
Tackling an Abstraction Gap: Co-simulating SystemC DE with Bluespec ESL

Hiren D. Patel Sandeep K. Shukla

Virginia Polytechnic Institute and State University

Bradley Department of Electrical and Computer Engineering.

E-mail: hiren@vt.edu shukla@vt.edu

Abstract

The growing SystemC community for system level design explo-

ration is a result of SystemC’s capability of modeling at RTL and

above RTL abstraction levels. However, managing shared state

concurrency using multi-threading in large SystemC models is er-

ror prone. A recent extension of SystemC called Bluespec-SystemC

(BS-ESL) counters this difficulty with its model of computation

employing atomic rule-based specifications. However, for simu-

lating a model that is partly designed in SystemC and partly us-

ing BS-ESL, an interoperability semantics and implementation of

such a semantics is required. This paper views the interoperabil-

ity problem as an abstraction gap closure problem. To illustrate

the problem, we formalize the simulation semantics of BS-ESL and

discrete-event simulation of RTL SystemC and provide a solution

based on this formalization.

1. Introduction

Raising the abstraction level helps designers in modeling and

simulating large, complex and highly concurrent designs. How-

ever, the lack of matured high-level synthesis tools make it diffi-

cult for system level design languages and frameworks (SLDLs)

to cleanly fit into industry design flows going from modeling and

simulation to one that leads to implementation. For synthesis,

some industry design flows incorporate refinement and transfor-

mation methodologies but, some require manual rewriting of the

high-level designs in RTL using traditional hardware description

languages (HDL)s.

There are some industry tools such as Forte’s Cynthesizer [1]

and Mentor’s Catapult [2] that support high-level synthesis from

C/C++, SystemC RTL and some transaction-level (TL) constructs.

However, synthesis from SystemC at TL is still at its infancy mak-

ing designers use SystemC mainly for modeling and simulation at

TL and not for synthesizable designs. Even though SystemC is

commonly used at TL modeling and simulation, its use for RTL

models is also common. This is exemplified by industry focus

on synthesis tools such as Forte’s Cynthesizer and Mentor’s Cat-

apult [2]. In addition, modeling in SystemC is not much different

than using traditional HDLs at the RTL abstraction. Hence, mod-

eling SystemC RTL has the same difficulty in expressing correct

concurrent behaviors as traditional HDLs. This is usually done by

multi-threading and synchronization constructs.

On the contrary, Bluespec-SystemC (BS-ESL) extension pro-

vides designers with a model of computation (MoC) that sim-

plifies this task of describing concurrent behaviors based on the

notion of “atomic” rules in the rule-based MoC of Bluespec [3,

4, 5, 6]. Moreover, Bluespec has synthesis from its Bluespec-

SystemVerilog descriptions to Verilog [4, 5, 7] and a synthesis

path from BS-ESL to Verilog. Both SystemC and BS-ESL can

effectively model RTL. However, the manner in which designs

are simulated are different. SystemC employs delta cycles, delta-

events, and events for simulating its designs. BS-ESL creates a

topologically sorted schedule of its rules for simulating its de-

signs. The simulation semantics of the two languages are different

because even when BS-ESL is modeling RTL, it maintains an op-

erational abstraction over HDL based RTL. This gives rise to an

impedance mismatch or “abstraction gap” if two models, one in

BS-ESL and one in SystemC are connected directly. We refer to

this abstraction gap as the difference in the modeling paradigms

where SystemC requires designers to follow the discrete-event se-

mantics and BS-ESL follows the rule-based semantics. We show

that this mismatch leads to incorrect simulation behavior when

a BS-ESL model is combinationally connected to a model using

an HDL RTL such as SystemC. We use HDL RTL to mean any

discrete-event (DE) simulation based HDL such as VHDL, Ver-

ilog or SystemC.

We isolate the problem in composing SystemC and BS-ESL

models and propose techniques for resolving it. We do not alter

the SystemC or BS-ESL kernels since the former is a standard and

the latter an industry product. Instead, we propose solutions that

designers can make in their models.

The examples in this paper are very simple to illustrate the ba-

sic issues, but our interoperability semantics has been employed

in BS-ESL and works for much larger models. To our knowl-

edge, the interoperability between Bluespec’s rule-based MoC and

SystemC’s DE MoC has not been resolved before this. Although

described in the context of SystemC RTL, our interoperability se-

mantics holds for simulating traditional HDLs against Bluespec as

well. For this reason, we restrict our analysis to only RTL mod-

els. However, these techniques are applicable to a certain subset

of TL models (TLM) and not all, but this is beyond the scope of

this paper.

Bluespec­SystemC (BS­ESL)

BS-ESL’s MoC [8, 9] requires describing hardware using guarded

“atomic” rules. The notion of “atomic” rules allows encapsula-

tion of concurrent transactions into atomic units, thereby solving

a number of concurrency synchronization issues present in thread-

978-3-9810801-2-4/DATE07 © 2007 EDAA

D

 CLK

Q

Q

D

 CLK

Q

Q

D

 CLK

Q

Q

x1
x2

x3

x4

clock

x5

x6

y

BS-ESL
SystemC

A

B

C

Figure 1. Example of SystemC & BS­ESL

based concurrent modeling such as SystemC. BS-ESL modules

may contain multiple rules describing its behaviors and export in-

terfaces by which other modules may query and interact with ele-

ments of the modules via methods. In addition, the basic language

flavor of Bluespec SystemVerilog with the concepts of methods,

interfaces, nested interfaces and a runtime executor are present in

the BS-ESL extension [4, 7, 5, 9]. The runtime executor has two

phases: the elaboration phase and the execution phase. During the

elaboration phase, information about register accesses are used to

compute the order in which rules may be triggered. For example,

multiple rules whose guards evaluate to true, writing to the same

state element must be scheduled in separate cycles. This in turn

yields a topologically sorted schedule of rule execution. The ex-

ecution phase fires the rules according to the schedule whereby if

the guards of the rules evaluate to true, then their respective ac-

tions are triggered. At the end of one iteration of the schedule, all

state elements such as registers are updated. Listing 1 describes a

GCD module in BS-ESL. As an example, rule rule swap swaps

the register values of x and y if the value of x is greater than y

and y is not zero. Similarly the gcd module has rule decr and

methods start and result. The authors of [9] provide more

details on the constructs and syntax.

Listing 1. Module for GCD
1 BS ESL MODULE (gcd , g c d i f) {

2 b s e s l r e g <i n t> x , y ;

3 b s e s l r e g <bool> no tdone ;

4 BS ESL RULE (r u l e s w a p , (x > y) && (y != 0)) {

5 i n t tmp = x ; x = y ; y = tmp ;

6 }

7 BS ESL RULE (r u l e d e c r , (x <= y) && (y != 0)) {

8 y = y − x ;

9 }

10 BS ESL METHOD ACTION (s t a r t , ((y == 0) && ! no tdone) , i n t num1 , i n t

num2) {

11 a s s e r t ((num1 > 0) && (num2 > 0)) ;

12 x = num1 ; y = num2 ; no tdone = t ru e ;

13 }

14 BS ESL METHOD ACTIONVALUE (r e s u l t , ((y == 0) && notdone) , i n t) {

15 no tdone = f a l s e ;

16 re turn x ;

17 }

18 BS ESL CTOR (gcd) {

19 x . b in d (new bs es l mkReg<i n t> (0)) ;

20 y . b in d (new bs es l mkReg<i n t> (0)) ;

21 no tdone . b in d (new bs es l mkReg<bool> (f a l s e)) ;

22 ESL END CTOR ;

23 }

24 };

Interoperability Issues at RTL

Note that SystemC follows discrete-event (DE) [10] semantics,

which does not mandate any specified order of execution of the

SystemC processes. As already mentioned, BS-ESL follows the

rule-based semantics with a topologically sorted order of rules for

execution. So, two designs at RTL will simulate differently. To

provide a brief overview of this, take Figure 1 as an example of

a simple circuit. For illustration purposes, suppose that all three

components were modeled as SystemC processes. The order in

which any of the processes are triggered does not impact the final

result y because delta-events [10] are used for changes that must

be processed within a cycle. Therefore, the state elements in Fig-

ure 1 receive the correct values. Now, suppose that component C

is modeled using BS-ESL and the firing order of the processes is

A, C then B. A generates one input which causes C to fire. This

invokes BS-ESL’s runtime executor that fires the rules in the topo-

logically sorted order and updates the state element at the end of

the iteration. The result in the state element contains incorrect val-

ues because the correct input from B is yet to arrive. So, when

B executes, C will refire using the incorrect value in the state ele-

ment. This occurs because delta-events are not employed in BS-

ESL’s semantics. This mismatch is a result of the abstraction gap

between SystemC and BS-ESL.

Interoperability Issues at TL

We present another example of a GCD calculator that illustrates

the issue of mismatched simulation semantics with TLM. Note

that only the GCD and Display components are clocked and the

transfer between the components is via transactions; hence mod-

eled at the cycle-accurate TL abstraction as per the OSCI TLM [10]

standards. Figure 2 shows two input generators that act as external

data entry points arriving at any time. The GCD calculator con-

tains three internal registers to store the two inputs and the result.

It performs an iteration of BS-ESL’s runtime executor on every

clock edge and writes the result when an appropriate condition is

met. This register is read by the Display component. If the

input generators produce new values within the same clock cycle

after GCD has already been triggered then the computation must

be redone with the “latest” input values. Otherwise the registers

will hold incorrect values. Furthermore, BS-ESL does not have a

notion or interface for delta-events so a direct composition is not

possible. We follow this informal description of the issues with a

formal presentation in the remainder of the paper focusing only on

the RTL scenario.

InGen1

InGen2

GCD Display

BS-ESL SystemC

clock

Figure 2. GCD example at TL

2. Related work & Background

Interoperability in Ptolemy II

A pioneer in heterogeneous modeling and simulation for embed-

ded software synthesis is the Ptolemy II project [11]. Ptolemy

II supports heterogeneous hierarchy where components follow-

ing different MoCs can interoperate. Their implementation of the

interaction semantics (synonymous to interoperability semantics)

describes their approach in mixing MoCs such as synchronous

data flow with DE, finite state machine with DE, synchronous re-

active with DE and various other combinations [12, 13]. There are

other studies that investigate interoperability amongst MoCs but

few that match Ptolemy II’s history with heterogeneity.

Even though Ptolemy II has done extensive studies in interop-

erability between MoCs, it is specific to their MoC implementa-

tions. For example, algorithms used for the DE MoCs in Ptolemy

II [11] and SystemC [10] simulation are different. Ptolemy II’s

DE performs a topological sort on the actors and verifies that no

zero-delay loop exists without a delay actor. This sort is also used

in deciding the order in which actors are fired when simultaneous

events are received. SystemC on the other hand does no topologi-

cal sort of its processes and handles simultaneous events as delta-

events. This is because SystemC needs to be compiled with stan-

dard C++ compilers without any changes and hence static analysis

and reordering is not possible. Due to the distinct design of the

DE MoCs, the interoperability semantics with other MoCs are ex-

pected to be different. Further, Ptolemy II’s interaction semantics

are not absolute and there can be other possibilities as well. This

is acknowledged by the authors in [13] where they suggest that

their interaction semantics are often the ones that seem “sensible”

for their purpose, but there can be other different interoperability

semantics between MoCs.

Interoperability with SystemC

The OSCI TL modeling standard for SystemC is commonly used

for prescribing interoperability between models at different levels

of abstractions [10, 14]. The TLM standard provides a set of chan-

nels and interfaces to allow easier TL modeling. It also provides

some common structures such as routers and arbiters. The abstrac-

tion levels are generalized to timed and untimed [14] after which

clocked transactors are used between timed and untimed models.

The transactors convert timed signals to transactions and accord-

ing to the timing requirements of the timed model, decipher the

transactions into pin-accurate signals. Other uses of TLM for in-

teroperability also implicitly use transactors to convert hardware

signals to events for software models. OSCI’s master-slave library

built on the TLM standard can also be used for co-simulating mod-

els at mixed abstractions [15].

The authors in [16, 17] support heterogeneity in SystemC via

kernel-level extensions for MoCs that interoperate with SystemC.

Their approach involves wrapping the model representing a differ-

ent MoC with a SystemC process such that all SystemC commu-

nication channels are connected to this toplevel process. The data

from these channels is converted to the respective MoC’s input and

the MoC’s kernel is triggered. We use some of the techniques from

this approach such as the wrapping of the BS-ESL components for

interoperability.

3. Problem Description & Solution

Now that we have informally discussed the problem of inter-

operability between SystemC and BS-ESL. We present a formal

treatment of the problem and solution. We omit the formal proofs

for brevity. We begin by formalizing the notion of a simulation

behavior, which is the snapshot of register values at the beginning

of each clock cycle (Definition 3.1).

DEFINITION 3.1. Simulation behavior Sb of a model M at

RTL level is defined as a function as follows: Sb : N → S → V ,

where N = {0, 1, 2, ...} denotes the sequence of clock cycles, S

is the set of registers (states) and V is the domain of values from

which the registers take values. We use SM
b to denote the simula-

tion behavior of a model M .

D

 CLK

Q

Qx1
x2

x3
x4

a1

a2

a3
y1

s1

z1

clock Next state

combinational logic

Output

combinational logic YX

A Z S

(a) Circuit

x1

x2
x3

x4

a1

a2

a3

s1

z1 y1

(b) Hypergraph

Figure 3. Example circuit

DE Simulation Semantics for RTL

This section formalizes an RTL circuit description and how cur-

rent DE simulation semantics employ the use of delta cycles to

compute correct outputs. Note that the DE simulation semantics

considers a combinational cycle as an incorrect description. This is

because combinational cycles in hardware imply an infinite execu-

tion, which in simulation may result in errors. Therefore, our for-

mal treatment disallows combinational cycles. We also formally

present Bluespec’s BS-ESL MoC and show how direct composi-

tion of the two may not result in the expected simulation behav-

ior. During our formal presentation we slightly abuse notation and

write x̂ ∈ X to mean x̂ ∈ Xk for some k and û ∈ V ARS\Y
to mean û is a vector of variables where each element belongs to

V ARS\Y .

Let

X = {x1, x2, ..., xk} be the set of input signals

Y = {y1, y2, ..., yl} be the set of output signals

A = {a1, a2, ..., ap} be the set of intermediate com-

binational signals

Z = {z1, z2, ..., zn} be the set of internal combina-

tional signals input to the state

elements

S = {s1, s2, ..., sn} be the set of signals represent-

ing state element values

V ARS = X∪A∪Z∪
Y ∪ S

be the set of all variables

These sets are shown for the circuit in Figure 3(a). Fc repre-

sents the combinational logic of the circuit as a set of equations

where

Fc = {< zm = f
z
m(û) > | m = 1, 2, ..., n}

∪ {< yj = f
y
j (v̂) > | j = 1, 2, ..., l}

∪ {< ai = f
a
i (ŵ) > | i = 1, 2, ..., p

and ŵ does not contain ai}

and û, v̂, ŵ are vectors of variables over the set (V ARS\Y)\Z.

The next state assignments Fs = {< sk ⇐ zk > | k =
1, 2, ..., n} are described by delayed assignments. Delayed assign-

ments update the value in the state elements at the beginning of the

next clock cycle or at the end of the current cycle.

In hardware, signals propagate from input and current state

through the combinational logic within one clock cycle and pro-

duce the outputs and latch the next state onto the state elements.

Figure 3(a) describes an RTL circuit. However, simulating the

combinational part amounts to a number of function computations,

which are not necessarily described in their topological order in the

actual circuit. Therefore, most DE simulators need to reevaluate

the functions several times using delta steps before all the combi-

national values are correctly computed.

We formalize any RTL design as a tuple M =< X, Y, A, Z,

S, Fs, Fc >. Fc syntactically represents all the computation that

happens during one clock cycle in the combinational part of the

circuit. Fs captures the change of state at the end of the combi-

national computation and signal propagation. One can capture the

execution semantics of a static circuit description < X, Y, A, Z, S,

Fs, Fc > using an acyclic hypergraph model. A hypergraph is a

graph in which generalized edges may connect more than two ver-

tices. So a hypergraph G = (V, E) has E ⊆
S|V |

k=1 V k, which

means an edge may connect up to |V | vertices.

The way to visualize the execution semantics in Figure 3(b) of

one cycle worth of combinational computation of an RTL design is

as follows: consider a directed hypergraph where a hyperedge of

the form < a, b, c, d, e > would mean the nodes a, b, c, d together

are all connected to node e. So GH = (V, E) where V = X ∪
Y ∪ A ∪ Z ∪ S (variables from S can only be used as inputs) and

< û, zm >∈ E iff < zm = fz
m(û) > ∈ Fc

< v̂, yj >∈ E iff < yj = f
y
j (v̂) > ∈ Fc

< ŵ, ai >∈ E iff < ai = fa
i (ŵ) > ∈ Fc

In GH , each hyperedge is marked with the equational assign-

ment in Fc that gave rise to the hyperedge. The following obser-

vations are obvious:

OBSERVATION 3.2. (1) GH is an acyclic hypergraph for com-

binational loop-free RTL designs, (2) GH can be topologically

sorted, and (3) for simulation purposes, if we evaluate the vari-

ables in their topological sorted order in GH , we obtain the cor-

rect values without having to reevaluate any of the nodes.

Figure 3(b) shows a hypergraph representation of the circuit

description in Figure 3(a). Notice that s1 is used only as an input

to the output y1. From Figure 3(b) it is obvious that a circuit such

as this can be topologically sorted. However, most RTL simula-

tors, including SystemC do not topologically sort the design and

therefore, notions of delta cycles and delta-events are used to get

the same effect. However, they achieve the same effect as can

be shown by proving the following theorem (omitted for less of

space):

THEOREM 3.3. Let a model M1 simulated using delta cycle

semantics have the simulation behavior S
M1

b . Let the same model

evaluated by topologically ordering the hypergraph be M2 and

has the simulation behavior S
M2

b . Then, ∀sj ∈ S,∀i ∈ N,

(SM1

b i)sj = (SM2

b i)sj .

Even though DE simulators have delta cycles, they do not go

ad infinitum when the combinational logic is correctly designed

because delta cycles impose a fixed point computation. To show

this formally, consider < x1, x2, ..., xk, s1, s2, ...sn > as a vector

of variables that are immutable during simulation of a single cy-

cle. Let < a1, a2, ...ap, z1, z2, ..., zt, y1, y2, ...yl > be variables

which can possibly change several times during successive delta

cycles. Let their initial values during the beginning of the evalua-

tion process be don’t cares, which means their values are arbitrary.

Now reconsider graph GH with the variables (nodes) in the

graph being annotated with their order in the topological sort. So

variables in (V ARS\X)\S can be sorted in the topological order

and we rename them as

w1, w2, ..., wp, wp+1, ..., wp+t, wp+t+1, ..., wp+t+l

The following observation easily follows:

OBSERVATION 3.4. If topologically ordered before simulation

then, (1) once the equation of the form w1 = f1(û) is evaluated,

it no longer needs reevaluation and (2) once wj = fj(û) is evalu-

ated and ∀i < j and wi = fi(û) has already been evaluated, wj

does not need reevaluation.

By Theorem 3.3 and Observation 3.4 it follows that even with

arbitrary order of evaluation, the process of delta cycle terminates

when no wk is needed to be reevaluated. At this point, the delayed

assignments in Fs can be evaluated and that ends one simulation

cycle. This shows that delta cycles actually amount to a fix point

computation for < a1, a2, ..., ap, z1, z2, ..., zt, y1, y2, ...yl > where

applying one equation of Fc changes only one variable. This

change in variable leads us to a new valuation, which is better (in

an information order) than the old valuation or the same if it is the

final correct valuation.

The use of delta-events is important for correctly simulating

hardware in DE-based simulators. However, BS-ESL’s rule-based

MoC semantics simulate their designs differently, without the need

of delta-events. We describe this next.

BS­ESL’s Rule­based Semantics

A BS-ESL model is described as a 2-tuple M = < V, R > of

variables where V is the set of variables and R a set of rules. The

rules are guarded commands of the form g(Γ) → b(Λ) where

Γ, Λ ⊆ V , g(Γ) is a Boolean function on the variables of Γ and

b(Λ) is a set of equations of the form xi = fi(Λ) such that xi is as-

signed the result of computing the value based on current values of

variables in Λ. Using the definitions presented earlier, the variable

set can be partitioned into four disjoint sets V = X ∪ Y ∪A∪ S.

Now, each rule ri ∈ R computes bi(Γ) and computes a number of

functions {vij = fij(ŵ) |vij ∈ Λ and ŵ ∈ (V ARS\Y)\Z}
where vij could be any variable. Now, we denote a syntactic

model ME equivalent to M , where ME =< X, Y, A, S, Fc >.

This means there is no distinction between Z and S and there

is no Fs. This is because Bluespec’s MoC topologically sorts

the rules based on usage and assignment of variables, and since

a correct RTL level Bluespec design cannot have combinational

loops, the variable dependency graph is acyclic; hence topologi-

cally sortable. As a result, the state variables are assigned once and

only once, and there is no delta cycle based reassignment of these.

Therefore, the simulation semantics of Bluespec’s rule-based MoC

is different with respect to HDL RTL simulation semantics.

Composing HDL RTL models

Let M1 and M2 be two RTL models defined as

M1 = < X1, Y1, A1, Z1, S1, F
1
S , F

1
c >

M2 = < X2, Y2, A2, Z2, S2, F
2
S , F

2
c >

Note that M1 and M2 are both HDL RTL.

We compose them as M1 ⊕ M2 in the simulation model such

that M1 ⊕ M2 =< X, Y, A, Z, S, Fs, Fc >. The way the com-

position works is that a subset of input variables of one module

are fed by some of the output variables of the other module and

vice versa. So X1 ∩ Y2 represents the set of all output variables

of M2 that are fed into input of M1 and X2 ∩ Y1 represents the

set of all inputs in M2 fed by outputs of Y1. Of course, to do this

correctly, this should not result in any combinational loop. Also,

S1 ∩X2 represents the set of state elements from M1 feeding into

M2’s inputs and likewise S2 ∩ X1 feeds the inputs for M1. So,

X = (X1 ∪ X2) − ((X1 ∩ Y2) ∪ (X2 ∩ Y1)

∪(S1 ∩ X2) ∪ (S2 ∩ X1))

Y = (Y1 ∪ Y2) − ((X1 ∩ Y2) ∪ (X2 ∩ Y1))

Z = Z1 ∪ Z2

A = A1 ∪ A2 ∪ ((X1 ∩ Y2) ∪ (X2 ∩ Y1))

S = S1 ∪ S2, Fs = F
1
s ∪ F

2
s , Fc = F

1
c ∪ F

2
c

Note the following:

OBSERVATION 3.5. A correct composition M1 ⊕ M2 circuit

has no combinational loops.

Let M1, M2 both be RTL models or M1, M2 both be BS-ESL

models. There are two cases covered in the next theorem.

THEOREM 3.6. Let the composed model M = M1 ⊕ M2

be (1) simulated using delta cycle simulators and the simulation

behavior is S
M1⊕M2

b∆ : N → S1 ∪ S2 → V . (2) simulated

using BS-ESL then S
M1⊕M2

b∗ : N → S1 ∪ S2 → V . Then

∀sj ∈ S1 ∪ S2, ∀i ∈ N,∀τ ∈ {∆, ∗}

(SM1⊕M2

bτ i)sj =

8

>

<

>

:

(SM1

bτ i)sj if sj ∈ S1

(SM2

bτ i)sj if sj ∈ S2

(SM1

bτ i)sj = (SM2

bτ i)sj if sj ∈ S1 ∩ S2

Theorem 3.6 states that the simulation of M is correct when

M1 and M2 are both modeled using delta cycle semantics and

simulated using a delta cycle simulator. Likewise, the simulation

of M is correct if both models are modeled using rule-based se-

mantics and simulated using the rule-based MoC.

Composing HDL RTL & BS­ESL Models

Now we consider composing two models where M1 is in HDL

RTL and M2 in BS-ESL. We show that the inherent MoCs of these

two SLDLs do not allow for direct composition of the models.

M1 = < X1, Y1, A1, Z1, S1, F
1
S , F

1
c >

M2 = < V2, R2 >

such that V2 = X2 ∪ Y2 ∪ A2 ∪ S2.

Suppose we create a composition M = M1 ⊕ M2 and ensure

there are no combinational cycles as shown in the simple exam-

ple in Figure 1. Then, M2 is simulated using BS-ESL simulation

semantics by topologically sorting its rules, and M1 is simulated

using any HDL’s simulation semantics in DE with delta cycles.

So, we claim that the result of simulation for M may differ from

the correct result of simulating them if M1 was first topologically

sorted and then composed.

THEOREM 3.7. If M1 and M2 has combinational path between

them and M1 is simulated using delta cycles, M2 with rule-based

execution then it may not be the case that ∀i ∈ N,∀sj ∈ S2,

(SM1⊕M2

b i)sj = (SM2

b i)sj .

As stated before, since M2 =< V2, R2 > corresponds to

an execution model M2E =< X2, Y2, A2, S2, F
2
c > where F 2

c

contains all assignments to variables including those in S2. So,

M1 ⊕ M2 composition and topologically sorting the correspond-

ing hypergraph will lead to GH(M1⊕M2E). Figure 1 shows an

example of a composed model. Unfortunately, now we can no

longer prove that delta cycle based evaluation of M1 ⊕ M2 will

have the same values as hypergraph based evaluation. The reason

is simple to see. If there is combinational path from M1 and M2,

and during simulation M2 is evaluated first based on rule-based se-

mantics, the values of its state variables will change permanently

for that cycle. This would mean that during reevaluation of M1,

if delta-events trigger recomputation of M2, then the state vari-

ables would contribute their new values and not the values from

the previous cycles.

Table 1. Execution trace for RNG
Sim. Time HDL RTL RTL & BS-ESL

t < 0, 0, 0, 0, 79 > < 0, 0, 0, 0, 79 >

t + ∆ < 263, 2, 0, 79 > < 263, 2, 0, 0, 0 >

t + 2 ∗ ∆ < 263, 71, 0, 0, 79 > < 263, 71, 263, 2, 2 >

t + 1 < 263, 71, 263, 71, 48 > < 263, 71, 263, 71, 97 >

t + 2 < 263, 71, 263, 71, 95 > < 263, 71, 263, 71, 82 >

t + 3 < 263, 71, 263, 71, 56 > < 263, 71, 263, 71, 37 >

We use Table 1 to show the execution trace of a composi-

tion of RTL and BS-ESL models for a random number generator

(RNG) example. The vector describes values for < p1, p2, P1Reg,

P2Reg, resultReg >, where p1 and p2 are input signals, variables

subscripted with Reg are registers internal to the component, k∗∆
represents the kth delta-event and t + 1 represents the first cycle

after time t. The seed for the RNG is specified as the initial value

for resultReg as 79 and the random numbers are computed us-

ing resultReg := (P1Reg ∗ resultReg) + P2Reg . For the HDL

RTL case, the inputs arrive at different delta-events that are stored

in their respective registers in the following clock cycle. From

there on, the RNG computation iterates and stores the result. Sim-

ilarly, the inputs arrive in delta cycles to the composed situation

except that due to BS-ESL’s ordered schedule and lack of delta-

events, registers are updated at the end of the iteration. Hence,

the resultReg contains an incorrect value which is continuously

used for subsequent random numbers. This is incorrect behavior

for a RNG because for the same seed and constants P1 and P2,

the sequence of random numbers generated must be the same.

Our Interoperability Technique

Having identified that a simple minded composition of HDL

RTL (M1) and BS-ESL (M2) is not correct, we use a technique

that enables correct composition.

HDL RTL with BS­ESL RTL

Suppose M1 and M2 where M1 =< X1, Y1, A1, Z1, S1, F
1
S , F 1

c >

is an HDL RTL model and M2 =< V2, R2 > such that V2 is de-

scribed by < X2, Y2, A2, S2, F
2
c > is an BS-ESL model. Now,

we must introduce a wrapper such that the composition M1 ⊕
w(M2) is possible. The wrapper is defined as

w(X2, Y2, A2, S2, F
2
c) =< Xw, Y w, Aw, Zw, Sw, F w

s , F w
c >

where

X
w = X2, Y

w = Y2, A
w = A2, S

w = S2

Z
w = {zi|si ∈ S2}

F
w
s = {< si ⇐ zi|zi ∈ Z

w
>}

F
w
c = with each occurrence of si replaced by zi

The wrapper introduces intermediate combinational signals Zw

that take inputs from Aw and serve as inputs to the state elements

Sw. This is indicative of adding temporary variables in M2 whose

inputs are signals from Zw and the outputs are to the state ele-

ments. At every execution of M2 the result of the combinational

circuit is assigned to the temporary variables. The state elements

are then assigned values of zi as per delayed assignment seman-

tics. In addition, when there is a combinational path between the

models (X1 ∩ Y w)∪ (Xw ∩ Y1), the updates on the signals must

occur in delta cycles. Once again, since M2 does not have the

notion of delta cycles, we execute M2 at every value change on

its combinational inputs. The simulation is correct because only

the temporary variables are updated with these executions and not

the state elements. The state elements are then only updated at the

beginning of the next clock cycle so as to retain correct simulation

behavior.

The simulation behavior for M1 is S
M1

b and M2 is S
M2

b as per

Definition 3.1. Then, using our wrapper we can avoid the problem

presented in Theorem 3.7.

THEOREM 3.8. ∀i ∈ N,∀sj ∈ S1 ∪ S2

(S
M1⊕w(M2)
b i)sj =

8

>

<

>

:

(SM1

b i)sj if sj ∈ S1

(SM2

b i)sj if sj ∈ S2

(SM1

b i)sj = (SM2

b i)sj if sj ∈ S1 ∩ S2

Our implementation uses a SystemC process as the wrapper

process. This wrapper process interacts with other external Sys-

temC processes and handles conversions from SystemC channels

to the BS-ESL interfaces. For the wrapper process to trigger on

every delta-event, we introduce ∆-channels. These channels inter-

nally employ the sc event queue in SystemC to notify events, but

we allow for transferring data along with every event generated as

well. We make the wrapper process sensitive to these ∆-channels

such that whenever there is an event on the channels, the wrapper

process is scheduled for execution within the same clock cycle.

3.1 Examples

We implement the GCD and RNG examples in SystemC and

in the BS-ESL co-simulation environment (labeled as composed).

Our experiments showed that the correct co-simulation of com-

posed SystemC and BS-ESL models resulted in an approximately

40% simulation performance degradation over pure SystemC sim-

ulation. This is an inevitable price for the advantage of correct

by construction concurrency management in BS-ESL. The over-

head in the composed models is the scheduling, data-structure con-

struction and firing. Furthermore, the implementation in SystemC

amounts to a single function call whereas in BS-ESL multiple rules

are used. The overhead caused by our solution (duplicating state

elements) described in this paper is a fractional amount, approxi-

mately 1% of the total overhead (results omitted for space).

Table 2. Simulation times for examples
GCD (s) RNG (s)

Samples SystemC Composed SystemC Composed

100000 8.0 13.2 8.62 14.7
200000 15.8 26.5 17.4 29.6
300000 24.2 39.8 26.0 43.9

4. Conclusion

This work formally presents the DE simulation semantics as

implemented in any HDL including SystemC, followed by BS-

ESL’s rule-based semantics. Then, we argue that direct compo-

sition of the two MoCs does not provide correct simulation be-

cause of their inherently distinct MoCs. Traditional HDLs em-

ploy delta-events and delta cycles for recomputing certain func-

tions in the designs whereas the rule-based MoC executes its rules

in an ordered manner without requiring recomputation. Using the

analysis, we identify the problem with state updates during co-

simulation and then present one technique that allows designers to

correctly co-simulate models using the two MoCs. Our solution

proposes adding a wrapper process and duplicating state elements

in the BS-ESL model such that all computation is performed us-

ing the temporary state elements and the actual state elements are

updated at the beginning of the next clock cycle. One of the main

thrusts of this paper is to show how wrapper generation should be

based in formal model based reasoning as opposed to ad-hoc ideas,

as is often done for co-simulation.

5. References

[1] FORTE, “Forte Design Systems,” Website: http://www.forteds.com/.

[2] Mentor Graphics, “Catapult C Synthesis,”
Website:http://www.mentor.com/.

[3] D. Rosenband and Arvind, “Hardware synthesis from guarded
atomic actions with performance specifications,” Proceedings of

ICCAD’05, pp. 784–791, November 2005.

[4] ——, “Modular Scheduling of Guarded Atomic Actions,”
Proceedings of the Design Automation Conference, June 2004.

[5] J. C. Hoe and Arvind, “Hardware Synthesis from Term Rewriting
Systems,” Proceeding of VLSI’99 Lisbon, Portugal, December 1999.

[6] M. Pellauer, M. Lis, D. Baltus, and R. Nikhil, “Synthesis of
Synchronous Assertions with Guarded Atomic Actions,” in In

Formal Methods and Models for Codesign, 2005.

[7] N. Dave, M. C. Ng, and Arvind, “Automatic Synthesis of
Cache-Coherence Protocol Processors Using Bluespec,”
Proceedings of Formal Methods and Models for Codesign, July
2005.

[8] Bluespec, “Bluespec-SystemC Release,”
Website:http://bluespec.com/products/ESLSynthesisExtensions.htm.

[9] H. D. Patel, S. K. Shukla, E. Mednick, and R. Nikhil, “A rule-based
model of computation for systemc: Integrating systemc and
bluespec for co-design,” in Proceedings of MEMOCODE, 2006.

[10] OSCI, “SystemC,” Website: http://www.systemc.org.

[11] E. Lee et al, “Heterogeneous Concurrent Modeling and Design in
Java: Introduction to Ptolemy II,” Memorandum UCB/ERL M03/27,
July 2003.

[12] A. Girault and B. Lee and and E. A. Lee, “Hierarchical Finite State
Machines with Multiple Concurrency Models,” in IEEE

Transactions on Computer-Aided Design of Integrated Circuits and

Systems, vol. 18, 1999, pp. 742–760.

[13] W. Chang and S. Ha and E. A. Lee, “Heterogeneous Simulation -
Mixing DE Models with Dataflow,” in Journal of VLSI Signal

Processing, 1997, pp. 127–144.

[14] F. Ghenassia, Transaction-Level Modeling with SystemC. Springer,
2005.

[15] A. Sayinta, G. Canverdi, M. Pauwels, A. Alshawa, and W. Dehaene,
“A Mixed Abstraction Level Co-Simulation Case Study Using
SystemC for System on Chip Verification ,” in Proceedings of

DATE, 2003.

[16] H. D. Patel and S. K. Shukla, “Towards a heterogeneous simulation
kernel for system level models: A systemc kernel for synchronous
data flow models,” in IEEE Transactions in Computer-Aided

Design, vol. 24, August 2005.

[17] ——, “Heterogeneous Behavioral Hierarchy for System Level
Designs,” in to appear in IEEE Transaction on CAD, 2006.

	Main
	DATE07
	Front Matter
	Table of Contents
	Author Index

