop components like VCO are described 
with verilogA language, and the digital loop components 
like divider and Σ∆ modulator are modeled based on verilog 
language. The loop filter remains a full circuit-level model 
and the noise behavior of the filter is naturally included in 
the resistor model. Due to the lack of periodic stable solution 
in fractional-N architecture, PSS and PNOISE analysis fails 
to predict stable performance, so the mathematical tool 
Matlab is implemented to post-process the simulation data. 
The behavioral model can be replaced by transistor level-
model or layout-level abstracted model on the hierarchy-
editor environment, so it is suitable for top-down design 
flow. 
  To be an effective behavioral model, some strategies are 
needed to be considered. First, the parameters that can 
represent the characteristics of circuit should be contained as 
many as possible. Second, nonlinear effects should be 
included in the behavioral model, which influence the spurs 
and jitter of the closed loop. The spur is a deterministic 
signal. The amount of which mainly depends on current 
mismatch and leakage current of charge pump, output delay 
difference of PFD, linearity of PFD/CP, and output of Σ∆ 
modulator. The design and optimization is easily realized at 
system-level and circuit-level design. However, Jitter is an 
uncertainty or randomness of signal timing, which can be 
reformulated as a phase noise. Accurate analysis and 
prediction of jitter is very difficult, so just simple 
synchronous and accumulating jitter is considered here to 
easily estimate jitter behavior of the PLL. Third, it is 
desirable to combine jitter sources to the degree possible. 
For instance, the output-referred noise of divider and the 
input-referred noise of the PFD/CP are combined with the 

output noise of OSC. The models after combination will run 
more efficiently by removing support for jitter. Last, to 
quicken simulation speed, it is possible to include the 
frequency division ratio of divider as part of the VCO by 
adjusting the VCO gain and jitter. If the division ratio of 
divider is large, the simulation runs much faster because the 
high VCO output frequency is never generated. But the 
simple mergence of the two blocks is just suitable for 
integer-N frequency synthesizer. In the fraction-N 
architecture, the transient ratio is not constant, so the 
mergence should consider the effects of Σ∆ modulator.    

 
Fig. 2: Mixed-signal simulation flow. 

3 Circuit model based on verilogA/Verilog 

3.1 OSC Model  

The model is given in Fig.3, which supports two jitter 
parameters. The accJitter parameter is used to model the 
accumulating jitter of the OSC, and the syncJitter parameter 
is used to model the synchronous jitter of divider, PFD, and 
charge pump. The duty parameter is used to model the duty 
cycle ratio of the OSC signal. The timer() function is used to 
model accumulating or synchronous jitter of OSC. At every 
output transition, the next transition is scheduled using the 
timer () function to be KJKT // δ+  in the future, where 
δ is the unit-variance zero-mean random process and K is 
the number of output transitions per period, typically, K=2. 

 

`include "constants.vams" 
`include "disciplines.vams" 
module OSC_behav(out); 
output out; electrical out; 
parameter real freq=19.2M from(0:inf); 
parameter real Vlo=0,Vhi=2.7; 
parameter real tt=0.1n; 
parameter real accJitter=30f from[0:0.1/freq); parameter real 
syncJitter=400f from[0:0.1*ratio/freq);  
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Fig. 3: OSC model. 

3.2  PFD Model 

 The PFD shown in Fig. 4(a) employs sequential logic to 
create three states and responds to the rising edges of the two 
inputs. When reference signal ref leads feedback signal fbk, 
the output UP remains high until fbk goes high, at which 
point UP returns to zero. The behavior is similar for the fbk 
input. Fig.4(b) illustrates the modeling approach for the PFD. 
@cross statement is triggered when the input crosses the 
threshold in the user specified direction, used to model two 
D triggers shown in Fig. 4(a). On every transition of the fbk 
or ref input in direction dir, the output is set to “1”. The 
outputs of the two D triggers are resetted to “0” on every 
transition of reset input in the direction dir. The transition () 
function is used to model reset path delay and output delay 
difference. The td1 parameter represents the reset path delay, 
which is relative to the dead band of the charge pump. The 
td2 parameter and td3 parameter are the delay of output path, 
which is responsible for spurs in locked state.  

 
(a)Circuit structure of PFD 

 

 
(b) Model of PFD   

Fig. 4: Circuit and model of PFD. 

3.3  Charge Pump Model 

 Charge pump in Fig. 5(a) pumps current into the loop 
filter. The action is controlled by the UP and DOWN signals 
from the PFD. When the UP signal is low, Iup is pump into 
the filter and results in an increase in the voltage to VCO. 
Similarly, when the DOWN signal is high, the current Idown 
discharges from the filter resulting in a decrease in the 
voltage to the VCO. The corresponding model is shown in 
Fig. 5(b). For a simple model, just up/down current 
mismatch and dead band of charge pump are considered in 
the proposed model. The former is responsible for reference 
spurs, and the latter is caused by the very narrow pulse of 
UP or DOWN input, which is relative for phase noise. The 
other nonlinearities like clock feedthrough, charge sharing, 
charge injection, clock injection can be equivalent to the 
amount of current mismatch or dead band. The td parameter 
is used to model the dead band. The Iextra parameter is used 
to model the current mismatching characteristic of charge 
pump. If the control voltage on the loop filter is out of the 
saturation range of charge pump,  the output current of the 
current source is only one tenth of the cur.             

 
(a) Circuit structure of charge pump 

 

`include "constants.vams" 
`include "disciplines.vams" 
module pfd_behav(ref,fbk,up,down); 
input ref, fbk; 
output up,down; 
electrical ref,fbk,up,down; 
integer resetx,reset,ax,bx; 
parameter integer dir=1 from[-1:1] exclude 0; 

integer n,accSeed,syncSeed; 
accSD=accJitter*sqrt(ratio/2); 
 syncSD=syncJitter; 
  next1=(1-duty)/freq+$abstime;  

next2=duty/freq+$abstime;end 
 @(timer(next1+dt))begin 
 n=!n; 
dT=accSD*$dist_normal(accSeed,0,1); 
dt=syncSD*$dist_normal(syncSeed,0,1); 
next1=next2+(1-duty) /freq+dT; end 
@(timer(next2+dt))begin 
 n=!n; 
dT=accSD*$dist_normal(accSeed,0,1); 
dt=syncSD*$dist_normal(syncSeed,0,1); 
next2=next1+duty/freq+dT; end 
V(out)<+transition(n?Vhi:Vlo,0,tt); 
end  endmodule 

parameter real tt=0.01n from(0:inf); 
parameter real td1=0.10n from(0:inf); 
parameter real td2=0.1n from(0:inf); 
parameter real td3=0.4n from(0:inf); 
parameter real ttol=1p from(0:inf); 
parameter real Vlo=0,Vhi=2.5; 
analog begin 
 @(cross(V(ref)-0.5,dir,ttol) or cross(reset-0.5,dir,ttol)) 
begin 
     if(reset==0) ax=1;  else  ax=0;   end 
  @(cross(V(fbk)-0.5,dir,ttol) or cross(reset-0.5,dir,ttol)) 
begin 
     if(reset==0) bx=1; else    bx=0;   end 
   if(ax==1 && bx==1)resetx=1;   else resetx=0; 
  reset=transition(resetx,td1,0.1n,0.1n); 
  V(up)<+transition(ax ? Vlo : Vhi,td2,0.1n,0.1n); 
  V(down)<+transition(bx ? Vhi:Vlo,td3,0.1n,0.1n); 
end 
endmodule 
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`include "constants.vams" 
`include "disciplines.vams" 
module chargepumpnew_behav(up,dn,Iout); 
input up,dn; 
electrical up,dn; 
electrical Iout;  
parameter real cur=200u; 
parameter real tt=0.1n from(0:inf); 
parameter real td=1.20n from(0:inf); 
real out, upx,dnx, cur_mid; 
analog begin 
   upx=V(up);   dnx=V(dn); 
    if(V(Iout)>=0.4 && V(Iout)<=1.4) cur_mid=cur; 
    else                                               cur_mid=cur/10; 
    if(upx<=0.50 && dnx<=0.5)   out=-cur_mid; 
    else if(upx>=2.2 && dnx>=2.2)  out=cur_mid+6u; 
    else if(upx<=0.5 && dnx>=2.2)  out=cur_mid/100; 
    else  out=cur_mid/1000;  
  I(Iout)<+transition(out,td,tt);  
end   
endmodule 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) model of charge pump 
Fig. 5: Circuit and model charge pump. 

3.4 VCO/Divider Model   

 Due to high output frequency of VCO in the radio 
applications, it is very time-consuming to simulate the 
closed-loop PLL frequency synthesizer at the circuit-level 
and even the behavioral-level, so it is very necessary to 
include the frequency division ratio of the divider as part of 
the VCO to quicken the simulation speed. However, because 
the transient division ratio is not fixed in the Σ∆ modulator 
fractional-N architecture, the divider model can not be 
simply included in the VCO model. A solution is proposed 
in the paper. The output of VCO is divided into two parts. 
One is to provide divided signal to PFD for comparing, and 
the division ratio is the transient modulated result by the Σ∆ 
modulator. The other part is used to analyze the spectral 
purity and the division ratio is the fixed averaging value. 
Fig. 6 shows the model description of VCO/divider. It is 
mainly constructed by using the three serial operations. First 
the input signal is scaled to compute the desired output 
frequency combining with the output of Σ∆ modulator (f1-
f5). Then the frequency is integrated to compute the output 
phase. Finally, the phase is used to generate the desired 
output signal by computing with idtmod () function. The 
first two @cross statements are used to record the jitter at 
every clock cycle, and write the jitter data into periods.m 
file. The next two @cross statements are used to realize the 
divider function. The dT parameter is updated twice in every 
clock cycle, which represents the jitter of VCO and divider. 
The divratio/N_div parameter is used to model the change of 
the divide ratio in every clock cycle. The system function 
$dist_normal() is used to produce the uniform distributed 
random data, and the system function $abstime is used to 
record the current time. 

 
Fig. 6: VCO/Divider model. 

3.5 Σ∆ modulator & Frequency doubler Model 

 Σ∆ modulator [5] shown in Fig.7 is a key block in the 
frequency synthesizer, used to produce the fractional part of 
the division ratio. Due to a pure digital circuit, Σ∆ modulator 
is modeled based on verilog language, shown in Fig. 8 
where the LSB of the input sequence is dithered to improve 
the noise performance. The assign statement is used to 
assign wire variable, whereas always@ block is used to 
model D trigger. Multiplying 2, 1.5 or 0.5 is realized by left-
shift or right-shift operation, to reduce the layout area. The 
highest 4bits of the sum7 parameter is quantized. The 
operation is based on complement and the MSB of the 
operand is the sign bit.  

`include "constants.vams" 
`include "disciplines.vams" 
module vco_div_behav(f1,f2,f3,f4,f5,vin,fout); 
input vin, f1,f2,f3,f4,f5; 
output fout; 
electrical vin,fout, f1,f2,f3,f4,f5; 
parameter integer dir=+1 from[-1:+1] exclude 0; 
parameter real N=32, N_div=43.4375; 
parameter real Vmin=0.5, Vmax=2.2; 
parameter real Fmin=1.644G, Fmax=1.695G; 
parameter real Vlo=0,Vhi=2.7; 
parameter real tt=0.01/Fmax from(0:inf); 
parameter real jitter=30.0f from[0:0.25/Fmax); 
parameter real ttol=1u/Fmax from(0:1/Fmax); 
parameter real outStart=120u from(1/Fmin:inf); 
parameter real td=0.1n from(0:inf); 
real freq, phase,dT,delta,prev; 
integer n,seed,d1,d2,d3,d4,d5,fp1,divratio; 
analog begin 
@(initial_step)  begin 
  seed=-561;   
  prev=$abstime; delta=jitter*sqrt(2*N_div); 
  fp1=$fopen("periods.m");  
end 
  if(V(f1)>=2.2) d1=1; else d1=0; 
  if(V(f2)>=2.2) d2=1; else d2=0; 
  if(V(f3)>=2.2) d3=1; else d3=0; 
  if(V(f4)>=2.2) d4=1; else d4=0; 
  if(V(f5)>=2.2) d5=1; else d5=0; 
  divratio=N+d1+2*d2+4*d3+8*d4+16*d5; 
freq=(V(vin)-Vmin)*(Fmax-Fmin)/(Vmax-Vmin)+Fmin; 
if(freq>Fmax) freq=Fmax;  if(freq<Fmin)freq=Fmin; 
freq=(freq/N_div)/(1+dT*freq/N_div); 
phase=6.28*idtmod(freq,0.0,1.0,-0.5); 
@(cross(phase+1.57,+1,ttol)) 

dT=delta*$dist_normal(seed,0,1); 
@(cross(phase-1.57,+1,ttol)) begin 
     dT=delta*$dist_normal(seed,0,1); 
 if($abstime>outStart) $fstrobe(fp1,"%0.10e",$abstime-rev); 

prev=$abstime;     
 end 

@(final_step) $fclose(fp1); 
@(cross(phase+divratio/N_div,+1,ttol))  n=Vhi; 
@(cross(phase-divratio/N_div,+1,ttol)) n=Vlo; 
    V(fout)<+transition(n,td+dx,tt); 
end        
endmodule 
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The frequency doubler shown in Fig.9 is a very simple 
digital block, which modeling process is similar to that of 
Σ∆ modulator, so it will not be repeated. 

 
Fig. 7: Three-order Σ∆ modulator. 

 
Fig. 8: Model of Σ∆ modulator. 

 

Fig. 9: Frequency doubler. 

4 Simulation result 

 The ideas proposed have been applied to model and 
simulate the fractional-N PLL frequency synthesizer shown 
in Fig. 1. The synthesizer is chosen with a reference 
frequency 19.2MHz, a 1.63GHz-1.69GHz output frequency 
range, a 0.2mA charge pump current. The jitter of OSC is 
35fs, and the phase modulation jitter in VCO is 40fs, and the 
phase modulation jitter in other driven blocks is about 400fs. 
The output delay difference of PFD is 0.3ns, and the 
sink/source current mismatching is 15µA. The 
SpectreVerilog simulator is used for model verification. 
 Fig .10 shows the wave of the VCO control voltage. The 
division ratio is 43.4375 and 43.4375→40.4375. There is 
only a minute taken to complete the 120µs transient analysis 
for the PLL loop, but the time is over 24 hours to complete 
120µs at the circuit-level, so behavioral models can save 
much more time. Fig. 11 is the simulated phase noise of the 
closed loop. The simulation time length is 120mS, and the 
consumed cpu time is 5 hours or so in a 64bits PC server. 
Fig.12 is the measured phase noise of the prototype PLL, 
which can be compared with the plot shown in Fig. 11. Both 
plots show the noise contributions from the various blocks of 
the system. The OSC noise contribution is clearly visible in 
the lower-frequency range. The noise from PFD/CP and 
divider is dominating in the range of cutoff frequency. The 
amount of which depends on the level of synchronous jitter 
exhibited by divider and PFD/CP and the loop bandwidth. 
The in-band spurs can be observed in the low frequency 
range in Fig. 11, which is caused by the poor linearity of 
PFD/CP, especially the dead zone of PFD/CP. The spurs will 
reduce and even disappear when the dead zone is narrowed 
or the linearity is improved. The phase noise is dominated by 
the VCO and Σ∆ modulator in the range that goes from the 
cutoff frequency up to approximately 10-MHz offset 
frequency. The noise becomes white beyond the range. The 
fractional spurs out of the loop bandwidth is mainly caused 
by the Σ∆ modulator, whereas the reference spur is caused 
by the frequency doubler which is sensitive to the duty cycle 
ratio. Due to the limited calculation accuracy, the location 
and magnitude of the spur is a little different. There is a 
duty-cycle corrector in the frequency doubler of the 
prototype PLL, so the reference spur can be suppressed to 
the noise level. The other parasitic effects have not 
accounted in the proposed models can be easily added to 
improve the prediction accuracy, so the proposed behavioral 
models is helpful to optimization design at the system-level.  

module modulator(clk, rst,dither_en, bout, k_dth); 
input clk, dither_en; 
input[21:0] k_dth; 
output[4:0] bout; 
reg[4:0] bout; 
reg[3:0] bout_pre; 
reg[21:0] A2, B3, A3, B2, A4; 
wire[21:0] sum1,sum2,sum3,sum4,sum5,sum6,sum7, 
                  v_quan, v_back; 
  assign sum1 ={k_dth[21:1],1'b0} + v_back;  
  assign sum2 = sum1 + A2;            
  assign sum3 = A2 + A3;  
  assign sum4 = A3 + B2;           
  assign sum6 = B3 + A4;       
  assign sum7 = sum5 + sum6;      
  always @(posedge clk or posedge rst) begin 
      if(rst) A2 <= 22'h0; 
  else   A2 <= sum2;     
  end 
  assign B3 ={A2[20:0],1'b0}; //B3 = 2 * A2 
always @(posedge clk or posedge rst) 
begin 
      if(rst)      A3 <= 22'h0;       else         A3 <= sum3;     
  end 
  always @(posedge clk or posedge rst) 
begin 
      if(rst)     B2 <= 22'h0; 
      else        B2 <= sum4; end 
 assign A4= {B2[21],B2[21:1]};  
 assign sum5 = A3 + {A3[21],A3[21:1]};  
 always @(posedge clk or posedge rst) 
 begin 
      if(rst)    
 begin 
          bout <= 5'b00000;   
          bout_pre <=4'b1101;    
end 
      else  
 begin 
          bout_pre <= sum7[21:18] +4'b 1000;   
          bout <= bout_pre +5'b01011- 4'b 1000;    
end  
  end 
assign    v_quan = {sum7[21:18],18'h0}; 
assign    v_back =  ~v_quan + 1'b1; 
endmodule 
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Fig. 10: Closed-loop locked process. 

 

Fig. 11: Phase noise of PLL. 

 

Fig. 12: Measured phase noise of prototype PLL. 

5 Conclusion 

 A set of behavioral voltage-domain verilogA/verilog 
models are presented in the paper, which are implemented in 
a three-order Σ∆ fractional-N PLL based frequency 

synthesizer with a 60 MHz frequency tuning range. The 
behavioral modeling can provide a great speed-up over 
transistor simulation, allowing an optimal building block 
design and giving insight to the key characteristics 
determining the overall performance by selectively 
controlling and evaluating the contribution of each noise 
source and nonideal element. The behavioral models can be 
calibrated by circuit-level simulation, so the high-level 
model can accurately analyze the characteristics of dynamic 
locked process and stable spectral purity. Simulation and 
measured results verify the flexibility and effectiveness of 
the behavioral models.  
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