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Abstract
Nonlinear distortions in submicron analog circuits are

gaining importance, especially when power constraints are
imposed and when operating in moderate inversion. This
paper proposes a method to optimize the design of analog
filters for minimum noise and nonlinear distortions. For
this purpose a technique is presented for quantifying these
nonlinearities, such that their influence can be compared
with that of the system noise. Having quantified the non-
idealities, an optimization can be carried out which
involves the tuning of design parameters.

1. Introduction

Multi-objective optimization is often used during the
design of analog circuits [1][2]. Objective functions can be
defined in various ways. In this paper the deviation of the
transfer function w.r.t. a desired characteristic, the nonlin-
ear distortions and the system noise of analog active filters
are considered. For dominantly linear systems, such as
amplifiers and filters, it is possible to interrelate the nonlin-
earities and the system noise and to deduce a total distor-
tion-to-signal ratio. An obvious advantage of this
interrelation is the reduction of the number of objectives in
the optimization.

Nonlinear distortions are classically extracted using
intercepts or compression points. However if the nonlinear
distortions become frequency dependent (such as in e.g. fil-
ters) then the intercept points will also vary with the fre-
quency. Hence, it is dangerous to use a single number for
characterizing the nonlinear distortions of the circuit.

The proposed method for quantifying the nonlinearities
is based on the analysis of circuits using random phase mul-
tisine excitations. The advantages are:
1. A multisine signal can be made such that it resembles

the final signal used. As a consequence, it allows the
designer to predict the actual impact of nonlinear dis-
tortions, given the characteristics of the signal that will
be applied to the circuit.

2. The sources of the nonlinear distortions can be identi-
fied.

3. The nonlinear distortions can be split up in a determin-
istic and a stochastic part. The deterministic part is

responsible for a bias contribution on the transfer func-
tion. The stochastic part acts as an additive noise source
on the transfer function. This noise source has a lot in
common with the system noise.

This paper is organized as follows. First it will be shown
how to quantify the considered performances (non-ideali-
ties) using multisine excitations (section 2) and how to
translate them in a multi-objective optimization problem
(section 3). In section 4 the optimization procedure is
applied to two filter topologies in order to extract the
Pareto-optimal fronts for the trade-off between the (fre-
quency dependent) linear and nonlinear distortions. Section
5 concludes.

2. Quantification of the non-idealities

The initial design of an analog active filter assumes that
the basic building blocks behave ideally. OTA’s (Opera-
tional Transconductance Amplifiers) are supposed to be lin-
ear with an infinite bandwidth, capacitors should be purely
capacitive, ... Any deviation from this ideal behavior will
therefore cause distortions. A distinction can be made
between linear distortions, nonlinear distortions and system
noise.

2.1. Linear distortions

Examples of linear distortions are readily found. The
limited bandwidth of an OTA and the resistive loss of a
capacitor are two examples of non-idealities that induce
errors in the desired transfer function without introducing
extra harmonics or other nonlinear effects. Considering
these non-idealities in the initial design of a filter is a time-
consuming job. Nevertheless those deficiencies can usually
be compensated by tuning the parameters using a simple
simulation-based optimization algorithm.

2.2. Nonlinear distortions

Basic building blocks of analog filters (operational
amplifiers, ota’s, resistors, capacitors, ...) are assumed to be
dominantly linear. Nonlinearities are therefore, just like sys-
tem noise, considered as a disturbance. This is why a quan-
tification allowing to compare the influence of
nonlinearities with that of system noise would be desirable.
This can be achieved by using the approach introduced in
[3]. This study gives the theoretical background (based on
Volterra theory) for modelling a class of nonlinear systems
in a simple manner. This class includes so-called weak non-
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linearities (e.g. compression) as well as strong nonlineari-
ties (e.g. relays, saturation, ...) but doesn’t include
bifurcations and chaos. This section summarizes the rele-
vant aspects of [3] for this paper and considers their practi-
cal implementation for simulated electronic circuits.

As illustrated in Fig. 1, a nonlinear system is modelled as
a “Best Linear Approximation” (BLA) with on the output
two noise contributions  and , both computable with
existing simulators.
• The BLA is by definition the (hypothetical) linear sys-

tem which predicts the best the output signal in least
square sense for a given class of input signals. This
class of a signal is determined by its power spectrum
and its probability density function (pdf). It can be
shown [3] that the BLA of a nonlinear system equals:

(1)

(in the Laplace domain) where  is the true under-

lying linear system (or AC equivalent) and where 

is a bias term depending on the class of the input signals
and the odd nonlinearities.  is determined by the

deterministic nonlinear contributions, as explained fur-
ther. The BLA of a (weakly) nonlinear electronic circuit
hence depends on the pdf and the power spectrum of the
input signal used. A motivation to prefer the BLA over
the AC-equivalent is that the former takes nonlinearities
into account and thus will give a better prediction of the
output signal.

• The distortions due to nonlinearities  (also known as
stochastic nonlinear contributions) are noise contribu-
tions calculated with a time-domain analysis (transient
analysis) or a frequency domain method. They have a
lot in common with system noise, if some weak
assumptions on the excitation signals are satisfied [3].

• The System noise  (thermal, flicker, ...) can be deter-
mined with a NOISE analysis (see section 2.3).

The BLA and the stochastic contributions of nonlineari-
ties are calculated using one and the same time- or fre-
quency-domain analysis. A well-chosen excitation signal is
applied to the filter in this analysis, namely a random phase
multisine, which is mathematically expressed as:

(2)

where the ‘s are - not necessarily consecutive - natural
numbers. The phases  are stochastic variables w.r.t. 
and are uniformly distributed between 0 and  (note that

 is constant with time). The signal  has (in good
approximation) a normal distribution (so the pdf is known)
and a power spectrum that can be chosen arbitrarily by
varying the values of the amplitudes . From (2) it is also
clear that this signal is composed of frequency components
(so-called excited lines), which are all multiples of ,
called the fundamental frequency. Note that  determines
the frequency resolution of the multisine and that the
choices of the ‘s in combination with  determine the
frequency band to be analyzed. If this signal is applied on a
linear system, the energy on a frequency line of the result-
ing output signal will entirely originate from that same fre-
quency line at the input signal. This will not be the case
with nonlinear systems. For the considered class of systems,
theory predicts that the output signal will contain energy
contributions on every line whose frequency can be
obtained by multiple sums of combinations of the frequen-
cies of the excited lines. This is illustrated in Fig. 2, where
the linear contributions are represented by grey arrows and
the nonlinear contributions by the green and red arrows
(respectively even and odd nonlinearities [3]). A distinction
can be made between the deterministic and the stochastic
nonlinear contributions.
• The deterministic nonlinear contributions have a fixed

phase difference with the linear contribution and, as a
consequence, will not cancel out after averaging. They
contribute to  in (1).

• The stochastic nonlinear contributions have the prop-
erty that, for each realization, their phases vary ran-
domly w.r.t. the phase of the linear contribution. It can
be shown that these nonlinear contributions will cancel
out when averaged over a great number of realizations
of the phases . These stochastic nonlinear contribu-
tions are the cause of  in Fig. 1.

As suggested, the BLA of a filter can be calculated by
applying different (say ) realizations of a multisine on the
filter and by averaging the obtained Frequency Response
Functions (FRF) over the  realizations. The FRF (for
realization ) and the BLA on frequency line  are esti-
mated as:

(3)

(4)
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where  and  are the DFT’s of one period of the
steady-state response of respectively the output and input
signals. Note that in (4) the influence of the deterministic
contributions of the nonlinear distortions is taken into
account.

As mentioned above, stochastic nonlinear contributions
behave as additive noise on the output signal and corre-
spond to . Its variance can be calculated using the vari-
ance on the BLA (for convenience, parameter  has been
left out):

(5)

(6)

The last equation gives the total amount of energy due to
distortion in a frequency band centered around  and with
bandwidth  (  corresponding to the frequency resolution
of the multisine). Note that, since the detection is performed
using a periodic signal, the distortion is also periodic (as
illustrated by the arrows on Fig. 3), in contrast with the sys-
tem noise  as explained in section 2.3.

One issue about the detection of nonlinearities using
multisines is the needed simulation time for the transient
analysis. Since we are using a periodic signal, simulating a
whole period of the steady-state response to the multisine
would be convenient. The period of the multisine equals

, and hence, the higher the desired frequency resolution
is, the longer the simulation time. The sampling frequency
(and time step) depend on the desired accuracy [4]. As a
rule of thumb they should be chosen such as to simulate at
least 10 points of the highest excited frequency component.
This should be done to avoid aliasing from higher harmon-
ics. From this it follows that  time points in steady-
state should be simulated. One could notice that the time
domain simulation of a two-tone analysis performed at fre-
quencies  and  would require the same
amount of simulation points. The advantage of a multisine
analysis is, however, that a lot more information is acquired.

Note that a shooting method (e.g. a Periodic Steady-State
simulation) would provide the same results. However it has
been experienced that this analysis is usually slower and

requires more memory to be carried out, especially for large
filter circuits. The use of harmonic balance is dissuaded
because of the great amount of nodes in a typical active fil-
ter and the great number of frequency lines of the multisine.

By following the methodology described in this section,
one can predict the impact of the nonlinearities and define a
so-called signal-to-distortion ratio for a given class of sig-
nals. Using a frequency resolution  that is small enough
w.r.t. the analyzed frequency band, the smooth variations of
the nonlinear distortions with the frequency become clearly
visible.

2.3. System noise versus stochastic nonlinearities

Section 2.2 determines the noise due to stochastic non-
linear distortions. System noise, such as thermal noise and
flicker noise, can be computed using the NOISE analysis of
a circuit simulator. An important issue to consider when
optimizing both the system noise and the nonlinear distor-
tions is to compare them in a pragmatic way. It is important
that one can determine whether or not the nonlinear distor-
tions are significantly higher than the system noise. It would
be pointless to minimize the system noise if the output sig-
nal would mainly be distorted by nonlinearities and vice
versa. 

The NOISE analyses allows one to determine the Power
Spectral Density (PSD) of the different noise sources
(expressed in  for instance and in Fig. 3 represented
by the continuous stripe). The quantification method for the
stochastic nonlinear distortion introduced in section 2.2
gives the total amount of distortion energy in a frequency
band with a width of , and is therefore expressed in .
Consequently, the noise contributions should be denormal-
ized. This can be carried out by integrating the PSD of the
system noise over one frequency band. If the frequency res-
olution of the multisine is chosen such that the PSD stays
nearly constant over a frequency band, then this can be
approximated by:

 (7)

2.4. Deviation w.r.t. the desired transfer function

This far we have quantified both distortion contributions
 and  in Fig. 1. An optimization algorithm should take

into account the deviation of the realized transfer function
w.r.t. the desired transfer function. As mentioned in section
2.2, the best estimation we have for this transfer function is
the BLA. Hence, a possible quantification for the deviation
is a normalized difference:

(8)
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Ĉdev
Gdes ωκ( ) ĜBLA κ( )– 2
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with
•  the desired transfer function

•

•  a weighting function that should allow the
designer to favour some frequency bands over others.

A regularization should be carried out if  includes
transmission zeros to avoid bad conditioning around those
points. Note that (8) can be written as

(9)

3. Translating the distortion quantities in a 
multi-objective optimization problem

In the previous sections, two non-idealities have been
quantified as object functions, namely the deviation w.r.t. a

desired transfer function given by , equation (8), and

the distortion, given by :

(10)

with  being a weighting having the equivalent pur-
pose as the weighting function in (8). Equation (10) can be
written in an analogue way as (9), namely:

The distortion term  (Distortion-to-Signal Ratio)
includes both the stochastic nonlinearities and the system
noise, which represent two different distortion contributions
in the same frequency band. Further, the distortion is
defined as the inverse of the more common Signal-to-Dis-
tortion ratio. This is a reasonable choice since we chose that
optimization means the minimization of the different object
functions.

Both quantified non-idealities are then combined in a

multi-objective cost function :

(11)

with ; ; 

Having determined this multi-objective cost function, an
exploration of the performance space is carried out by mini-
mizing (11) for different values of the weighting vector .
Experimental results, described in section 4.2, show that
choosing the weighting vectors uniformly distributed over
the unit circle (illustrated in Fig. 4) allows to get a good idea
of the Pareto optimal front. More sophisticated methodolo-
gies for determining the front have been elaborated, involv-
ing however more complicated algorithms [2]. For the
optimization, note that (11) can be written as a sum of
squares, giving the possibility to use the Levenberg-Mar-
quardt algorithm [5], as described in section 3.1.

3.1. Practical implementation

An optimization can be performed by following one of
the two following strategies. First, one could consider to
carry out a performance space exploration for each building
block and to extract a mathematical model for the Pareto
optimal front and behavioral models for the building blocks.
The models obtained can then be used in an optimization on
the behavioral level [1]. The second strategy could be to
perform an optimization w.r.t. a well-chosen parameter vec-
tor on behavioral level using circuit level simulations. In
this case the circuit level parameters would be calculated
using an automated design plan. A clear advantage of the
first strategy is that it reduces significantly the needed simu-
lation time when the behavioral level models are available,
while the latter doesn’t require a behavioral model of the
building blocks. For this paper, the second strategy has been
chosen. 

The optimization uses the Levenberg-Marquardt algo-
rithm in combination with a hierarchical designflow. To this
end, a mathematical design plan has been set up in Matlab®
to size the transistors of the building blocks (like the OTA’s
for a gm-C filter) in a hierarchical way. This design plan cal-
culates the circuit level parameters of the building blocks as
a function of some behavioral level design parameters (e.g.
the  values and the bias current of the OTA’s). The design
parameters are then used as optimization parameters,
denoted . It is clear that the choice of these parameters can
be made in more than one way. It is however important to
keep the number of optimization parameters small. There-
fore a sensitivity study of the considered performances to
these parameters was carried out prior to the optimization.

The optimization algorithm of Levenberg-Marquardt
requires the cost function to be written as a sum of squares.
This gives, in vector notation:
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(12)

In this equation,  is the conjugate transpose of
, which in turn is composed by stacking  and 

where real and imaginary parts have been separated and put
below each other. The reason for this is to ensure that the
results for the optimization parameters will be real. The
algorithm then consists of taking a step  of the optimiza-
tion parameters. The step  is computed by solving the fol-
lowing equation (parameter  has been left out for
convenience):

(13)

where  is a non-negative real valued control parameter

and where  equals the Jacobian matrix.

Since calculating the Jacobian analytically is not an obvious
job, it is approximated by a numerical differentiation. A
good starting value for  is:  where

 is the greatest singular value of . Note that calcu-
lating  explicitly in (13) is numerically unstable. Refer-
ence [5] discusses how to solve (13) without forming 
explicitly.

The whole optimization algorithm can be summarized as
follows:
1. Establish a design plan to size the building blocks and

choose the optimization parameters such that a signifi-
cant sensitivity of the performances to these parameters
is observed.

2. Choose the starting values of the optimization parame-
ters. These can be obtained from a classical design
methodology and some insight in the circuits used.

3. Perform the transient and the noise analysis required to
calculate the distortion and the deviation of the transfer
function w.r.t. the desired characteristic and compute 
and .

4. Calculate a step  for the optimization parameters from
(13).

5. Compute a new value for  and :

,  unchanged

, 
6. Check the convergence criterion. If it’s not met, go

back to step 3.
The Pareto optimal front can then be calculated by

repeating this sequence for every weighting factor, chosen
as explained in section 3. Note that the parameters obtained
after one optimization with weighting vector  are good
starting values for the optimization with the next weighting
vector .

4. Application on filter design

This section shows the results of the optimization
applied on a filter in leapfrog configuration (section 4.1),
the pareto optimal front obtained for a cascade of 2nd order

sections (section 4.2) and a comparison between the nonlin-
ear distortions of both configurations (section 4.3).

4.1. Results on leapfrog configuration

The optimization method described in section 3.1 has

been applied to the design of a 6th order Chebychev gm-C
filter in leapfrog configuration [6] in a 180nm technology.
The results are illustrated in Fig. 5. The ‘x’ give the nonlin-
ear-distortion-to-signal ratio before (green) and after (red)
the optimization, calculated using (6). On this figure, one
can observe:
• the smooth frequency dependency of the nonlinearities.
• a decrease of the nonlinear distortions of about 20dB.
• that the system noise (‘o’) does not change a lot. This is

due to the fact that the nonlinearities are the dominating
distortions in this case, hence making the optimization
of the system noise superfluous.

This optimization was performed with eight tuning
parameters (including six capacitor values, one transcon-
ductance and one overdrive voltage). The required comput-
ing time for one iteration of the optimization (involving 102
transient simulations of 6144 time points) was about 15
minutes. The final values were reached after about 20 itera-
tions.

4.2. Pareto optimal front of a cascade of 2nd order 
sections

An optimization has been carried out for different values
of the weighting factors for a 6th order Chebychev gm-C fil-

ter composed of the cascade of 2nd order sections. Fig. 6
shows the desired transfer function (black continuous line)
and the BLA’s (colored dots). The purple values were
obtained when a higher weight was given to the distortions.
A higher weight was given to the deviation of the transfer
function for the blue values. The corresponding Pareto opti-
mal front is illustrated in Fig. 7. When giving a high weight
to the distortions, one can clearly observe the trade-offs
which are made by lowering the transfer function, espe-
cially around the cut-off frequency. This can be explained
by the fact that a cascade of 2nd order sections will require
some high quality factors of some sections around the cut-
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off frequency, causing a higher peaking of the transfer func-
tion of these sections and generating more nonlinear distor-
tions. Note that the trade-off allows the distortions to be
reduced by a factor of almost four while the transfer func-
tion has not been harmed in a very significant way.

4.3. Comparing the two different filter topologies

Fig. 8 shows the nonlinearities for a leapfrog filter (top
figure) and a cascade of second order sections (bottom fig-
ure) with both the same specifications and excitation signal
(multisine with 50mV RMS and uniform power spectrum).
The amplitude spectrum (dots) and the nonlinear distortions
(circles) on the succeeding nodes (different colors) of the
filters have been plotted. For the cascade, the last filter sec-
tion (in magenta) seems to add a lot of nonlinearities to the
signal, especially around the cut-off frequency. This isn’t
the case for the leapfrog, where the levels of nonlinearities
don’t increase from one node to the next. For this reason,
allowing an important deviation around the cut-off fre-
quency for this filter wouldn’t be as beneficial as was the
case for the cascade. Nevertheless it seems that the leapfrog
configuration shows a better linear behavior than the cas-
cade.

5. Conclusions

This paper explains a methodology to quantify the non-
linear distortions of an active filter, such as to be compara-
ble with the system noise. For this purpose the (weakly)
nonlinear filter is modelled as a “Best Linear Approxima-
tion” with two noise contributions on the output signal,
namely the system noise and the stochastic nonlinear contri-

butions. This method is applicable to the design of other cir-
cuits which are dominantly linear.

Having quantified the considered non-idealities (being
the nonlinear distortions, the system noise and the deviation
of the transfer function w.r.t. a desired characteristic), a
multi-objective optimization of a filter design was carried
out. It has been shown that, for a cascade of 2nd order sec-
tions, a significant trade-off can be made between distor-
tions and the deviation of the transfer function.

The nonlinear distortions of a leapfrog filter and a cas-
cade have been compared. It was shown that the former has
a better ability to oppress the nonlinearities than the latter.
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