
Performance Analysis of Complex Systems by Integration of Dataflow Graphs and
Compositional Performance Analysis

Simon Schliecker, Steffen Stein, Rolf Ernst
Institute of Computer and Communication Network Engineering

Technical University of Braunschweig, Germany
[schliecker | stein | ernst] @ida.ing.tu-bs.de

Abstract

In this paper we integrate two established approaches to
formal multiprocessor performance analysis, namely Synchro-
nous Dataflow Graphs and Compositional Performance Analy-
sis. Both make different trade-offs between precision and ap-
plicability. We show how the strengths of both can be combined
to achieve a very precise and adaptive model. We couple these
models of completely different paradigms by relying on load
descriptions of event streams. The results show a superior per-
formance analysis quality.

1 Introduction

Formal approaches to system performance analysis are
gaining industrial importance with increasing system complex-
ity. Research in this area has produced a variety of models of
computation to describe and reason about the system’s behav-
ior. Each of these established models represents a focus on dif-
ferent system properties or is adapted to specific multiproces-
sor design styles. Some models may be very well suited to give
performance information for a specific setup, and be inexact or
inapplicable for another.

The timing of real-time systems remains a large applica-
tion area for the use of such formal methods. Key metrics are
latency and throughput of the system. In this paper, we fo-
cus on two analysis methods based on Synchronous Dataflow
(SDF) graphs and event model driven compositional perfor-
mance analysis.

SDF graphs are well suited to describe signal processing
applications such as filters, data-driven hardware components,
and also software functions. The data-dependencies and par-
allelism can be well expressed with SDF, but some dynamic
paradigms such as priority driven scheduling can not directly
be modeled. Determining optimal schedules and computing
the average achievable throughput of the described system has
been widely discussed in literature e.g. [10, 4, 3]. Less at-
tention has been given to the worst-case traffic and latency of
events in such a graph, as required for our mixed setup.

In the case of more dynamic multiprocessor behavior, com-
positional methods based on local schedulability analysis yield

InIn AA BB OutOut

DSPDSP

uCuC ARMARM

T1 T2

T3

C1 C2

SPP

In1

In2

Event Stream
SDF

Out1

Out2

Figure 1. Integrated Setup Overview

good results. System properties can be derived by composing
local analysis instances using event streams describing key in-
tegration issues [5, 12]. This approach allows to integrate a
wide range of local details but can not evade overestimations
between component boundaries.

Modern embedded systems integrate applications from di-
verse domains. Take for example the system depicted in fig-
ure 1. Here, a DSP, a microcontroller and an ARM processor
core are interconnected by a bus. The bus as well as the ARM
core are assumed to be arbitrated in a static priority preemptive
fashion. A filtering application implemented on the DSP runs
a fixed order schedule. The DSP application is best modeled
using SDF graphs, whereas schedulability analysis is required
for the bus timing as well as for the ARM core.

Integrating both analysis approaches in a single framework
as presented in this paper will increase compositional analysis
accuracy and extend the applicability of SDF analysis into the
domain of systems that contain priority driven components. It
allows the designer to choose the most suitable model.

This paper presents the involved models for performance
analysis (Secs. 2.1, 2.2), our integrated setup (Sec. 3), and algo-
rithms to derive the required data from an SDF graph (Sec. 4).
Experiments are shown in Sec. 5, and we conclude in Sec. 6.

2 Related Work

2.1 Compositional System Level Performance Analysis

The compositional performance analysis methodology pro-
posed in [5] (available as the tool SymTA/S), solves the global
system-level performance verification problem by decompos-

1

978-3-9810801-2-4/DATE07 © 2007 EDAA

ing the system into independently investigated components.
Each resource (as seen in in Fig. 1) is a component and the

possible I/O timing between the tasks (event streams) is cap-
tured with event models. Input event models capture event
patterns leading to task activations. These are used to per-
form a local scheduling analysis of a resource to derive the
local response times as well as output event models. These
output event models are propagated to subsequent resources
where they are used, in turn, as input event models. In setups
with cyclic dependencies the assumed event streams become
increasingly more generic. This procedure either converges
(and provides a conservative estimation of system properties
such as jitter and latencies which can be checked against given
constraints), or the system’s schedulability can not be guaran-
teed.

Fundamental properties of the event models used in [12] and
[5] are the maximum and minimum number of events that may
occur during a time interval of given size. Correspondingly, the
minimum δ−(i) and maximum distance δ+(i) between succes-
sive events can be used. To receive a more compact description,
these models are expressed in [9] with a set of key parameters:
the period P , the signal jitter J , and the minimum distance be-
tween any two events dmin. The distance for i ≥ 2 events in a
bursty event stream ES can then be expressed as follows:

δ+(n) = (i − 1)P + J (1)

δ−(n) = max((i − 1)dmin, (i − 1)P − J) (2)

Event models only capture key integration aspects such as
send/receive message jitters, etc., and ignore details of the con-
crete computation or communication resources. They there-
fore represent a suitable abstraction for the integration of other
analysis methodologies or application models.

2.2 Synchronous Dataflow Graphs

A Synchronous Dataflow graph is a directed graph. The
nodes of the graph model tasks and are referred to as actors.
The edges model communication channels or other dependen-
cies between actors. Tokens on the edges represent data sam-
ples that are consumed or produced by the execution (firing)
of an actor. An actor may consume or produce more than one
token upon each firing. The actual number of consumed or
produced token is called consumption or production rate re-
spectively. If the consumption and production rates of all ac-
tors equal one, the graph is referred to as a Homogeneous SDF
(HSDF) graph.

The classical SDF model [7] is untimed. However, fortim-
ing analysis purposes, SDF Graphs have been annotated with
execution times for each actor [10, 4]. Many problems related
to SDF Graphs have been thoroughly discussed in literature.
This includes computation of the throughput of an SDF Graph
which involves calculating the Maximum Cycle Mean λ of the
graph [3]. In literature, given SDF graphs are often converted
to equivalent homogeneous SDF (HSDF) [10] graphs to sim-
plify reasoning about them. The conversion algorithm given
in [10] also yields a repetition vector �r, indicating how many

firings of each node will return the graph into the initial state.
Also, �r indicates for each node, how many copies of it will be
present in the equivalent HSDF graph. As the HSDF graph can
be considerably more complex, recent work [4] directly derives
throughput from the SDF representation.

SDF graphs can be used to express the (partial) order of the
application’s data dependencies. Likewise they can accommo-
date additional constraints imposed by shared resources and
scheduling. This is done to reason about and derive an optimal
static order schedule e.g. in [10]. A much larger application
area is described in [8], where the self-timed execution of an
SDF model of the actual system is used to also model the de-
lay of computation, communication, and arbitration of suitable
hardware components. Under self-timed execution each actor
fires as soon as all input tokens are available. Reasoning about
this model delivers conservative estimates of the actual hard-
ware behavior. In this paper we assume that an SDF model of
the application exists for which the previous is true.

SDF graphs under self-timed execution have been shown
to behave monotonically, which means that the earlier arrival
time of a token can not lead to the later activation of any ac-
tor. Furthermore, it is shown that consistent graphs that do
not deadlock, will after a transient phase settle into a periodic
regime [10]. During the periodic regime, each actor n will fire
N ∗r[n] times until the graph returns into its initial state [1]. N
can be derived from the number of tokens on the critical cycles
in the graph and is well bounded in most practical cases [10].

The state of the self-timed execution of an SDF graph is de-
fined by the current token placement and execution progress of
the involved actors. If we explicitly derive an initial state (as in
Secs. 4.3, 4.4), we reduce the state space by representing it by
a token placement alone as in [4]. Any state can be reduced to
such a simplified state, by either moving all unfinished tokens
to the input or to the outputs of the processing actor.

2.3 Mixing Models

Previous work has investigated the composition of perfor-
mance analysis methodologies from different domains. In [2],
a mixed simulation setup is presented that embeds a dataflow
graph into a discrete event setup and vice-versa. Many other
domains have been coupled in the Ptolemy project. In [6]
a simulated component is integrated into a formal real-time
performance analysis method. This allows to regard features
which are difficult to capture with formal models on the one
hand, and speed up analysis time by abstracting detailed be-
havior on the other. Because they rely on simulation, both of
the above approaches do however not derive worst-case guar-
antees for the integrated components.

3 Embedding SDF into Compositional Perfor-
mance Analysis

With the tracking of specific event timing, SDF graphs are
a suitable model for tightly integrated systems with feedback
loops and many cyclic dependencies. On the other hand, the
compositional performance analysis can address the complex-
ity of larger systems with abstract event streams and decoupled

2

local analyses. Exclusive use of either model (if possible) ei-
ther results in a large computational complexity or the potential
loss of precision.

We propose a technique to embed components modeled
with an SDF graph under self-timed execution into the com-
positional analysis. As input load to the SDF model, we allow
arbitrary event models that express deterministic and conserva-
tive traffic bounds (as in Sec. 2.1). For a successful integration
as in Fig. 2, the following information needs to be exchanged:
1: The current input event models to the SDF component are

required to analyse its timing behavior. They are provided
by the compositional performance analysis (of Sec. 2.1).

2: The rate relationships of the nodes in the SDF graph de-
mand a relationship between the event streams at the inputs.
Furthermore, it must be assessed whether the input load can
be processed by the subsystem (see Sec. 4.1).

3: To further reason about the behavior of the complete system,
the load imposed on subsequent components is derived (and
represented by output event models, see Secs. 4.2, 4.3).

4: Finally, reasoning about system properties such as end-to-
end delay requires information about the latency of events
processed by the SDF component (see Sec. 4.4).

InIn OutOut

SymTA Component
modeled as SDF Event Stream

SDF Edge

OutOut

inEM

2
outEM

1
outEM

Figure 2. Interfacing of SDF Model

We will use the following notation: Each actor n of the
SDF graph G is annotated with an execution time interval
[Emin, Emax]. The SDF component has input ports Pin and
output ports Pout. In the compositional domain, these are con-
nected to input event streams ESp, p ∈ Pin and output event
streams ESp, p ∈ Pout. Events arriving on an input event
stream ESp are translated to tokens placed on an edge ep of the
SDF graph. Equivalently, tokens produced on an output edge
translate to events of the corresponding output event stream.
We talk about tokens and their arrival times in the SDF graph
and events in the compositional domain. The arrival time of
the i-th token on an SDF edge ep is denoted with tip. The
minimum (maximum) distance between i sucessive events of
an event stram ESp is denoted with δ−p (i) (δ+(i)). An event
stream ESp does on average not produce more than Pp events
(which is its period).

Also, some assumptions are required for the further reason-
ing: We assume the SDF graph to be strongly connected, which
means that a directed sequence of edges exists from any actor
to any other. Any setup with bounded buffers can be modeled
using a strongly connected SDF graph [10], hence this restric-
tion has no major impact on the usability of the model. Further,
we assume all edges and actors retain a first-in-first-out order
of the processed tokens.

4 Deriving Performance Metrics from SDF

4.1 Input Period Consistency

The input event streams connected to an SDF graph are con-
strained in two ways: It must be ensured that incoming taffic
can be processed by the component and the long term average
of the inputs must be conform with the rate relationships de-
manded by the SDF graph. Evaluating these properties before
continuing with an analysis can significantly reduce runtime,
since computation of the latency and output event models can
possibly be avoided.

During the periodic regime of the self-timed execution of
an SDF graph, each actor n ∈ G fires N ∗ r[n] times during
a macro period of time N ∗ λ (see Sec. 2.2). Assuming an
input actor consumes c tokens on each activation an actor can
on average consume c∗r[n]

λ from an input edge ein. An input
event stream ESin must on average not produce more tokens
than can be consumed in order not to overload the graph, which
yields the following constraint on the input period:

Pin ≥ λ

cin ∗ r[nin]
(3)

where λ is computed assuming maximum execution times for
each actor.

If the SDF graph has multiple inputs, the period of each
of the event streams connected to them has to comply with
equation 3. Since the graph is strongly connected, each con-
nected event stream will restrict the complete system in means
of bandwidth achievable for other inputs. In order to not over-
load the graph, the input periods must pairwise comply with
the following restriction:

Pin,1

cin,1 ∗ r[nin,1]
=

Pin,2

cin,2 ∗ r[nin,2]
(4)

4.2 Output Period

As discussed above, the event streams connected to the SDF
graph will constrain its achievable throughput. Similar to com-
puting the maximum period of the output actor dependant of
the MCM of the graph, the output period of a given actor nout

can be computed from Pin, �r, and the number of tokens con-
sumed by the input (c) and produced by the output node (p) on
each activation.

Pout =
r[nin] ∗ c

r[nout] ∗ p
∗ Pin (5)

As all Pin comply with equation 4 the above equation yields
the same result for each input event stream.

4.3 Output Jitter and Minimum Distance

To construct an output jitter from an SDF component con-
nected to a surrounding SymTA/S model, we analyse corner
cases of the load imposed by the SDF component.

First, we analyse a scenario that produces the maximum

3

load on a given output edge p during self-timed execution
of the SDF graph. The observed token production times
directly translate to the minimum and maximum inter-event
times δ−p (i) and δ+

p (i) of an input event stream. To receive an
event model conform with the description in Sec. 1 and [9], we
derive the jitter from the lower and upper amount of observed
tokens.

In this paper, we focus on the maximum load a SDF compo-
nent can impose on its environment. For completeness, we also
present a simple method to derive the minimum load imposed.

Maximum Output Load To construct a starting configura-
tion yielding the maximum output load for a given actor n, we
evaluate a set of equations describing the activation timepoints
of all actors in an HSDF Graph. Let πn be the set of prede-
cessors of n, d(e(j, n)) denote the initial number of tokens on
the edge from j to n, and an(k) denote the kth activation of n.
Then

an(k) = max
j∈πn

{aj(k − d(e(j, n)) + E(j)} (6)

with

an(k) = −E(n) ∀k < 0 ∨ E(j) ∈ [Emin, Emax] (7)

captures the initial state of the graph and all future activations
(k ≥ 0) of an actor n (corresponding to the evolution equations
of [1]). Eq. 6 states that an actor becomes activated as soon as
there are tokens on all its input edges and models the depen-
dencies between successive actor activations. The first part of
Eq. 7 provides that the initial tokens have been produced at
time zero. This setup reduces the set of possible initial states to
those with no ongoing computation. Any diverging initial state
can conservatively be mapped to this set as in Sec. 2.2.

The above equations describe the evolution of the states of
the SDF graph during self-timed execution from a given start
configuration. Maximizing the load induced by a given out-
put actor n implies maximizing the density of produced tokens
over time. Due to monotonicity, a maximum density will be
reached for minimal execution times of all actors. Assuming
constant execution time for all actors, production of a token on
an output edge can be related to activation of the output node
by a static offset (its minimum execution time). Thus, the prob-
lem of finding a maximum density for produced tokens on an
output edge is equivalent to maximizing the activation density
of the output actor. Then, the problem of finding the maximum
load at an output can be formulated as

minimize an(k) − an(0) ∀k ≥ 0 (8)

This way we reformulated the problem of maximizing the out-
put load of a given node to minimizing equation 6 for all k ≥ 0
and a given n by altering the initial token placement. It is hard
to find the reachable token placement that minimizes equation
8 for all k. Thus, we introduce a method to derive a token
placement that will overestimate all reachable placements in
minimizing equation 8.

It is easy to see that any actor n will instantly fire most of-
ten, if all input edges initially bear the maximum amount of
tokens possible. For more tokens to be produced on the incom-
ing edges of n as soon as possible, the same argumentation
applies to the predecessors of n and their input edges. Due to
the cyclic nature of the system of equations [1], this chain of
argumentation can be continued until all firings of nodes are
dependant on the first firings of actor n. Thus minimizing the
timepoints of these will minimize all activation timepoints of
n. A solution that will yield minimum activation times for n
is to put the maximum number of tokens on the edges with
increasing distance from n.

The maximum number of tokens placeable on any edge is
well bounded in a strongly connected HSDF graph, as the num-
ber of tokens in a simple cycle must remain constant [10].

This constraint limits the number of initial token placements
to a superset of the actually reachable token placements. Fur-
ther constraints taking into account i.e. actor execution times
and properties of the connected event streams will tighten this
approximation and improve the results of the algorithms to cal-
culate the upper envelope described below.

It can be shown that the method outlined above yields a
unique token placement for all HSDF graphs [11]. Algorithm 1
fires all nodes except the output as often as possible, resulting
in the token placement yielding the highest output load during
self-timed execution.

Algorithm 1 Construct Token Placement
INPUT: HSDF graph G, Output node n ∈ G
OUTPUT: Token placement will produce maximum output load

oneFired = true
while oneFired do

oneFired = false
for all nodes v ∈ G\{n} do

if v can fire then
fire v
oneFired = true

To find the actual activation pattern of the output node given
the above initial token placement, we assume all input event
streams to produce tokens at a rate corresponding to their max-
imal load δ−(i) and simulate the resulting graph assuming min-
imal execution times for all actors. The simulation can be
stopped once the graph has entered the periodic regime [10].

From the observed timepoints tkout at which the k-th to-
ken was produced on the output edge, we construct a function
δ(i) = tiout − t1out, describing the distances between the ob-
served tokens. δ−(2) equals the dmin parameter used in the
event model of [9]. Since dmin and P are known, the jitter can
be easily discovered from the distances δ−(i).

Minimum Output Load The minimal load an SDF compo-
nent can impose on the connected SymTA/S model can be de-
rived from the maximum length of time during which no to-
ken has to occur at all. This time span is conservatiely ap-
proximated by the difference between maximum and minimum
latency (as introduced in the Sec. 4.4). From this, a jitter
as necessary for the event model of [9] can be deduced from
Lmax − Lmin = P + J .

4

This approach is trivial. For improved considerations, it can
be replaced by a similiar procedure as undertaken for the max-
imum load.

4.4 Path Latency

End-to-end latency is a fundamental metric to quantify sys-
tem performance. As we model a subsystem with SDF, we re-
quire the local latency for further system wide considerations.
The path latency as the time between the arrival of an event at
an input and the first causally dependant reaction at the out-
put. A token x is causally dependant on all tokens that are
consumed with the actor activation that leads to the production
of x.

The maximum latency is difficult to predict from an SDF
representation directly. We therefore assume to have an HSDF
representation which duplicates the actors according to the rep-
etitions vector (see Sec. 2.2). We assume for the remainder of
this paper that the input and output actors of the path, whose
latency we are interested in, are not duplicated. This is the case
for many applications. In other cases, the worst case latency is
given by the maximum over all latencies from any correspond-
ing input actor to any corresponding output actor.

We are now interested in the latency of an arbitrary token,
that arrives at an input edge ein at time t0in. The latency to an
output edge eout can be derived by simulation of the self-timed
schedule [10]. The first causally dependent reaction at the out-
put can easily be tracked with a colored token at the input that
progressively causes produced tokens to be colored as well. It
will be observed at the output after it has propagated over a path
from ein to eout. Let ρ(ein, eout) be the minimum number of
tokens on any such path at time t0in, then the 1+ρ(ein, eout)-th
firing of the output actor after the arrival of the token at the in-
put must be causally dependant. Thus, the latency for the token
arriving at the input is given by

L = t
1+ρ(ein,eout)
out − t0in (9)

To derive the maximum latency, we assume the graph in a
worst case state at t0in and let it behave as slow as possible
thereafter. As the arrival time of the token t0in is fixed, we

maximize its latency by maximizing t
1+ρ(ein,eout)
out .

From Eq.6 it can immediately be seen that for any actor j
decreasing actor execution times (Ej) or activation times (aj)
can not lead to a later activation (and therefore finishing) of
another (an). This is true throughout the graph. Therefore,
t
1+ρ(ein,eout)
out is maximal under the following conditions: (i)

throughout the graph every actor always executes with its worst
case execution time (see also [4]), and (ii) events at the graph’s
inputs arrive as late as possible.

Also, we again do not need to precisely model the state of
the HSDF graph at t0in. We assume the initial state to be de-
fined only by the token placement. Any differing state can be
expressed by assuming that tokens currently processed by an
actor are placed on the respective incoming edge. This overes-
timates the resulting latency, but greatly reduces state space.

Assume for now that the only external input event stream is

ESin. At the input edge ein, the latest possible arrival of to-
kens previous to t0in are given by the minimum distances inher-
ent to the event stream: t−1

in = t0in−d−in(2), t−2
in = t0in−d−in(3),

a.s.o. Subsequent tokens arriving after t0in do not effect the la-
tency due to the FIFO ordering throughout the model.

To produce the worst case state at t0in, we do however not
need to begin the simulation at a time tsim = t−∞

in in the past.
For any event stream which can be modeled as in Sec. 2.1,
we can assume the additional distance to previous events to
be constant after a transient phase. This is e.g. the case for the
burst event model of Eq. 1 when the P term dominates the dmin

term [9]. In other models this may not be so easy to determine,
but it is always conservative to assume constant distances to
previous events starting with an arbitrary event arrival t−S

in . As
the distance increment is non-decreasing, this means that any
prior events will be assumed later than is actually possible (and
thus lead to a higher latency). Thus, after a number of events S
in the past the additional minimum distance to any prior events
can be assumed to be constant.

The effect is that the graph that produces the maximum la-
tency at time t0in behaved purely periodic at some time in the
past. The self-timed execution of an HSDF graph with constant
execution times is in the same state after N firings of every ac-
tor (once it has entered its periodic regime) [10] . The same is
true for our setup before t−S

in , as all graph elements have a con-
stant behavior (at their bounds). Thus, the graph will be in the
same state at t−S

in as it was at t
−(S+N)
in , making it unnecessary

to investigate any prior states. Thus, we begin the simulation
at tsim = t−S

in .
The graph can be in any of the N states with the begin-

ning of the simulation. In general, each can lead to differ-
ent t

1+ρ(ein,eout)
out and must therefore be tested with a different

simulation run. Alternatively, an approach similar to that in
Sec. 4.3 can be used to derive a conservative initial placement.

So far we have neglected other input event streams ESp ∈
{Pin \ ESin} to the graph. On average these inputs will not
constrain the graph’s execution (see Sec. 4.1), but they may
introduce transient underflow situations that can increase the
searched latency. We create the most constraining scenario by
assuming events to arrive as late as possible after the beginning
of the simulation: t0p = tsim+d+

p (2), t1p = tsim+d+
p (3), a.s.o.

for all inputs. This setup puts transient underflow situations at
the beginning of the simulation.

Thus, we begin a simulation at a timepoint tsim sufficiently
in the past either in each of N graph states or a conservative
approximation. We then let external events arrive as late as
possible, including the input token at t0in, and it will experience
the worst-case latency, which is determined by the first causally
dependant reaction observed at the output.

The minimum latency can be determined in a similar fash-
ion. However, an easy and appropriate simplification is that
the first causally dependant effect of an arriving event can not
observed before it has propagated at least through the shortest
path, where the shortest path is the path with the smallest sum
of execution times.

5

Figure 3. Output Jitter over Resource Load
5 Experiments

The experiments emphasize two aspects of the work pre-
sented in this paper. They show that there exists a domain in
which SDF analysis of the same system yields better results
than traditional performance analysis using SymTA/S. Sec-
ondly, the feasibility of the proposed approach is demonstrated
by presenting results of a coupled analysis.

For the experiments, we return to the multiprocessor setup
shown in Fig.e 1 and assign the actors, computation and com-
munication tasks with execution times as shown in Table 1.
Actor execution on the DSP is data driven and priorities on the
bus are assumed to be C1 > C2 and on the ARM T3 > T2.

(a) Core Execution
Times

Task CET

T1 [10,20]
T2 [22,500]
T3 [43,132]

(b) Core Comm. Times

Channel CCT

C2 [76,92]
C1 [92,122]

(c) Execution Times of
SDF Actors

Actor CET

In [10,200]
A [50,100]
B [600,1000]
Out [60,100]

Table 1. Experimental Setup

To compare the SDF-based analysis with the SymTA/S ap-
proach, we use the calculated jitter as a benchmark value.
As both approaches yield conservative results, a smaller jit-
ter means tighter analysis of the modeled system. As an ex-
perimental setup, we modeled the task-chain on the DSP both
in SDF as well as SymTA/S. In SymTA/S, the task chain was
modeled as a task-chain mapped on a round-robin scheduled
resource.

In an experimental run, we increased the load on the DSP
resource by decreasing the period of an input signal and com-
pared the output jitters as calculated using the proposed SDF
analysis technique as well as using the SymTA/S toolsuite. The
results are summarized in Fig. 3. It can be seen, that the SDF
analysis technique yields good results for high resource loads,
whereas SymTA/S shows superior analysis quality for low re-
source loads. The high overestimation on the jitter using SDF
analysis for low resource load is caused by the construction of
the token placement used to obtain the highest possible output
load (see Sec. 4.3), as the algorithm does not take constraining
inputs into account.

Secondly, we present analysis results for the complete setup
shown in Fig. 1. For input traffic parameters as shown in Ta-
ble 2(a), we compute output parameters as shown in Table 2(b)
using the approach presented in this paper.

6 Conclusion
We have shown in this paper how the well established theory

of SDF graph analysis that is widely used in signal processing

(a) Input Event Models

Source P J dmin

In1 1700 0 0
In2 750 0 0

(b) Output Event Models

Sink P J dmin

Out1 1700 2590 810
Out2 750 495 0

Table 2. Input and Output Event Models

optimization can be included in a compositional performance
analysis. We have demonstrated the superior analysis resulting
from this combination. This was possible by reasoning about
the input and the output behavior of SDF graphs and satisfying
the event model interface of the compositional analysis. To
allow reasoning about the system’s end-to-end behaviour, we
also computed path latencies.

Using this approach, we achieve three goals: complex
dataflow analysis can be decomposed to achieve better com-
putability, dataflow graphs may be embedded into composi-
tional performance analysis to increase precision, and a mix
of both models may be used to extend the scope of setups for
which performance predictions are possible.

References
[1] F. Bacelli, G. Cohen, G. J. Olsder, and J.-P. Quadrat. Synchro-

nization and Linearity. John Wiley & Sons, Inc., 1992.
[2] W.-T. Chang, S. Ha, and E. A. Lee. Heterogeneous simulation

- mixing discrete-event models with dataflow. J. VLSI Signal
Process. Syst., 15(1-2):127–144, 1997.

[3] A. Dasdan and R. Gupta. Faster maximum and minimum mean
cycle alogrithms for system performance analysis. IEEE Trans-
actions on Computer-Aided Design, 17(10):889–899, October
1998.

[4] A. Ghamarian, M. Geilen, S. Stuijk, T. Basten, A. Moonen,
M. Bekooij, B. Theelen, and M. Mousavi. Throughput analysis
of synchronous data flow graphs. In Proceedings of the IEEE
International Parallel and Distributed Processing Symposium
(IPDPS), 2006.

[5] R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, and
R. Ernst. System level performance analysis - the symta/s ap-
proach. In IEE Proceedings Computers and Digital Techniques,
2005.

[6] S. Künzli, F. Poletti, L. Benini, and L. Thiele. Combining simu-
lation and formal methods for system-level performance analy-
sis. In Proc. Design, Automation and Test in Europe, 2006.

[7] E. A. Lee and D. G. Messerschmitt. Synchronous data flow.
Proceedings of the IEEE, 75(9), 1987.

[8] A. Moonen, M. Bekooij, and J. van Meerbergen. Timing analy-
sis model for network based multiprocessor systems. In Pro-
ceedings of the 5th progress symposium on embedded systems,
pages 122–130, Octobre 2004.

[9] K. Richter. Compositional Scheduling Analysis Using Stan-
dard Event Models. PhD thesis, Technical University of Braun-
schweig, 2004.

[10] S. Sriram and S. S. Bhattacharyya. Embedded Multiprocessors:
Scheduling and Synchronization. Marcel Dekker, Inc, 2000.

[11] S. Stein. Embedding a data flow-based real-time performance
analysis into an event-model based multiprocessor evaluation
technique. Master’s thesis, Technical University of Braun-
schweig, January 2006.

[12] L. Thiele, S. Chakraborty, and M. Naedele. Real-time calculus
for scheduling hard real-time systeme. In Proc. IEEE Interna-
tional Conference on Circuits and Systems, 2000.

6

	Main
	DATE07
	Front Matter
	Table of Contents
	Author Index

