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Abstract— Modern integrated radio systems require highly lin-
ear analog/RF circuits. Two-tone simulations are commonly used
to study a circuit’s nonlinear behavior. Very often, however, this
approach suffers limited insight. To gain insight into nonlinear
behavior, we use a multisine analysis methodology to locate the
main nonlinear components (e.g. transistors) both for weakly and
strongly nonlinear behavior. Under weakly nonlinear conditions,
selective Volterra analysis is used to further determine the most
important nonlinearities of the main nonlinear components. As
shown with an example of a 90 nm CMOS wideband low-noise
amplifier, the insights obtained with this approach can be used to
reduce nonlinear circuit behavior, in this case with 10 dB. The
approach is valid for wideband and thus practical excitation
signals, and is easily applicable both to simple and complex
circuits.

I. INTRODUCTION

Nonlinear behavior in radio circuits causes problems such
as distortion, crosstalk and desensitization. Numerical circuit
simulations provide acceptable results, but they give no in-
dication on which nonlinearities are mainly responsible for
the observed behavior. Different numerical approaches to gain
insight in nonlinear circuit behavior have been published.
They decompose the circuit’s overall nonlinear behavior into
different contributions. Approaches [8], [5] are based on
Volterra series for time-invariant or periodically time-varying
weakly nonlinear circuits. For a given order n (typically
limited to three), they decompose the nonlinear behavior into
contributions. These correspond to every coefficient from order
2 to n in the power series that describes a nonlinearity.
Although this approach yields insight, it is complex due to
the large number of contributions. For example, the drain
current of one MOS transistor with body effect gives rise to
sixteen contributions. Clearly, if one also takes into account
the nonlinear capacitors, circuits of practical size suffer from
enormous complexity.

At the expense of reduced insight, the per-nonlinearity
distortion analysis of [6], which is limited to weakly nonlinear
behavior, splits the nonlinear behavior of a circuit into less
contributions. For example, for a MOS transistor, the drain
current is treated here as one single contribution. This allows
to identify the transistors that contribute most to the nonlinear
behavior. However, no information is given about which
nonlinearity of the drain current (e.g. the nonlinear dependence
on vGS or on vDS) is responsible for the observed nonlinear
behavior.

The multisine approach used in our work also splits the
nonlinear behavior in similar contributions as in [6], but it

is able to deal with strongly nonlinear behavior, e.g. caused
by clipping. In this way, it yields similar information as the
per-nonlinearity distortion analysis mentioned above, but now
extended to strongly nonlinear behavior. Further, if a circuit
behaves in a weakly nonlinear way, additional insight can
be gained by using a selective Volterra analysis based on
the results of the multisine analysis. The Volterra analysis
now only takes into account the nonlinearity of the transistors
identified with the multisine analysis as main contributors to
the observed nonlinear behavior. In this way, the cumber-
some and time consuming bookkeeping of Volterra analysis
is circumvented as the number of contributions is highly
reduced. The extra insight offered with Volterra analysis gives
an even better indication than the multisine analysis or the per-
nonlinearity analysis on how to improve a circuit’s nonlinear
behavior.

The proposed combination of multisine analysis and selec-
tive Volterra analysis is illustrated here with the design of
a wideband low-noise amplifier (LNA), where the IIP3 of
a standard design has been increased by 10 dB thanks to a
change of the bias point of the most contributing transistor.

Section II introduces the use of multisines for the study
of nonlinear behavior. Section III introduces the concept of
applying selective Volterra analysis and Section IV illustrates
the proposed methodology on the LNA.

II. MULTISINE METHODOLOGY

A. Multisines

A multisine is a periodic signal consisting of a sum of N
sinusoidal signals that are commensurate in frequency [2]:

s(t) =
1√
N

N∑
k=1

R̂kcos(2πfkt + ϕk) (1)

in which R̂k and ϕk are the amplitude and random phases,
respectively. Further, fk = k.fmax/N is the frequency of the
kth sinusoid. Multisines can be chosen in a particular way
to distinguish even-order and odd-order nonlinear behavior.
A selection of fk = f1.k tones with k odd is selected for
the multisine with f1 being the fundamental frequency. This
means that Rk is equal to zero for k even in Eq. 1. As a
result the level of even-order distortion is found at the even
frequency components of the output spectrum. Indeed, odd
(excited) frequency components result in even (non-excited)
frequency components by an even-order nonlinear system.
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Fig. 1. Concept of a multisine excitation signal to distinguish odd-order and
even-order nonlinear behavior. Odd-order generated distortion is marked with
‘o’, even-order distortion with ‘*’.

To detect the level of odd-order distortion, some of the
odd excitation tones are set to zero. Odd-order nonlinear
behavior turns odd frequency components in odd frequency
components. This approach of using multisines to distinguish
even- and odd-order nonlinear behavior is illustrated in Fig. 1.

To select the non-excited odd-frequency tones, the following
strategy is followed: the odd frequencies are split into groups
of three consecutive odd harmonics. Per group one randomly
chosen component is set to zero. Proceeding in this way, the
stochastic contribution at the non-excited frequencies is equal
to the stochastic contribution at the excited frequencies [3].

B. Best linear approximation

The proposed methodology also allows to determine the
propagation of distortion by each circuit element. Linear
systems satisfy

B(f) = X0(f) · A(f) (2)

where A(f) and B(f) represent the input and output, while
X0(f) represents the transfer function of the linear system. For
nonlinear systems (Fig. 1), it is no longer possible to satisfy
this linear relationship. However, it is possible to approximate
X0(f) by the best linear approximation (BLA) in the least
square sense if a circuit remains mainly linear. For most Single
Input Single Output (SISO) systems, excited with the random
multisine with N in Eq. 1 sufficiently large, a transfer function
can be obtained [2] of the form:

X(fk) = X0(fk) + XB(fk) + XS(fk) (3)

with

• X0 the transfer function of the underlying linearized sys-
tem (linearization around the quiescent operating point);

• XB the systematic deviation between the linear behavior
and the compression (or expension) of each sinusoid due
to odd-order nonlinear behavior;

• XS the stochastic nonlinear contribution, which has a
zero mean if taken over different phase realizations of
the excitation.

In other words, the expression X0 + XB is the BLA.

C. Nonlinear subcircuit contribution

To calculate the distortion contribution of a subcircuit such
as a transistor, inside a circuit, we excite the complete circuit

Fig. 2. A general analysis setup to determine the distortion contribution of
a circuit element to its output nonlinearity.

with a multisine (Fig. 2). A transient analysis is applied, and
over several (p) periods (T0 = 1/f1) we sample the waveforms
of the input quantity ain(t) and the output quantity bout(t) of
each nonlinear subcircuit. For each period i, these time-domain
samples are transformed to the frequency domain, yielding
the quantities Ain,i(f) and Bout,i(f), respectively. Finally,
this data is averaged, yielding the frequency-domain quantities
Âin(f) and B̂out(f), respectively. For example, Âin(f) is
given by

Âin(f) =
1
p
·
∑

i

Ain,i(f) (4)

For B̂out(f) a similar expression can be written. The best lin-
ear approximation G(fEXC) for the input-output relationship
of the subcircuit is calculated from

G(fEXC) · Âin(fEXC) = B̂out(fEXC) (5)

with fEXC being the excited (odd) frequencies. To compare
the contributions from the different subcircuits, the output
quantity of each subcircuit is multiplied with the BLA from
this output to the overall circuit output.

For a common-source and common-drain MOS transistor,
the input quantity is a voltage, whereas the output quantity is
a current. For a common-gate transistor, both input and output
quantities are currents. Note that we consider the transistors
as SISO transadmittance devices, not as MIMO subsystems.
Although a full MIMO analysis [4] is more precise at the
expense of complexity and simulation time, SISO analysis is
sufficient for our purposes here.

D. Spectrum correction

If G would be excited by the selected odd-order tones only,
we would find the distortion contributions on the designated
frequencies. However, input power is available on non-excited
frequencies due to nonlinear contribution of previous subcir-
cuits. A first-order correction is applied by removing their
linear contribution from the spectrum B̂ as:

Bcorr(fNEXC) = B̂(fNEXC) − G(fNEXC) · Âin(fNEXC)
(6)

with fNEXC the non-excited frequencies. Here, G(fNEXC) is
found by interpolation of G(fEXC). Indeed, the linear contri-
bution of non-excited tones present at the input are removed.



The difference between B(fEXC) and Bcorr(fNEXC) is the
distortion contributed by the subcircuit under observation.

E. Conclusion

We now have a means to distinguish odd- and even-order
nonlinear behavior and the contribution of every nonlinear
component in a circuit. The complexity is limited to a transient
simulation. The analysis is valid for both weakly and strongly
nonlinear distortion effects and wideband (practical) excitation
signals.

III. SELECTIVE VOLTERRA ANALYSIS

For Volterra series analysis, every nonlinearity is described
as a power series. For example, the power series expansion of
the drain current ids of a MOS transistor, which, in general,
is a function of three voltages, vgs, vds and vsb, is given by

ids = gm ·vgs + K2gm
·v2

gs + K3gm
·v3

gs + gds ·vds

+K2gds
·v2

ds + K3gds
·v3

ds − gmb ·vsb − K2gmb
·v2

sb

−K3gmb
·v3

sb + K2gm&gmb
·vgs ·vsb

+K32gm&gmb
·v2

gs ·vsb + K3gm&2gmb
·vgs ·v2

sb

+ K2gm&gds
·vgs ·vds + K32gm&gds

·v2
gs ·vds

+K3gm&2gds
·vgs ·v2

ds + K2gmb&gds
·vsb ·vds

+K32gmb&gds
·v2

sb ·vds + K3gmb&2gds
·vsb ·v2

ds

+ K3gm&gmb&gds
·vgs ·vsb ·vds + . . .

(7)
The coefficients K2 and K3 in this series are referred to as

second- and third-order nonlinearity coefficients. They are pro-
portional to second- and third-order derivatives, respectively,
of the drain current with respect to one or more voltages. For
example

K2gm
=

1
2
· ∂2iDS

∂v2
GS

and K3gm
=

1
6
· ∂3iDS

∂v3
GS

(8)

According to Volterra theory [8], nonlinear behavior of a given
order n can be expressed in terms of the multidimensional
Fourier transform of the Volterra kernel of order n, which is
a function of n frequency variables. These kernel transforms
are found by summing the contribution from each nonlinearity
coefficients of order 2 to n. Such contribution depends on
the nonlinearity coefficient, on the lower-order response of
the voltage that controls the nonlinearity and on the linear
transfer function from the nonlinearity to the output of interest.
Although a Volterra approach has proven to yield insight
into weakly nonlinear circuit behavior [5], it suffers from a
high complexity, due to the large number of contributions in
practical CMOS circuits. Indeed, for a transistor not only the
drain current depends on three voltages, but also the intrinsic
capacitances are threedimensional nonlinearities. For order
n = 3, each threedimensional nonlinearity gives rise to sixteen
contributions.

In [5], all contributions are computed, and insight is ob-
tained by sorting the contributions in descending order ac-
cording to their magnitude and plotting the largest ones as a
function of frequency. In this work, however, we compute an

Fig. 3. Simplified schematic of the 90 nm LNA with classical two-tone and
proposed multisine excitation signals.

approximate value of the Volterra kernel transforms of each or-
der by only taking into account the contributions from the main
nonlinear components identified by the multisine analysis. The
error on the approximation is verified by computing the nonlin-
ear response (e.g. third-order intermodulation product, IIP3)
in terms of Volterra kernels [8] with the approximate kernels
and comparing these responses with a two-tone simulation in
SpectreRF R© [7] at small input amplitude to ensure weakly
nonlinear behavior.

The nonlinearity coefficients (Eq. 7 and 8) are computed by
numerical differentiation of DC parameters (currents and ca-
pacitors) from a DC simulation with Spectre of one transistor
over a range of values of vGS , vDS and vDS .

IV. DESIGN EXAMPLE

To illustrate the proposed methodology, we designed a
90 nm low-noise amplifier (Fig. 3). Since the supply voltage
lowers drastically when scaling CMOS, this circuit is vulner-
able to nonlinear behavior. Indeed, transistors are pushed into
lower degrees of inversion, causing higher levels of weakly
nonlinear distortion. Furthermore, clipping, which is strongly
nonlinear behavior, occurs faster.

A. Two-tone analysis

As a classical way of determining the distortion in the
circuit, a two-tone test is performed in SpectreRF using MOS
Model 11 [1] models of the 90 nm transistors. The (arbitrarily)
selected excitation tones are 1 GHz and 1.2 GHz. The IIP3 is
-13 dBm (see Fig. 4), possibly unsatisfactory, since wideband
amplifiers generally require high linearity specs. Trying to
improve the linearity is difficult when the designer lacks in-
sight in the distortion mechanisms in the particular circuit and
their propagation through the circuit. Insight is complicated
by the nonlinear feedback via Mn2 and the large number
of nonlinearity sources. Whether this feedback is helping or
worsening the linearity is not obvious [8].

B. Multisine analysis

The circuit is excited by a multisine source, as illustrated in
Fig. 3. The excited frequency band is chosen from 100 MHz



Fig. 4. Two-tone analysis on the amplifier.

to 7 GHz, with a tone separation of 25 MHz. We thus have a
multisine of 92 tones for which a uniform amplitude is chosen.
A transient analysis is performed in SpectreRF using the same
transistor models as before. This analysis, from which all data
is extracted, requires 279 seconds on a HPUX9000 platform.
The node voltages, as well as the currents indicated on Fig. 3
with A© are sampled. For every period of the sampled signals
(after the transients have died out), an FFT is calculated. The
resulting spectra are averaged.

Fig. 5(a) plots the spectrum of the input and output nodes,
averaged over the selected periods. The best linear approxima-
tion is indicated by ‘·’. Nonlinear contributions are indicated
with ‘+’ and ‘o’. Note that the clouds of ‘+’ and ‘o’ would
converge to a line if the amplitudes are averaged over sufficient
experiments with different phase realizations of the multisine.

One can observe a vast amount of distortion present in
the output spectrum. In fact, the even-order distortion (+) is
only 10 dB lower than the response at the excited frequency
tones (·) and the odd-order distortion (o) is 20 dB lower. Also
noticeable is a large amount of nonlinear components in the
input spectrum. With only this information — comparable to
classical distortion simulation — it is still challenging to track
the major source of nonlinearity.

To gain insight in the distortion propagation, we calculate
the contribution of all transistors to the output distortion.
Similar to Eq. 5, the BLA of transistor Mn1 is calculated as:

GMn1(fEXC) =
Îd,Mn1(fEXC)

V̂in(fEXC)
(9)

with Îd,Mn1 the FFT of the current sampled at the drain of
Mn1, and V̂in the FFT of the voltage sampled at the gate of
Mn1 (both averaged over some periods of the multisine). We
find (similar to Eq. 6):

Id,Mn1,corr(fNEXC) =

Îd,Mn1(fNEXC) − GMn1(fNEXC) · V̂in(fNEXC) (10)

Here, GMn1(fNEXC) is found by linear interpolation of
GMn1(fEXC). To find the contribution to the circuit’s output,
we multiply with the BLA from this current to the output
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Fig. 5. Input and output spectrum of the transient analysis, before and after
linearity optimization. Excited tones are marked with ‘·’, even-order distortion
with ‘+’ and odd-order distortion with ‘o’.

voltage of the circuit. This BLA is given by:

GMn1.Out(fEXC) =
V̂out(fEXC)

Îd,Mn1(fEXC)
(11)

We find:

V̂contr.Mn1(fEXC) = Îd,Mn1(fEXC) · GMn1.Out(fEXC)

= V̂out(fEXC) (12)

which is nothing else than the output spectrum. The distortion
contributions from Mn1 are given by:

V̂contr.Mn1(fNEXC) =

Îd,Mn1,corr(fNEXC) · GMn1.Out(fNEXC) (13)

The contributions of all transistors are plotted in Fig. 6(a).
From this figure, we derive that Mn2 is the major contributor
to the overall nonlinear behavior. It is also seen that Mn2
produces much even-order distortion, which is fed back to
the circuit input. This distortion is in turn converted into
(even- and odd-order) distortion at the output. To increase
the linearity of the circuit, we thus have to decrease the
contribution of Mn2.

The large contribution of Mn2 can be understood since the
signal swing at the output (which is the “input” of Mn2) is
larger than at the input. Clipping at the input of Mn2 would be
translated into a strong contribution of MnCasc. Clipping at the
output of Mn2 is then again unlikely, since only minor signal
swing is present at the circuit’s input. Since MnCasc generates
little distortion, Mn2’s distortion is mainly due to the excited
frequency components. This distortion is thus most probably
due to the second-order nonlinearity of Mn2. Therefore, by
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Fig. 6. Each transistor’s best linear approximation and nonlinearity contri-
bution to the circuit’s output, before and after linearity optimization. Excited
tones are marked with ‘·’, even distortion with ‘+’ and odd distortion with
‘o’.

increasing Mn2’s overdrive, we expect to substantially improve
the circuit’s linearity.

Adapting the design of the circuit, we increase the overdrive
of Mn2 by 250 mV. As Fig. 5(b) shows, the output distortion is
now substantially reduced, both the even- and the odd-order
ones. Looking at the contribution of Mn2 in Fig. 6(b), it is
clear that Mn2 now generates much less distortion, meaning
that we successfully located the cause of nonlinearity.

The careful reader might also notice that odd-order dis-
tortion of Mn1 has been lowered in the redesign. This is
perhaps surprising, since no effort has been made to lower
Mn1’s nonlinearity. The effect can be atributed to the even-
order nonlinearity in Mn2. Indeed, before the redesign, even-
order contributions of Mn2 were almost as large as the linear
contributions (odd). These two (odd and even) cause odd-
order distortion generated by Mn1. Yet these distortions are
not compensated by Eq. 6. As a consequence, when even-
order nonlinearity of Mn2 lowers, less odd-order distortion is
generated by Mn1.

Fig. 7. Two tone analysis on the amplifier, after the linearity optimization.

To validate the redesign and the multisine methodology, the
two-tone test is repeated for the optimized circuit, as presented
in Fig. 7. The IIP3 is now -3.1 dBm, which is about 10 dB
better than the initial circuit. This indicates that we took the
appropriate design action to lower the distortion.

To further clarify insight in nonlinear operation, a selective
Volterra analysis can be used, as explained in the next section.

C. Selective Volterra analysis

In this section, we first discuss the result of a full Volterra
analysis of the LNA without omitting any contribution, in
order to check the conclusions from the multisine analy-
sis in Section IV-B. We compute second- and third-order
kernel transforms in the LNA. The same two-tone analysis
has been carried out as in Fig. 4. The IIP3 is computed
from the third-order Volterra kernel of the output voltage,
H3(jω1, jω1,−jω2) with ω1 = 2π · 1.2 GHz and jω2 = 2π ·
1 GHz . Table I compares the results, which match very well
to the SpectreRF simulations. From a plot of the main contri-
butions (Fig. 8) to the third-order intermodulation product at
1.4 GHz , we find that the second-order nonlinearity coefficient
K2gm

of Mn2 yields the largest contribution. This contribution
is proportional to the second-order kernel of vGS Mn2, which
is the controlling voltage of the nonlinearity on gmMn2. The
second-order nonlinearity K2gm

of Mn2 combines this second-
order kernel of vGS Mn2 with the first-order signal of vGS Mn2

to produce a third-order signal. Analysis of the second-order
kernel of vGS Mn2 points out that this kernel is also mainly
determined by K2gm Mn2

. This corresponds to the observations
from Section IV-B. Next, the approximate Volterra kernels
are computed, using only the contributions of the sixteen
nonlinearity coefficients of the drain current of Mn2. This
computation is performed in Matlab in 2.9 seconds. The
deviation on the IIP3 (Table I) between the exact analysis
and the approximate one is 0.9 dB.

Using the two main contributions of Mn2 (K2gmMn2
and

K3gmMn2
), an approximate expression for IIP3 can be derived

with symbolic network analysis. One finds for IIP3 expressed
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SpectreRF Full Volterra Selective Volterra Eq. (14)
Before -13.6 -13.5 -12.6 -14.4
After -3.1 -3.1 -2.7 -0.7

TABLE I

IIP3 CALCULATION OVERVIEW IN dBm

in terms of the amplitude of the input voltage source:

IIP3 =
4

1 + AV
·
√√√√√√

2

3

[(
K2gmMn2

gmMn2

)2

+
K3gmMn2

gmMn2

] (14)

in which
AV = gm Mn1 · Rload (15)

is the circuit voltage gain. This formula tells us that IIP3

can be increased by decreasing the gain or by decreas-
ing the second- and third-order nonlinearity coefficients of
Mn2, normalized to gmMn2. In the original design point, the
term with (K2gmMn2

/gmMn2)2 in the denominator dominates.
From Fig. 9 we see that by shifting the original bias point
from VGS = 0.5 V (moderate inversion) to VGS = 0.75 V
(strong inversion), the normalized second-order coefficient
K2gmMn2

/gmMn2 is much lower. In this way, the second-
order Volterra kernel of vGS Mn2 is also lower, yielding in turn
a reduction of H3(jω1, jω1,−jω2). A look at the dominant
contributions to the latter kernel in this new design point (see
Fig. 8) shows that the contribution of K2gmMn2

has been
reduced, even below the contribution of K3gmMn2

.
Table I list the evaluation of Eq. 14. Before the redesign this

formula is fairly accurate. The inaccuracy on the formula after
redesign is due to the lower relative contribution of K2gmMn2

(see Fig. 8).
This example illustrates how selective Volterra analysis

yields added detailed insight in weakly nonlinear circuit be-
havior to the multisine analysis. The latter can be regarded as
a powerful preprocessor to greatly simplify Volterra analysis.

V. CONCLUSIONS

To gain insight into nonlinear circuit behavior, this work
demonstrates an approach that can split this behavior into
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Fig. 9. Normalized second-order nonlinearity coefficient K2gm
/gm as a

function of the inversion level. Point 1 and 2 correspond to the original
operating point of Mn2 in the LNA, and the point with the higher IIP3,
respectively.

different contributions, one for each nonlinear component such
as a transistor. This approach, which uses multisine analysis,
works both for weakly and strongly nonlinear behavior. For
weakly nonlinear behavior, this approach is combined with
Volterra series analysis: using the selection of the main non-
linear components with the multisine analysis, the complexity
of the Volterra analysis is seriously reduced, as it only needs to
compute the contributions of few nonlinearities to the observed
nonlinear response. The design example reported here, namely
a 90 nm CMOS wideband LNA, shows that the combined
approach yields clear guidelines to reduce nonlinear distortion
of a practical circuit.
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