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Abstract

Moore’s Law will soon deliver tera-scale level transis-
tor integration capacity. Power, variability, reliability, ag-
ing, and testing will pose as barriers and challenges to har-
ness this integration capacity. Advances in microarchitec-
ture and programming systems discussed in this paper are
potential solutions.

1. Introduction

Microprocessors have evolved all the way from the early
4004 with a few thousand transistors to today’s high per-
formance microprocessors with hundreds of millions to bil-
lions of transistors. Microprocessor clock frequency has
risen too, from kilo-hertz in the 70’s to multi giga-hertz
today. Increases in both transistor count and circuit fre-
quency have yielded the more than five orders of magnitude
increase in compute performance which we enjoy today.
Moore’s Law is here to stay, and in the future we expect
a capacity of trillions of transistors integrated on a single
die. Of course, this will not be easy, and there will be chal-
lenges that we will face in all disciplines. We will discuss
these challenges, opportunities, and potential solutions in
microarchitecture and programming systems.

2 Technology Trends

The technology scaling treadmill will continue to fol-
low Moore’s Law, providing integration capacity of bil-
lions, even trillions of transistors, improving transistor per-
formance, providing an abundance of interconnections to
realize complex architectures, and reducing transistor inte-
gration cost by half every generation. However, power, vari-
ability and reliability will be the barriers to take advantage
of technology scaling.

2.1 Power and Energy

Die size, chip yields, and design productivity used to
limit transistor integration in a microprocessor design. Now
the focus has shifted to energy consumption, power dissi-
pation and power delivery. As a transistor scales down in
dimension, supply voltage must scale accordingly to keep
electric field constant [5]. Supply voltage scaling has been
rewarding since it reduces active power quadratically, al-
lowing us to use the transistor budget to employ complex
microprocessor architectures to deliver performance. But
the threshold voltage of the transistor too has to scale to
deliver circuit performance, and as the threshold voltage
scales, the transistor sub-threshold leakage increase expo-
nentially. Today, this sub-threshold leakage power amounts
to almost 40% of the total power of a microprocessor, and
the threshold voltage scaling will have to stop or slow down.
Although leakage avoidance, leakage tolerance, and leak-
age control circuit techniques have been devised and em-
ployed, they are not enough; threshold voltage scaling will
either stop or slow down considerably.

2.2 Reliability

As technology scales further we will face even new chal-
lenges, such as variability, single event upsets (soft errors),
and device (transistor performance) degradation – these ef-
fects manifesting as inherent unreliability of the compo-
nents, posing design and test challenges.

Single event upsets (soft-errors) could be a source of
concern for present and future high performance micro-
processors [9]. These errors are caused by alpha particles
and more importantly cosmic rays (neutrons), hitting silicon
chips, creating charge on the nodes to flip a memory cell or a
logic latch. These errors are transient and random. It is rel-
atively easy to detect these errors in memories by protecting
them with parity, and correcting these errors in memory is
also relatively straight forward with error correcting codes.
However, if such a single event upset occurs in logic state,
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such as a flip-flop, then it is difficult to detect and correct.
Although soft-error rate per logic state bit may not increase
much each generation, the logic state bits in a micropro-
cessor will double each technology generation (following
Moore’s Law). The aggregate effect on soft-error rate FIT
(failure in time) of a microprocessor could be almost two
orders of magnitude higher in the Tera-scale era.

2.3 Variability

Random dopant fluctuations cause variability in the
threshold voltages of transistors, resulting from the discrete-
ness of the dopant atoms in the channel of a transistor [25].
As transistor area scales, the number of dopant atoms in the
channel reduce exponentially. As a result, two transistors
sitting side by side will have different electrical character-
istics due to randomness in small number of dopant atoms,
resulting in variability. We see the impact of this effect even
today in static memory (cache) stability.

Sub-wavelength lithography will continue until EUV
(Extreme Ultra-Violet) technology becomes available, re-
sulting in line edge roughness, and thus variability in tran-
sistors. Increasing power density increases heat flux, re-
sulting in more demand on the power distribution system
causing voltage variations across a microprocessor die. It
also causes hot-spots on the die with increased subthresh-
old leakage power consumption. We are facing static (pro-
cess technology) and dynamic (circuit operation) variability
today and it could get worse.

Designs must comprehend variability from day one as
part of the design problem. Today’s design methodology
optimizes performance and power, but test and yield in the
presence of variability is missing–what we need is a multi-
variate design optimization capability for probabilistic and
statistical design. Circuit design techniques such as body
biasing will help, but the effect of body bias diminishes with
technology scaling.

2.4 Aging

Aging has had significant impact on transistor perfor-
mance. Studies have shown that transistor saturation current
degrades over years due to oxide wear-out and hot carrier
degradation effects. So far the degradation is small enough
such that it can be accounted for as an upfront testing mar-
gin in the specification of a component. We expect this
degradation to become worse as we continue to scale tran-
sistor geometries. It may become so bad that it would be
impractical to absorb degradation effects upfront in the test
margin, and you may have to deal with it at the system level
throughout the lifetime of the microprocessor.

2.5 Test and Burn-in

Gate dielectric (gate oxide) thickness scales down too, as
the transistor size scales, to improve transistor performance
and to keep short-channel effects under control. But the gate
leakage current (and power) increases exponentially due to
tunneling. This leakage power is especially worse at high
voltages during burn-in, and we fear that burn-in power will
become prohibitive, making burn-in testing obsolete.

High-K alternative is on the horizon, where gate oxide
will get replaced by a material with high dielectric constant
to provide the same capacitance as silicon dioxide, but with
much higher thickness. Since this dielectric is thicker it will
have less leakage. However, this dielectric thickness too
will have to scale down over time and ultimately will face
the same gate leakage problem.

Then how do you screen for defects and infant mortali-
ties in microprocessor chips? One time factory testing will
be insufficient, and what you need is the test hardware em-
bedded in the design, to dynamically detect errors, isolate
and confine the faults, reconfigure using spare hardware,
and recover on the fly.

2.6 Putting it all together

All these problems are not new; even today we design
systems to comprehend variability and reliability issues.
For example, error correcting codes are commonly used in
memories to detect and correct soft errors. Careful design,
and testing for frequency binning, copes with variability in
transistor performance. What is new is that as technology
scaling continues, the impact of these issues keeps increas-
ing, and we need to devise techniques to deal with them
effectively.

Technology will continue to scale towards Tera-scale in-
tegration capacity. Supply voltage scaling will slow down,
may even stop, due to sub-threshold leakage and lack of
gate oxide scaling. Voltage scaling was a powerful lever
supplied by the process technology to employ more tran-
sistors towards complex microarchitecture, and it will no
longer be available. Microarchitectures and programming
systems will have to carefully manage the power with inno-
vations in their respective disciplines, and with fine grain
power management to continue to deliver unprecedented
compute performance, but not at any cost – it has to fit in the
power envelope and has to be reliable. Variability and relia-
bility could get worse, which will need an interdisciplinary
solution, with proper trade-offs, from process technology,
design, microarchitecture, programming systems, and ap-
plications.



3 Architectural Trends

Changes in base technology create three key problems
for architects to solve: the power wall, the memory wall,
and system reliability wall. These problems are best alle-
viated with an interdisciplinary approach, with architects
working in partnership with technologists and software de-
velopers.

3.1 The Power Wall

The most important “wall” is the power wall. What
can architecture do to reduce increasing power dissipation?
There are several techniques that have been proposed and
used recently, but more work needs to be done.

Heterogeneous multiprocessing (also called asymmetric
multiprocessing) is one architectural technique that can sig-
nificantly reduce power dissipation[18]. These heteroge-
neous cores can run different instruction set architectures,
or run the same instruction set architecture (i.e., single ISA)
for ease of programming. The key reason why heteroge-
neous processing can help is that for a given technology
smaller cores are more power efficient than larger cores. By
using a smaller core, power efficiency gains of 2–4X can
be obtained, in some cases with very little loss in perfor-
mance. The Cell processor[11] is a recent example of a
heterogeneous chip multiprocessor. However, smaller cores
can have lower performance for some applications or phases
of applications. Thus it is important when using heteroge-
neous chip multiprocessors to achieve a good assignment
of programs and phases of programs to cores, in order to
maximize power savings and minimize performance loss.

An interesting application of heterogeneous multiproces-
sors is in mitigating Amdahl’s law by running serial por-
tions of an algorithm on a large, fast and relatively power-
inefficient core while executing parallel portions of the al-
gorithm on multiple small power-efficient cores[2]. This
can simultaneously provide both a program speedup and
power reduction!

Even though smaller cores are more power efficient,
paradoxically the use of smaller cores can result in higher
chip power densities. This is because a large complex core
usually makes extensive use of clock gating. Hence many
(but not all) of the unused units in a large core may not
dissipate much dynamic switching power. Of course the
wires connecting units in a large core will still be longer
and require more power to be driven. And units that are
not clocked still dissipate leakage power, which is fast in-
creasing to become on the same order as dynamic switching
power. In contrast, many smaller cores will fit in the die area
of a larger core. Because they are smaller, a higher percent-
age of transistors of each core switch to execute an instruc-
tion. Thus a large number of smaller cores can have many

more switching transistors each cycle than a single larger
core. Thus while the computation may be more power effi-
cient, the overall die power will still likely be large.

Luckily cache memories dissipate relatively little power
in comparison to processor cores of the same area. How-
ever, in chip multiprocessors with large numbers of proces-
sors, it will be important to keep data in caches close by
the cores accessing the data, in order to reduce the power
required to move cache lines across the die. Non-uniform
cache architectures (NUCA) are an interesting approach to
this problem[17]. In the scientific computing domain, the
memory hierarchy of stream processors can also improve
performance while being power efficient[15].

3.2 The Memory Wall

The “memory wall” is a well-known problem in com-
puter architecture that has only been getting worse with time
and scaling[10]. The access time of main memory in com-
puting systems has only been improving very slowly, while
the speed of microprocessors has been increasing dramati-
cally for decades. This gap has increased from a factor of
two in the late 1970’s to a factor of over one hundred today.

During the last decade, microprocessors were increasing
in performance roughly as the square root of the number
of transistors available plus another factor proportional to
lithography from device speed improvements[14]. Cores
were only speeding up as the square root of the number
of transistors because many structures used in the core de-
sign were getting larger, and these yielded less-than linear
performance improvements with increasing size. Examples
of these structures include on-chip caches, instruction issue
widths, and pipeline depths. Quadrupling a cache size of-
ten results in a halving of the miss rate, not a reduction to
one quarter. Quarupling the issue rate from 1 to 4 instruc-
tions per cycle or doubling the pipeline depth from 8 to 32
stages is also more likely to result in only a doubling in per-
formance rather than quadrupling. All these are examples
where the performance obtained from more transistors de-
ployed in a single core results in only an improvement in
performance by

√
N for the use of N more transistors.

In contrast, the multicore era is returning to simpler cores
which are more power efficient, but doubling the number
of cores at each generation. In this scenario, the “computa-
tional bandwidth” of a multicore system scales linearly with
the number of transistors, not as their square root. This will
put even more pressure on the memory wall.

What can be done to reduce the gap between memory
and processor speeds? Two promising techniques have re-
cently been proposed: processor and memory die stacking
and optical interconnects.

Die stacking can be used to mate one or more high-
density DRAM chips with processor chips[16], and has



been included in recent ITRS roadmaps[12]. Although
stacking of logic circuits has also been proposed, stack-
ing one logic layer with multiple memory layers has mul-
tiple advantages. First, the memory chips dissipate much
less power than the processor core. By having just one
logic chip in direct contact with a heat sink and other lower
power layers stacked underneath it, the temperature of the
die stack is minimized. Also, microprocessors and DRAMs
are manufactured with different technologies. Integrating
diverse technologies is expensive and usually compromises
each technology. By stacking a die made with a high per-
formance microprocessor process and other die made with
a DRAM process, the benefits of both high-density DRAM
and high-performance logic can be obtained without the dif-
ficulties, expense, and compromises of process integration.

In the longer term, optical interconnects may play a role
in mitigating the memory wall. Although optical intercon-
nects have the potential for very high bandwidths, their la-
tency is within integer multiples of electrical communica-
tion. If integrated optics[7] is successful and can be scaled,
the bandwidths between processor chips and memory chips
or other processor chips may be dramatically increased.
However extensive caching, presumably using 3D die stack-
ing, would still be required to reduce the average latency to
access memory. In cases where caching is not as effective,
multithreading would be useful as well.

3.3 The Reliability Wall

Of the three “walls”, the reliability wall is the furthest out
and probably the one most easily addressed. The basic issue
is that as more and more components are integrated on chip
with lithographic scaling, each component is more likely
to suffer from soft and hard errors due to their extremely
small feature sizes. Hence, at some point conventionally-
designed chips will have a failure rate that is on average
much more frequent than the expected service lifetime of
the device. Currently chips are designed with some redun-
dancy and fault tolerance (e.g., ECC) in memory structures,
but assume that logic is all good and remains good over
time. These assumptions will need to change in the future.

Thankfully there is a long history of systems de-
signed for high-availability applications, such as Non-
Stop systems[4]. There is also much recent re-
search at providing increased reliability without the over-
heads of triple-modular-redundant (TMR) or dual-modular-
redundant (DMR) architectures[3, 22]. Initially these more
recent approaches that require less overhead should be suf-
ficient for most applications, but as scaling continues clas-
sical DMR or TMR techniques may be required. Even so,
two interesting areas for research remain.

First, flexible approaches that allow “availability on de-
mand” would be interesting in a number of applications,

especially given the convergence of hardware platforms to
use of a small number of core designs. For example, reli-
ability and availability might be more important for a bank
accounting application while performance could be more
important for a gamer. Future chip multiprocessors should
be able to support a range of availabilities given a single
core design.

Second, trends in chip multiprocessors are moving in the
direction of increased sharing. For example, some second-
generation multicore processors share a level of cache while
the first generation had separate caches. As more and more
hardware becomes shared, maintaining fault isolation, a key
component of reliable and high availability systems, be-
comes more difficult. Techniques for maintaining isolation
in the presence of sharing are also an interesting area of re-
search.

4. Programming Trends

Moore’s Law will continue to predict a doubling of the
transistor count every eighteen months for the next 10 years.
At the same time, the two main sources of performance
growth of processing performance – frequency scaling and
exploitation of instruction-level parallelism – are offering
diminishing returns on investments. Instead, industry de-
cided a few years back to launch multi-core roadmaps that
in ten years from now will lead to the integration of as many
as hundreds of cores, where each core is capable of issuing
a handful of instructions from one or many threads.

This route appears promising under the premise that a
doubling of cores yields a doubling of performance. Un-
fortunately, this is hard to achieve in general. Most existing
software is single-threaded. Although research in paralleliz-
ing compilers has been an ongoing activity since the 70s,
limitations in static analysis and/or lack of information at
compile-time make it difficult to ascertain that independent
threads are indeed independent. As a result, only a small
fraction of codes can be automatically parallelized.

4.1 Automatic Approaches

More recently, there have been lots of efforts to extend
the scope of codes that can be parallelized automatically.
Thread-level Speculation(see, e.g., [24, 8, 26, 23, 19])
(TLS) attempts to postpone dependency checks to run-
time by providing a hardware/software substrate that checks
memory dependences on-the-fly. While this approach has
broadened the scope of codes that can be automatically par-
allelized, the amount of thread-level parallelism (TLP) that
can be exposed through TLS is in general quite limited. For
example, in a recent study based on the SPEC 2000, Prabhu
and Olukotun [21] found that even after significant analy-
sis and code modification, it was not possible to uncover a



sufficient amount of TLP to keep more than a handful cores
busy.

Research is certainly warranted in how to more effi-
ciently combine static and dynamic techniques to uncover
TLP. However, it is not realistic to believe that a fully au-
tomatic approach will uncover TLP at the scale that will
be needed to keep hundreds of cores busy as we foresee
in the next decade. Fortunately, as multi-core micropro-
cessors will become main-stream, there will be less reluc-
tance to manually convert codes to uncover TLP. However,
to cut down on development time, high-productivity pro-
gramming models together with tools infrastructures to re-
duce the manual efforts to uncover thread-level parallelism
are needed more than ever.

4.2 Manual Approaches

Research into parallel processing took off some three
decades back as a pro-active means for the case that per-
formance growth of conventional architectural approaches
would cease. It is interesting to note that single-core per-
formance growth has just recently slowed down. In the cre-
ative era of parallel processing in the 70s and 80s, program-
ming model/language research was a key focus. Several
programming language models and there suitability as to
extract TLP were scrutinized heavily. It is fair to say that
time is ripe to lift up the experiences from that time to ques-
tion whether predominant programming languages as of to-
day are the right vehicles for uncovering thread-level par-
allelism at the scale needed. It may very well be the right
time for a paradigm shift in programming languages with a
focus on high-productivity parallel program design. Now,
what are the hurdles in parallel program design?

Parallel programming is intrinsically difficult. The task
of converting a single-threaded program into a highly-
efficient parallel code involves the following steps [6]:

1. Decomposition

2. Assignment

3. Orchestration

In the decomposition step, concurrent units-of-execution
or tasks must be identified and exposed. In a loop nest, for
example, the goal is to expose as many independent threads
as possible – a daunting task to say the least. In the assign-
ment step, tasks must be bundled to trade task management
overhead and inter-processor communication (memory lo-
cality) against load-balance. This step is again non-trivial
and alerts the programmer/compiler to make informed de-
cisions based on intricate performance properties of the un-
derlying architecture and the computation itself. In the or-
chestration step, synchronization among tasks must be set

up to respect dependences between task. The whole analy-
sis involved is complex and error-prone.

Architecture research in the 80s and 90s with a focus on
cache coherency took us a long way to shield programmers
from low-level architectural memory locality issues and
also demonstrated that cache coherent multiprocessors can
indeed scale to hundreds of processors(see, e.g., [20]. Need-
less to say, that research forms a good base for scalability
issues for multi-cores. So it is fair to say that much of the
difficulties involved in the assignment phase were removed.
Also the discovery of self-scheduling policies greatly sim-
plified load balancing issues. However, the more difficult
problem of dealing with dependency issues remained un-
solved.

4.3 Semi-Automatic Approaches

Recently, research into transactional memory [1] has
gained a lot of attention. At its core, transactional mem-
ory enables the programmer to not have to deal with depen-
dences between tasks – this is taken care of by the imple-
mentation of the architecture. If two tasks are dependent,
they will be forced to execute after each other to respect
the dependences. Transactional memory consequently sim-
plifies the decomposition as well as the orchestration steps.
However, this is traded against inefficiencies due to resolv-
ing dependences at run-time, much like TLS, and manifests
itself as performance losses due to re-execution of tasks.
As a result, while transactional memory may take us some
strides on the way, there are still many hurdles left to bring
down the programming efforts.

4.4 Architectural Opportunities

It is clear that there is yet no suitable architectural model
that can drastically simplify parallel programming. At the
same time, time seems ripe to seriously scrutinize the archi-
tectural interface to provide a productive abstraction for par-
allel software developments. With the emergence of multi-
core architectures come quite different operating conditions
for making a breakthrough in new programming abstrac-
tions.

First, the comparably low communication latencies on-
chip as compared to the quite significant inter-processor la-
tencies in multiprocessors a decade back will open up for
lower performance-sensitivity of the on-chip memory hier-
archy. Second, there is an opportunity to use the enormous
transistor resources to build new structures that can remove
the efforts to design parallel programs. For example, load
balancing remains a problem. It is conceivable to support
efficient task management structures on-chip that off-load
programmers/compilers for elaborate load-balancing trade-
offs.



While we are standing in front of a gigantic program-
ming dilemma to unleash the computational power from
multi-cores, there appears to be many fruitful research di-
rections. One direction is to understand how the hard-
ware/software interface can be enriched with functional
primitives to off-load programmers/compilers from some
of the challenges involved in parallel programming. Sec-
ond, another direction is to look into the big bag of lan-
guage concepts that were researched in the 70s and 80s
and possibly enrich todays prevailing programming lan-
guages with them. Third, while not untouched ground, re-
search into better programming tools infrastructures is cer-
tainly warranted. Overall, it is more important than ever
to cross-fertilize across computing disciplines to accelerate
progress. At the end, parallel processing appears to be our
only hope.

5 Concluding Remarks

The era of tera-scale integration is quickly approaching,
delivering an abundance of transistors. Power, variability,
reliability, aging, and testing will pose technological chal-
lenges. This paper has discussed some promising solutions
in microarchitecture and programming systems to deliver
unprecedented compute performance in the era of tera-scale
integration.
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