
A Symbolic Methodology for the Verification of Analog and Mixed Signal Designs

Ghiath Al-Sammane

sammane@ece.concordia.ca

Concordia University

Montreal, Quebec, Canada

Mohamed H. Zaki

mzaki@ece.concordia.ca

Concordia University

Montreal, Quebec, Canada

Sofiène Tahar

tahar@ece.concordia.ca

Concordia University

Montreal, Quebec, Canada

Abstract

We propose a new symbolic verification methodology for

proving the properties of analog and mixed signal (AMS)

designs. Starting with an AMS description and a set of prop-

erties and using symbolic computation, we extract a normal

mathematical representation for the system in terms of re-

currence equations. These normalized equations are used

along with an induction verification strategy defined inside

the computer algebra system Mathematica to prove the cor-

rectness of the properties. We apply our methodology on a

third order ∆Σ modulator.

1 Introduction

Analog and mixed signal (AMS) circuits are important

integrated circuits that are usually needed at the interface

between the electronic system and the real world. They

are mainly used in the interface between digital and analog

components, such as analog to digital (A/D) and digital to

analog (D/A) converters. The verification of AMS systems,

however, is a challenging task that requires lots of expertise

and deep understanding of the system behavior. It relies

largely on a mixture of some manual calculations over the

symbolic analysis expressions and numerical simulation.

Today numerical simulation is the dominant approach

that attempts to check the behavior of circuits against a fi-

nite number of input signals. However, since exhaustive

simulation is impossible, we cannot guarantee the correct-

ness of the system outside the simulated input cases. By

contrast, formal verification techniques aim to prove that a

circuit behaves correctly for all possible input signals and

initial conditions and that none of them drives the system

into a non expected behavior. As a middle way technique,

symbolic analysis [6] attempts to compute symbolic expres-

sions for transfer functions and for other circuit characteris-

tics in terms of the element parameters. These expressions

are then used (in a close connection with numerical meth-

ods) to determine the influences of element parameters on

circuit behavior, to estimate the error and tolerance analysis

and to optimize parameters.

In this paper, we propose a new formal verification

methodology for proving the properties of AMS designs us-

ing symbolic computation. The AMS system (both the ana-

log and digital parts) as well as the properties are described

in terms of recurrence equations that are used along with an

induction verification strategy defined inside the computer

algebra system Mathematica [14] to prove the correctness

of the properties.

The main advantage of our methodology is that it can

be completely automatized and integrated into the design

flow. The idea is to verify the system automatically in the

same sense that the formal verification of digital systems

is achieved using logical decision procedures like SAT and

BDD. We illustrate our methodology on a third order ∆Σ

modulator, a widely used circuit in digital signal processing,

for which stability analysis remains a challenging problem.

The rest of the paper is organized as follows: we start by

discussing relevant related work in Section 2, followed by

an overview of the verification methodology in Section 3.

In Sections 4 and 5, we define the mathematical representa-

tion and the symbolic simulation method used, respectively.

The verification strategy is described in Section 6 with an il-

lustrative application shown in Section 7, before concluding

with a discussion in Section 8.

2 Related Work

Following the success of formal verification methods for

digital designs, researchers started recently tackling the ver-

ification of AMS systems. For instance, model checking

and reachability analysis were used for validating AMS de-

signs over a range of parameter values and a set of possible

input signals. Several methods for approximating reach-

able sets for continuous dynamics have been proposed in the

open literature. They rely on the discretization of the contin-

uous state space and were first proposed in [10] and [7]. In

[10], the authors construct a finite-state discrete abstraction

of electronic circuits by partitioning the continuous state

space into fixed size hypercubes and computed the reach-

ability relations between these cubes using numerical tech-

978-3-9810801-2-4/DATE07 © 2007 EDAA

niques. In [7], the authors tried to overcome the expensive

computational method in [10], by combining discretization

and projection techniques of the state space, hence reducing

its dimension. While the approach in [7] is less precise due

to the use of projection techniques, it is still sound. Variant

approaches of the latter analysis were adopted in [4], [8]

and [5]. For instance, the model checking tools d/dt [4],

Checkmate [8] and PHaver [5] were used in the verification

of a biquad low-pass filter [4], a tunnel diode oscillator and

a ∆Σ modulator [8], and voltage controlled oscillators [5].

Other computational techniques for AMS verification can

be found in [9].

A few other approaches have been proposed to solve

reachability analysis of AMS systems. For instance, in [4],

in order to tackle the state explosion problem due to the ex-

haustive analysis, the authors proposed using optimization

techniques in order to find bounds of the reachability. The

idea is to formulate bounded reachability analysis as a hy-

brid constrained optimization problem that can be solved by

techniques such as mixed-integer linear programming. For

an overview and comparison of the different projects related

to the subject, refer to [15].

In contrast to the above discussed mathematical models,

we propose in this paper a representation based on alge-

braic models that capture the continuous behavior without

any approximation or discretization. In fact, all above sur-

veyed formal methods limit the verification of the circuit to

predefined time intervals. We overcome this limitation by

basing our methodology on mathematical induction.

3 Symbolic Simulation Methodology

Our methodology aims to prove by induction that an

AMS description satisfies a set of properties. This is

archived via several steps as shown in Figure 1.

The AMS description is composed in general of a digital

part and an analog part. For the analog part, it could be

described using recurrence equations or a set of differential-

algebraic equations (DAEs) that can be converted into an

equivalent set of difference equations. For the digital part,

it could be described using a hardware description language

(HDL) like VHDL. The properties are algebraic relations

between signals of the system.

The AMS description and properties are input to a sym-

bolic simulator that performs a set of transformations by

rewriting rules in order to obtain a normal mathematical

representation called System of Recurrence Equations (SRE

to be described in Section 4). These are combined recur-

rence relations that describe each property blended directly

by the behavior of the system. The next step is the proof by

induction which is defined over the normal structure of the

SRE. If the proof is obtained, then the property is verified.

Otherwise, we provide counterexamples for the non-proved

properties.

Symbolic SimulationSymbolic Simulation

Analog partAnalog part Digital partDigital part

AMS DescriptionAMS Description
PropertiesProperties

SRESRE

Proof by InductionProof by Induction

VerifiedVerified

NONO

YESYES Find Find
CounterexamplesCounterexamples

Symbolic SimulationSymbolic Simulation

Analog partAnalog part Digital partDigital part

AMS DescriptionAMS Description
PropertiesProperties

Analog partAnalog part Digital partDigital part

AMS DescriptionAMS Description

Analog partAnalog part Digital partDigital part

AMS DescriptionAMS Description
PropertiesProperties

SRESRE

Proof by InductionProof by Induction

VerifiedVerified

NONO

YESYES Find Find
CounterexamplesCounterexamples

Figure 1. Overview of the Methodology

The symbolic simulator and the proof strategy are imple-

mented inside the computer algebra system Mathematica ,

which provides special functions to simplify and prove al-

gebraic relations. The advantage of using Mathematica over

other systems is the availability of numerous built-in func-

tions and proof capabilities.

4 The System of Recurrence Equations

(SRE)

A recurrence equation or a difference equation is the dis-

crete version of an analogue differential equation. In con-

ventional system analysis, recurrence equations are used in

the definition of relations between consecutive elements of

a sequence.

In [1], the notion of recurrence equation is extended to

describe digital circuits using the normal form: generalized

If-formula.

Definition 4.1. Generalized If-formula

In the context of symbolic expressions, the generalized

If-formula is a class of expressions that extend re-

currence equations to describe digital systems. Let K be

a numerical domain (N,Z,Q, R and B), a generalized

If-formula is one of the following:

• A variable Xi(n) or a constant C ∈ K

• Any arithmetical operation ⋄ ∈ {+,−,÷,×} between

variables Xi(n) ∈ K

• A logical formula: any expression constructed using

a set of variables Xi(n) ∈ B and logical operators:

not,and,or,xor,nor, . . . etc.

• A comparison formula: any expression constructed us-

ing a set of Xi(n) ∈ K and comparison operator α ∈
{=, 6=,<,≤,>,≥}.

• An expression IF(X ,Y,Z), where X is a log-

ical formula or a comparison formula and

Y,Z are any generalized If-formula. Here,

IF(x,y,z) : B×K ×K −→ K satisfies the axioms:

(1) IF(True,X ,Y) = X

(2) IF(False,X ,Y) = Y

Definition 4.2. A System of Recurrence Equations (SRE)

Consider a set of variables Xi(n) ∈ K, i ∈ V = 1, . . . ,k, n ∈
Z, an SRE is a system of the form:

Xi(n) = fi(X j(n− γ)),(j,γ) ∈ εi,∀n ∈ Z

where fi(X j(n−γ)) is a generalized If-formula. The set

εi is a finite non empty subset of 1, . . . ,k×N. The integer γ

is called the delay.

5 The Symbolic Simulation Algorithm

The symbolic simulation algorithm is based on rewriting

by substitution. The computation aims to obtain the SRE

defined in the previous section. In the context of functional

programming and symbolic expressions, we define the fol-

lowing functions.

Definition 5.1. Substitution

Let u and t be two distinct terms, and x a variable. We call

x → t a substitution rule. We use Replace(u,x → t), read

Replace in u any occurrence of x by t, to apply the rule

x → t on the expression u.

The function Replace can be generalized to include a list

of rules. ReplaceList takes as arguments an expression expr

and a list of substitution rules {R1,R2, . . . ,Rn}. It applies

each rule sequentially on the expression.

Definition 5.2. Substitution Fixpoint

A substitution fixpoint FP(Expr,R) is obtained, if:

Replace(expr,R) ≡ Replace(Replace(expr,R),R)

Algorithm 5.3. Repetitive Substitution

ReplaceRepeated(Expr,R) applies a set of rules R on an

expression Expr until a fixpoint is reached.

Begin

Expr = expr

Do

Exprt = ReplaceList(Expr,R)
Expr = Exprt

Until FP(Exprt ,R)
End

The correctness of this rewriting algorithm is discussed in

[1].

Depending on the type of expressions, we distinguish

three kinds of rewriting rules:

Polynomial symbolic expressions RMath: are built-in rules

intended for the simplification of polynomial expressions

(Rn[x]).
Logical symbolic expressions RLogic: are rules intended for

the simplification of Boolean expressions and to eliminate

obvious ones like (and(a,a) → a) and (not(not(a)) → a).
If-formula expressions RIF : are rules intended for the sim-

plification of computations over If-formulae. The def-

inition and properties of the IF function, like reduction and

distribution, are used (see [11] for more details).

• IF Reduction: IF(x,y,y) → y

• IF Distribution: f (A1, . . . , IF(x,y,z), . . . ,An) →
IF(x, f (A1, . . . ,y, . . . ,An), f (A1, . . . ,z, . . . ,An))

Equation rules REq: result from converting an SRE into a

set of substitution rules.

Algorithm 5.4. Symbolic Computation over SREs

A symbolic computation over SREs is:

Symbolic Comp(Xi(n)) = ReplaceRepeated(Xi(n),Rsimp)

where, Rsimp(t) = RMath ∪RLogic ∪RIF ∪REq

In the case of symbolic expressions over R, the normal

form is obtained using a Buchberger based algorithm for the

construction of Gröbner base [2].

The objective of the symbolic computation is to ob-

tain a normal form for cases like a + IF(x > 0,b,a).
Symbolic Comp rewrites this expression using two rules:

• IF Distribution : a + IF(x > 0,b,a) → IF(x > 0,b +
a,a+a)

• Polynomial Addition: IF(x > 0,b+a,a+a)→ IF(x >
0,b+a,2a)

The proof of termination and confluence of the rewriting

system formed by all these rules is discussed in [1].

6 The Verification Engine

After the symbolic simulation, we obtain a recurrence

relation for each property: P(n). Starting from the fact

that P(n) is an If-formula, we want to verify P(n) un-

der a set of constraints Cond given by the designer. The

constraints define the environment of the correctness of the

property under verification. We have defined our verifica-

tion algorithm in Mathematica using functions that reduce

a combination of algebraic equations and inequalities under

constraints. In following, we describe a set of Mathematica

functions that we use in our verification algorithm.

6.1 Mathematica builtin Functions

Definition 6.1. Quantifiers

ForAll[x,cond,expr], and Exists[x,cond,expr] are Mathe-

matica functions that represent quantifiers. ForAll states

that expr is True for all x satisfying the condition cond.

Exists states that there exists an x satisfying the condition

cond for which expr is True.

Definition 6.2. Reduce[expr,vars]
The function Reduce simplifies the statement expr by

solving equations or inequalities for vars and eliminating

quantifiers. The statement expr can be any logical combi-

nation of:

• lhs = rhs Equations

• lhs⋄ rhs, where ⋄ ∈ {6=,6,<,>,>} Inequalities

• expr ∈ dom Domain Specifications

• ForAll[x,cond,expr] Universal Quantifiers

• Exists[x,cond,expr] Existential Quantifiers

Reduce gives True if the expr is proved to be always

true, False if expr is proved to be always false and a reduced

expr otherwise. The implementation of the function Reduce

is inspired by a real polynomial decision algorithm defined

in [12].

Reduce always returns a complete representation of the

solution to a system of equations or inequalities. Some-

times, however, we may just want to find particular sample

solutions (as is the case for counterexamples). This is pos-

sible using FindInstance.

Definition 6.3. FindInstance[expr,vars,assum]
FindInstance finds an instance of vars that makes expr True

if an instance exists, and gives {} if it does not. The result

of FindInstance is of the form

{{v1 → instance1,v2 → instance2, . . . ,vm → instancem}}
where vars = {v1,v2, . . . ,vm} expr can contain inequalities,

domain specifications and quantifiers. FindInstance may

be able to find instances even if Reduce cannot give a

complete reduction. The implementation of FindInstance is

based on variants of Newton’s, Secant and Brent’s methods

[13].

6.2 Verification Algorithm

We use mathematical induction to prove that P(n) holds

for all natural numbers n. An inductive proof consists of

proving the following two subgoals:

• Prove that P(t0) is true.

• Prove that ∀k,P(k) =⇒ P(k +1).

Definition 6.4. Property

A property P is a relation of the form: P =

quant(X ,cond,expr), where quant ∈ {∀,∃}, X is a set

of variables, cond is a logical combination of compari-

son formulae constructed over variables X and expr is an

If-formula that takes values in the Boolean Domain B.

Algorithm 6.5. The Prove Function

We define the function Prove that tries to prove a property

of the form quant(X ,cond,expr) using the function Reduce,

otherwise it gives a counterexample using FindInstance.

Prove(quant(X ,cond,expr)) =
I f (Reduce(quant(X ,cond,expr),var) = True,

True,

FindInstance(cond ∧¬expr,var)

Algorithm 6.6. The SplitProve Function

Let P be a property of the form quant(X ,cond,expr). We

define the function SplitProve, which depending on the

If-formula structure of expr, applies the function Prove

or splits the verification as follows:

• expr is a comparison formula C,

SplitProve(quant(X ,cond,C)) =
Prove(quant(X ,cond,C))

• expr is a logical formula of the form a ⋄ b, with ⋄ ∈
{¬,∧,∨,⊕, . . .} and a,b are If-formulae that take

values in B

SplitProve(P)) =
SplitProve(quant(X ,cond,a))

⋄
SplitProve(quant(X ,cond,b))

• expr is an expression of the form IF(q, l,r)
SplitProve(P) =

SplitProve(quant(X ,cond ∧q, l))
∨

SplitProve(quant(X ,cond ∧¬q,r))

Algorithm 6.7. Proof by Induction

Let P(n) be the recurrence equation of the property P writ-

ten as an If-formula. Let condn0
be the initial condition

at time n0, condn the constraints that are true for all n > n0,

and X the set of dependency variables of P(n). The proof

by induction over n is :

SplitProve(ForAll(Xn0
,condn0

,P(n0)))
∧
SplitProve(ForAll(n > n0∧Xn,n∈N∧condn∧P(n),P(n+
1)))

7 Application: The ∆Σ Modulator

In this section, we will illustrate the application of the

verification methodology and algorithms proposed in the

previous section. We have chosen a third-order ∆Σ mod-

ulator as an application case study.

Data converters are needed at the interface of analog

medium and digital processing units. The principle of the

∆Σ architecture is to make over several stages rough evalua-

tions of the signal, to measure the error, integrate it and then

+

+

+

Quantizer

u[n]

b

a1

+ v[n]y[n]x3x2x1 +

b

−1

z z
−1

3a

3c2c1c

b4

2a

3b1 2

+

+
−1

z

Figure 2. Third Order ∆Σ Modulator

compensate for that error. Higher-order single stage modu-

lators have been proposed to increase resolution by adding

more integral and feedback paths. The number of integra-

tors, and consequently, the numbers of feedback loops, indi-

cates the order of a ∆Σ modulator. A third order modulator

is shown in Figure 2.

A ∆Σ modulator is said to be stable if the integrator out-

put remains bounded under a bounded input signal, thus

avoiding that the quantizer in the modulator to be over-

loaded. This property is of a great importance since the inte-

grator saturation can deteriorate circuit performance, hence

leading to instability. Increasing the signal levels inside the

∆Σ modulator affects stability in the following way. If the

signal level at the quantizer exceeds the maximum output

level by more than the maximum error value, a quantizer

overload occurs. The overload behavior can be checked by

observing the quantizer input. The quantizer in the modula-

tor shown in Figure 2 is a one-bit quantizer with two quan-

tization levels, +1V and −1V. Hence, the quantizer input

should be between −2V and +2V in order to avoid over-

loading [8].

In summary, stability analysis for third and higher-order

∆Σ modulators is a challenging research problem that has

also been studied with formal methods [4, 8]. In the remain-

ing of this section, we are interested in finding solutions

for the following problem: Given a set of initial conditions

and state space constraints on the system variables, will the

quantizer overload (leading to instability)?

7.1 ∆Σ Modulator Description

The specification of such an AMS system is given usu-

ally using vectors recurrence equations:

X(k +1) = C X(k)+B u(k)+A v(k)

where A, B and C are matrices providing the parameters of

the circuit and u(k) is the input. For the third order modu-

lator in Figure 2, we obtain the following recurrence equa-

tions for the analog part of the system:

x1(k +1) = x1(k)+b1u(k)+a1v(k)

x2(k +1) = c1x1(k)+ x2(k)+b2u(k)+a2v(k)

x3(k +1) = c2x2(k)+ x3(k)+b3u(k)+a3v(k)

v(k) is the digital part of the system. As in the specifi-

cation of the ∆Σ modulator, we consider only the behavior

when the rising edge of the clock is true. Also, the condition

of the threshold of the quantizer is computed to be equal to

c3x3(k) + u(k). The digital description of the quantizer is

transformed into a recurrence equation using the approach

defined in [1]. Thus, the equivalent recurrence equation that

describes v(k) is v(k) = IF(c3x3(k)+u ≥ 0,−a,a)
The stability property P of the ∆Σ modulator is written as:

P(k) = ForAll(k ≥ 0,Cond,−1 < x3(k) < 1)

The condition Cond depends on the particular applica-

tion.

7.2 Symbolic Simulation of the ∆Σ Modulator’s
SRE

Applying the symbolic simulation Algorithm 5.4, we ob-

tain the following results for the signals of the system.

x1(k +1) = i f (c3x3(k)+u >= 0,x1(k)+b1u−a1a,

x1(k)+b1u+a1a)

x2(k +1) = i f (c3x3(k)+u >= 0,c1x1(k)+ x2(k)+b2u(k)

−a2a,c1x1(k)+ x2(k)+b2u(k)+a2a)

x3(k +1) = i f (c3x3(k)+u >= 0,c2x2(k)+ x3(k)+b3u(k)

−a3a,c2x2(k)+ x3(k)+b3u(k)+a3a)

The expression of the property after the simulation is:

P(k +1) = i f (c3x3(k)+u >= 0,
−1 < c2x2(k)+ x3(k)+b3u(k)−a3a < 1,
−2 < c2x2(k)+ x3(k)+b3u(k)+a3a < 2)

7.3 Proving the Stability of the ∆Σ Modulator

The correctness of the property P(k +1) depends on the

parameters A,B and C, the values of variables x1(k), x2(k)
and x3(k), the time k, and the input signal u(k).

We verify the ∆Σ modulator for two sets of parameters

inspired from the analysis in [8]:

Parameters1 →

a = 2 a1 = 0.044 a2 = 0.2881

a3 = 0.7997 b1 = 0.044 b2 = 0.2881

b3 = 0.7997 c1 = c2 = c3 = 1

Parameters2 →

a = 2 a1 = 0.044 a2 = 0.2881

a3 = 0.7997 b1 = 0.07333 b2 = 0.2881

b3 = 0.7997 c1 = c2 = c3 = 1

We apply the Algorithm 6.7 in order to verify the ∆Σ

modulator stability for the above sets of parameters and for

two cases of conditions (state space constraints). Table 1

below summarizes the verification results. The property is

True if it is proved under the set of conditions and the set

of parameters for all k > 0. If there is no k for which the

property is valid then it is False, and a counterexample is

provided. When the property is valid for some values of

k and not for other values, we say that the property is not

proved and counterexamples are provided for both cases.

Table 1. Verification Results

State Space Property with Property with

Constraints Parameters1 Parameters2

Values at t=0

0 ≤ x1(0) ≤ 0.01

−0.01 ≤ x2(0) ≤ 0 True True

0.8 ≤ x3(0) ≤ 0.82, u := 0.6
case1 Values at t=n

−0.1 ≤ x1(n) ≤ 0.1
−0.5 ≤ x2(n) ≤ 0.5 Not Proved True

0.5 ≤ x3(n) ≤ 1.5, u := 0.6
Values at t=0

0 ≤ x1(0) ≤ 0.02 False False

−0.03 ≤ x2(0) ≤−0.01 x2[0] 7→ −0.015569 x2[0] 7→ 0.0227935

1 ≤ x3(0) ≤ 1.4, u := 0.8 x3[0] 7→ 1.4 x3[0] 7→ 1

case2 Values at t=n

−0.1 ≤ x1(n) ≤ 0.1
−1 ≤ x2(n) ≤ 0.5 N/A N/A

−1 ≤ x3(n) ≤ 2.5, u := 0.8

8 Conclusions

In this paper, we have presented a formal verification

methodology for AMS designs. We used the notion of sys-

tem of recurrence equations (SRE) as a mathematical model

that can represent both the digital and analog parts of the de-

sign. The symbolic computation algorithm produces a set

of recurrence relations; one for each property of the design.

We have defined and implemented an induction based tech-

nique that traverses the structure of the normalized proper-

ties and provides a formal correctness proof or a counterex-

ample, otherwise. The counterexample can then be used to

refine the proof and be applied as a test case.

We have applied the approach on a third order ∆Σ mod-

ulator, which has illustrated the strength of the approach.

In fact, we have proved the stability of the circuit under a

set of given parameters and provided counterexamples for

the failed properties. Our methodology overcomes the time

bound limitations of exhaustive methods developed in re-

lated work.

Future work includes more applications in order to iden-

tify the limitations of the proposed approach. Additional

work is needed in order to integrate the methodology in the

design process. In this case, we are looking into the auto-

matic generation of the SRE model from circuit descriptions

given in HDL-AMS languages such as VHDL-AMS [3], as

well as the definition of an expressive property language for

specifying properties of analog signals.

References

[1] G. Al-Sammane. Simulation Symbolique des Circuits De-

crits au Niveau Algorithmique. PhD thesis, Université

Joseph Fourier, Grenoble, France, July 2005.

[2] B. Buchberger. A Theoretical Basis for the Reduction of

Polynomials to Canonical Forms. In SIGSAM Bulletin, vol-

ume 10, pages 19–29, USA, 1976. ACM Press.

[3] E. Christen and K. Bakalar. VHDL-AMS - A Hardware De-

scription Language for Analog and Mixed-signal Applica-

tions. In IEEE Transactions on Circuits and Systems II:

Analog and Digital Signal Processing., volume 46, pages

1263–1272, 1999.

[4] T. Dang, A. Donzé, and O. Maler. Verification of Analog and

Mixed-Signal Circuits Using Hybrid System Techniques. In

Formal Methods in Computer-Aided Design, volume 3312

of LNCS, pages 21–36. Springer, 2004.

[5] G. Frehse, B. H. Krogh, and R. A. Rutenbar. Verifying

Analog Oscillator Circuits Using Forward/Backward Ab-

straction Refinement. In Design, Automation and Test in

Europe, pages 257 – 262, Munich, Germany, March 2006.

IEEE/ACM.

[6] G. G. E. Gielen and R. A. Rutenbar. Computer-aided Design

of Analog and Mixed-signal Integrated Circuits. In Proceed-

ings of the IEEE, volume 88, pages 1825–1852, 2000.

[7] M. R. Greenstreet and I. Mitchell. Reachability Analysis

Using Polygonal Projections. In Hybrid Systems: Compu-

tation and Control, volume 1569 of LNCS, pages 103–116.

Springer, 1999.

[8] S. Gupta, B. H. Krogh, and R. A. Rutenbar. Towards Formal

Verification of Analog Designs. In International Conference

on Computer-Aided Design, pages 210–217. IEEE/ACM,

2004.

[9] W. Hartong, R. Klausen, and L. Hedric. Formal Verification

for Nonlinear Analog Systems: Approaches to Model and

Equivalence Checking. In Advanced Formal Verification,

pages 205–245. Kluwer, 2004.

[10] R. P. Kurshan and K. L. McMillan. Analysis of Digital Cir-

cuits Through Symbolic Reduction. In IEEE Trans. on CAD

of Integrated Circuits and Systems, volume 10, pages 1356–

1371, 1991.

[11] J. S. Moore. Introduction to the OBDD Algorithm for the

ATP Community. In Journal of Automated Reasoning, vol-

ume 12, pages 33–46. Springer, 1994.

[12] A. Strzebonski. A Real Polynomial Decision Algorithm Us-

ing Arbitrary-Precision Floating Point Arithmetic. In Reli-

able Computing, volume 5, pages 337–346. Springer, 1999.

[13] A. Swift and G. R. Lindfield. Comparison of a Continua-

tion Method with Brent’s Method for the Numerical Solu-

tion of a Single Nonlinear Equation. In Computer Journal,

volume 21, pages 359–362. OUP, 1978.

[14] S. Wolfram. Mathematica: A System for Doing Mathematics

by Computer. Addison Wesley Longman Publishing, USA,

1991.

[15] M. H. Zaki, S. Tahar, and G. Bois. Formal Verification of

Analog and Mixed Signal Designs: Survey and Comparison.

In IEEE Northeast Workshop on Circuits and Systems, pages

281–284, Montréal, Canada, 2006.

	Main
	DATE07
	Front Matter
	Table of Contents
	Author Index

