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Abstract

Nonlinear distortion, typically defined using the third or-
der intercept point (IP3), is one of the key figures of merit
that are critical in the design of RF communication circuits.
The calculation of IP3 is typically based on analytical ap-
proaches such as Volterra Series which are very complex
and difficult to apply to circuits of arbitrary complexity, or
on simulation based methods which require multi-tone in-
puts and thus result in a very high CPU cost. In this paper
a new method based on the computation of the circuit mo-
ments is proposed. The new approach uses the circuit mo-
ments in order to numerically compute the Volterra kernels.
This automates the process of numerically obtaining such
kernels for any circuit and results in an efficient approach
for the computation of IP3.

1. Introduction

Radio Frequency (RF) communication circuits such as
Low Noise Amplifiers (LNAs) and mixers have become a
staple in modern electronics and products. This has put
a significant emphasis on efficient design and a reduced
time to market for much applications which can only be
achieved using more effective simulation and design au-
tomation tools. However such simulations, which require
obtaining the steady-state solution of a nonlinear circuit
due to a sinusoidal input, present a significant challenge us-
ing conventional spice-like simulators because a very large
number of cycles is required before the steady-state solu-
tion is reached. The Harmonic Balance method [4], [5], [7],
addresses this problem but results in a large system of non-
linear equations with a dense Jacobian. In this paper, we do
not address the general problem of nonlinear steady-state
simulation, but we rather focus on one of the key design
requirements for RF circuits which is linearity [8]. Linear-
ity affects the intermodulation distortion and is commonly
characterized by the third order intercept point (IP3) [11].

The computation of IP3 is one of the most CPU intensive
parts of RF circuit simulation due to the large number of
tones present [10].
There are two classes of techniques for computing the

IP3 of a circuit. The first is based on analytical approaches
such as the Volterra functional series [6]. Such methods re-
quire complex analytical manipulations and are difficult to
automate for arbitrary circuit topologies [1], [9]. The other
class of methods relies on brute force simulation and mim-
ics laboratory measurements by simulating the circuit using
two input tones and noting the solution that corresponds to
the intermodulation product at 2ω1 - ω2. The main disad-
vantage of this approach is that the multi-tone inputs result
in a significantly higher number of harmonics and thus a
large number of nonlinear equations in the Harmonic Bal-
ance (HB) simulation. This in turn results in a high CPU
cost.
In this paper a method based on the computation of the

circuit moments is proposed for obtaining IP3. The new
approach can be shown to be equivalent to computing the
values of the appropriate Volterra kernels at the frequencies
of interest. This approach does not require any analytical
manipulation but is rather applied directly to the MNA [3]
formulation of the circuit. It can therefore be applied to cir-
cuits of arbitrary complexity. Furthermore, the computation
of all the moments only requires one LU decomposition of
the Jacobian evaluated at the DC point which is very sparse
unlike the typical Harmonic Balance Jacobian which is usu-
ally both large and dense, especially for large RF circuits
that exhibit strong nonlinearities. Finally, the computation
is done numerically with the input frequencies known, and
thus produces very accurate results.
This paper is organized into six sections. Following the

introduction, Section 2 outlines the formulation of a sys-
tem and Section 3 highlights the brute force approach for
obtaining IP3. The proposed method is then presented in
Section 4. Numerical examples are shown in Section 5 in
order to illustrate the accuracy of the new method, followed
by conclusions in Section 6.
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2. MNA system formulation

Consider a non-linear circuit excited by one or more in-
put tones. The Modified Nodal Analysis (MNA) [3] circuit
equations can be expressed in the time domain as

Gx(t)+C ˙x(t)+ f(x) = b(t), (1)

where x(t) ∈ <n is the vector of n unknown node voltages,
inductor and voltage source currents, nonlinear capacitor
charges, and nonlinear inductor fluxes. G ∈ <n×n con-
tains the circuit stamps of the linear memoryless elements,
C ∈ <n×n contains the memory elements, f(x) ∈ <n is
a vector of nonlinear functions, and b(t) ∈ <n contains the
independent input sources.

3. Simulation based brute force approach

The third order intercept point can be found by solving
for the steady-state solution due to a two-tone input (for ex-
ample ω1 and ω2) and considering the intermodulation term
at 2ω2 - ω1. This can be achieved using the Harmonic Bal-
ance approach by expressing the periodic solution as a trun-
cated series of sine and cosine functions at the harmonics of
the inputs as well as at the intermodulation products. This
results in a set of nonlinear algebraic equations in the form

ḠX + C̄X + F (X) = B, (2)

where X ∈ <Nh is a vector of unknown cosine and sine
coefficients for each of the variables in x(t) and B ∈ <Nh

represents the contributions of the DC and AC independent
sources. The size Nh of this system is typically very large
due to the large number of harmonics and intermodulation
products present in the case of multi tone inputs. Further-
more, the Jacobian of (2) is typically dense. This results in
a large CPU cost in the computation of the system solution
and the value of IP3.

4. Proposed method

In this paper, a new method for obtaining the IP3 is pre-
sented. Using the proposed approach the required Volterra
kernels are computed numerically from the moments of (2).
This approach does not require topology dependent analyt-
ical manipulations. It can therefore handle circuits with ar-
bitrary complexity and nonlinearity. Furthermore it is to be
noted that, IP3 is in fact obtained without the need to com-
pute the solution of (2) which requires a large CPU cost due
to the dense nature of the Jacobian and the number of New-
ton iterations required. Instead, the IP3 is computed from
the system moments which only require one LU decompo-
sition of a sparse matrix.

4.1. Calculation of the moments

The system moments are essentially the derivatives of
the unknown solution vector X with respect to the input
voltage [2]. To develop the algorithm for calculating the
moments efficiently, it is useful to express equation (2) in
the following format

ḠX + C̄X + F (X)−Bdc − αBac = 0 (3)

In this expression, α is the amplitude of the input signals
and Bac is a vector with the only non-zero entries being
entries of value ’1’ at the frequencies of interest. Bdc is a
vector containing the contributions of the DC independent
sources. The system moments A0 . . .Aq are then defined
as the coefficients of the Taylor series ofX as a function of
α in

X = A0 +A1α+A2α
2 +A3α

3 + . . .

=

qX
k=0

Akα
k (4)

where Ak is the kth moment of the system. Once the mo-
ments are determined, the distortion analysis parameters
can be obtained efficiently as will be shown in section 4.2.
For the purpose of analyzing distortion with little CPU

cost, the moment vectors must be computed efficiently by
the simulator. Next a method is presented to show how this
task is performed. Substituting (4) into (3), we obtain the
following:

Ḡ

qX
k=0

Akα
k + C̄

qX
k=0

Akα
k+

qX
k=0

Dkα
k −Bdc − αBac = 0 (5)

whereDk are the Taylor coefficients of F (X) such that

F (X) =

qX
k=0

Dkα
k (6)

To solve for the zeroth momentA0, we set α in (5) to zero.
Setting α = 0:

ḠA0 + C̄A0 + F (A0) =Bdc (7)

Solving the above system to obtainA0 is simply obtaining
the DC solution of the system.
To solve for the remaining moments (An; n ≥ 1), we

equate the powers of alpha in (5). Equating the first power
of α, we obtain

ḠA1 + C̄A1 +D1 = Bac (8)



By applying the chain rule to D1 =
∂F
∂α |α=0 = ∂F

∂X ·
∂X
∂α |α=0 = T 0A1, and substituting this expression into (8)
we obtain

(Ḡ+ C̄ + T 0)A1 =Bac (9)

The first moment can now be obtained using one LU De-
composition to solve (9). It is important to note that the
matrix (Ḡ+ C̄ +T 0) is simply the sparse Jacobian matrix
which is already computed when obtaining the DC solution.
To obtain the remaining moments, we equate the nth power
of α in (5) to obtain:

ḠAn + C̄An +Dn = 0 n > 1 (10)

To solve the system given in (10) efficiently for each value
of n, we must expressDn in a different manner. Using the
chain rule we can express

∂F

∂α
=

∂F

∂X
· ∂X
∂α

= T
∂X

∂α
, (11)

where

T (α) =
∂F (X)

∂X
=
X
k=0

T kα
k (12)

Substituting (4), (6) and (12) into (11) we obtain

qX
i=1

iDiα
i−1 =

qX
i=0

T iα
i

qX
i=1

iAiα
i−1 (13)

To solve forDn, we take the nth derivative of (13) and set
α to zero. We can then expressDn as

Dn = T 0An +
1

n

n−1X
j=1

(n− j)T jAn−j (14)

Substituting (14) into (10) and rearranging yields

(Ḡ+ C̄ + T 0)An = − 1
n

n−1X
j=1

(n− j)T jAn−j (15)

This recursive relationship is used to calculate the remain-
ing moments. The right-hand side of equation (15) is cal-
culated using the values of the previous moments (An−j)
that have already been obtained, in addition to the values
of the partial derivatives of the non-linear vector functions
with respect to the solution vector (T j). All that remains is
to show how to obtain these terms. Since F (X) andX are
vectors, the term T (α) in (12) will be a matrix of the form

T (α) =
∂F (X)

∂X
=


∂F1
∂X1

· · · ∂F1
∂Xn

...
. . .

...
∂Fn
∂X1

· · · ∂Fn
∂Xn

 (16)

where each ∂Fj
∂Xi

term is a block matrix in itself. To sim-
plify the presentation of calculating these terms, we will
only consider one of the terms in the T (α) matrix shown in
(16), ∂F1∂X1

. If we represent ∂F1∂X1
as matrix T11 and express it

as a Taylor series expansion we then have

∂F1
∂X1

= T 11 = P =
X
j=0

P jα
j (17)

where the Taylor coefficientP j is entered in T j at the loca-
tion corresponding to ∂F1

∂X1
. The P j matrices are computed

using

P j = Γ
−1


∂f1(x1(t1))

∂x1 j
0

. . .
0 ∂f1(x1(ts))

∂x1 j

Γ (18)

where t1 to ts are the time sample points equally spaced
over the fundamental period (note that frequency mapping
and diamond truncation [5] is used in order to handle quasi-
periodic inputs efficiently using FFT), and Γ is the Inverse
DFT matrix defined as

Γ =


1 cos(Θ0,1) sin(Θ0,1) · · · cos(Θ0,H) sin(Θ0,H)
...

...
...

. . .
...

...
1 cos(Θn,1) sin(Θn,1) · · · cos(Θn,H) sin(Θn,H)
...

...
...

. . .
...

...
1 cos(ΘNi,1) sin(ΘNi,1) · · · cos(ΘNi,H) sin(ΘNi,H)


(19)

with

Θn,k = kn

µ
2π

Nh

¶
(20)

and Ni = Nh − 1. Note that the matrix-vector multipli-
cation with Γ and Γ−1 can be done efficiently by taking
advantage of the Fast Fourier Transform (FFT), and Inverse
Fast Fourier Transform (IFFT) algorithms. It is also to be
noted that the Jacobian is the same for all moments as can
be seen from (9) and (15). Furthermore, since the expan-
sion is at the DC operating point (A0 is the DC solution),
this Jacobian is very sparse.

4.2. Computation of IP3

In order to simplify the presentation, we first consider a
memoryless system. The output variable y is expressed as
a power series of the input v. The input output relationship
can be written as,

y = k0 + k1v + k2v
2 + k3v

3 + · · · =
X
n

knv
n (21)



Substituting v = α(cos(ω1t)+cos(ω2t)) into (21), truncat-
ing after k3, and expanding using trigonometric identities
we obtain

y = k0 + (k1cos(ω1t) + k1cos(ω2t))α

+(k2 +
k2
2
cos(2ω1t) + k2cos((ω1 + ω2)t)

+k2cos((ω1 − ω2)t) +
k2
2
cos(2ω2t))α

2

+(
9k3
4

cos(ω1t) +
k3
4
cos(3ω2t) (22)

+
9k3
4

cos(ω2t) +
k3
4
cos(3ω1t)

+
3k3
4

cos((2ω2 − ω1)t) +
3k3
4

cos((2ω1 + ω2)t)

+
3k3
4

cos((2ω2 + ω1)t) +
3k3
4

cos((2ω1 − ω2)t))α
3

By comparing (22) with (4), the relationship between kn
and the system moments can be deduced as shown in Table
1 [10].
In the presence of memory elements such as capacitors

and inductors, similarly to the memoryless case shown in
Table 1 which shows the relation between the Taylor coeffi-
cients and the circuit moments, an equivalent table for mem-
ory systems can be derived which relates the system mo-
ments to the Volterra kernels [11]. For example, |H1(jω1)|
is related to the entry corresponding to the frequency ω1 in
the momentA1, and |H3(jω1, jω1,−jω2)| is related to the
entry corresponding to 2ω1 − ω2 in the moment vectorA3.
The third order intercept point (IP3) can then be found by
using the following relation [11]

IIP3 =
2√
3

s
|H1(jω1)|

|H3(jω1, jω1,−jω2)| (23)

The above relation is for the Low Side IIP3. To obtain
the High Side IIP3 we replace |H1(jω1)| by |H1(jω2)|
and |H3(jω1, jω1,−jω2)| by |H3(jω1,−jω2,−jω2)| [11].
For the case of circuits with memoryless elements, the value
of IIP3 will be the same regardless of whether the low side
or high side intermodulation term was considered. Once
IIP3 is obtained using (23), the value of OIP3 can be com-
puted by multiplying the result by |H1(jω1)|.
It is important to note that the Jacobian matrix used in

this proposed method is constant and is at the DC operating
point. Therefore it is very sparse unlike a typical Harmonic
Balance Jacobian matrix, and only one LU decomposition
is required throughout the solution process. In contrast, the
brute force simulation based approach requires the solution
of a system of equations with a dense Jacobian at each New-
ton iteration which requires high CPU cost. It is also impor-
tant to note that other terms used for analyzing distortion,

Table 1. Location of Taylor series coefficients
in moment vectors.

Frequency A0 A1 A2 A3

DC k0 0 k2 0
2ω1 ± ω2 0 0 0 3

4k3

ω1 0 k1 0 9
4k3

ω2 0 k1 0 9
4k3

2ω2 ± ω1 0 0 0 3
4k3

2ω1 0 0 1
2k2 0

2ω2 0 0 1
2k2 0

such as the Second Order Intercept Point (IP2) and Har-
monic Distortion (HD), can be computed by extracting the
appropriate Volterra kernels from the moments.

5. Examples

In this section, numerical results of simulations per-
formed on two example circuits are shown in order to il-
lustrate the proposed approach. The value of IP3 obtained
using the proposed method, which does not require a har-
monic balance solution, is compared with that obtained us-
ing the brute force method which is based on multi-tone
harmonic balance simulation. As was expected the results
were identical.

5.1. Example 1

The first example considered is a common emitter Low
Noise Amplifier (LNA) with an LC tank centered at 1GHz,
and input and output matching networks as shown in Fig.
1. In order to measure the linearity of the circuit the brute
force method was first used by applying two -50 dBm input
tones, f1 = 1 GHz and f2 = 1.01 GHz, and performing a
standard harmonic balance analysis. The results are shown
in Fig. 2 and Fig. 3. The calculated IIP3 in this case was -
12.02 dBm and the Output IP3 (OIP3) was found to be -7.79
dBm. This simulation was run with 10 harmonics, therefore
the size of the dense Jacobian which had to be solved was
3315×3315 due to 10 harmonics of the fundamental tones
in addition to the intermodulation tones truncated using di-
amond truncation [5].
The distortion was then analyzed using the proposed ap-

proach by computing the moments of the system and ex-
tracting the Volterra kernels at the appropriate frequencies.
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Figure 1. Circuit diagram of example 1.

The resulting values of IIP3 and OIP3 were found to be -
12.02 dBm and -7.79dBm respectively. As can be seen, the
results are consistent with the brute force approach based
on Harmonic Balance simulations. The error between the
two methods was less than 0.01%.
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Figure 2. Output power of fundamental and
IM3 tones of example 1.

5.2. Example 2

The second example considered is the differential cas-
code LNA circuit shown in Fig. 4. This amplifier is biased
using a DC Current Source in the emitter and also with DC
voltage biasing at the bases of the transistors. The bias-
ing circuitry is not shown in the diagram and neither are
the matching networks to 50Ω source and load impedances.
The current source is implemented using a current mirror
topology. This amplifier has a differential voltage gain of
18.3dB. Linearity was measured first using the brute force
approach by applying two -70dBm input tones, f1 = 1 GHz
and f2 = 1.01 GHz, and performing a standard harmonic
balance analysis. The results are shown in Fig. 5 and Fig.
6. The measured IIP3 in this case was found to be -13.89
dBm, and the OIP3 was 4.63 dBm. This simulation was
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Figure 3. Output voltage spectrum for circuit
of example 1.
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Figure 4. Circuit diagram of example 2.

run with 10 harmonics, therefore the size of the dense Ja-
cobian which had to be solved was 9061×9061 due to 10
harmonics of the fundamental tones in addition to the dia-
mond truncation tones.
The distortion was then analyzed using the proposed ap-

proach by computing the moments of the system and ex-
tracting the Volterra kernels at the appropriate frequencies.
The resulting values of IIP3 and OIP3 were found to be -
13.87 dBm and -4.63 dBm respectively. The results are con-
sistent with the brute force approach and the error between
the two approaches was less than 0.02%.

5.3. CPU cost comparison

The data in Table 2 shows a comparison of the CPU
times and the speed-up between the proposed method and
the HB solution using a prototype Matlab simulator. The
speed-up over a harmonic balance simulation was 19.8
times for Example 1, and 64.6 times for Example 2. This
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Figure 5. Output power of fundamental and
IM3 tones of example 2.
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Figure 6. Output voltage spectrum for exam-
ple 2.

speed-up is due to three main reasons. Firstly, the mo-
ments used in the proposed method are found by solving
a linear equation without the need for any Newton Iteration.
Secondly, the left-hand-side matrix in (15) for finding the
moments is the same for all moments, while the Harmonic
Balance Jacobian is different at each Newton Iteration. Fi-
nally the HB Jacobian is significantly more dense than the
Jacobian used for solving for the moments. For Example
2, the 9061 × 9061 HB Jacobian contains 2,033,113 non-
zero elements while the 9061× 9061 matrix for finding the
moments contains only 36,875 non-zeros. As a result, the
CPU time needed for 1 LU decomposition of the HB Ja-
cobian was 1.14 seconds for Example 1 and 19.98 seconds
for Example 2 as opposed to 0.016 seconds and 0.078 sec-
onds, respectively, for 1 LU decomposition of the matrix
for finding the moments. It is also important to note that
the greater the number of non-linear elements present in the
system, the more significant is the speed-up between the
two approaches as can be seen when comparing the results
of Example 1 to those of Example 2.

Table 2. Comparison of CPU times between
the proposed method and the HB solution.

HB Solution Proposed Method Speed-up
Ex. 1 11.14 s 0.562 s 19.8
Ex. 2 197.80 s 3.063 s 64.6

6. Conclusion

In this paper, a new simulation method for measuring
distortion at the output of a non-linear system based on the
calculation of the system moments was presented. The new
approach is applicable to arbitrary circuit topologies and
was shown to be as accurate as brute force techniques based
on Harmonic Balance simulation, while providing signifi-
cant CPU speed-up.
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