
Formal Verification of a Pervasive Interconnect Bus System
in a High-Performance Microprocessor

Thuyen Le1 Tilman Glökler1 Jason Baumgartner2

1IBM Deutschland Entwicklung GmbH, D-71032 Böblingen, Germany
2IBM Systems & Technology Group, Austin, TX 78758

{thuyenle|gloekler}@de.ibm.com baumgarj@us.ibm.com

Abstract

In our high-performance PowerPC∗ processor, the cor-
rectness of the so-called pervasive interconnect bus system,
which provides, among others, Test and Debug access via
external interfaces like JTAG, is of utmost importance. In
this paper, we describe our approach in formally verifying
the correctness of this bus system to combat the coverage
problem of simulation-based techniques. The bus system
and the associated arbitration logic support several func-
tionalities such as deadlock detection and resolution. In or-
der to efficiently complete all of the required formal analy-
sis for verification, we needed to leverage a variety of proof
and semi-formal algorithms, as well as reduction and ab-
straction algorithms. Experimental results are provided to
show the efficiency of this approach.

1. Introduction

System-on-a-Chip (SoC) designs are intrinsically bus-
centric designs. Processor cores, system peripherals and
accelerators are often interconnected through standardized
bus protocols, enabling scalability and modularity. In the
design of high-performance processors, the bus-centric ap-
proach also applies to the functional layer, which consists
of processor cores, caches, DMAs, memory controllers, I/O
controllers, etc. Orthogonal to the functional layer, there is
an additional so-called pervasive layer in high-performance
processors. The pervasive layer provides the infrastruc-
ture for functionalities like Power-on-Reset, built-in self-
test, debug and trace functionality, system monitoring of
signals/registers at run-time, power management, etc. Per-
vasive logic is the underlying basis for many of the relia-
bility, accessibility and serviceability features in the server

∗Trademark of International Business Machines Corporation in the
United States and/or other countries.

processor world, without which it would be impossible to
initialize, monitor, and debug the fabricated chip.

The bus-centric approach is also attractive for the im-
plementation of the pervasive interconnect structure to re-
duce complexity. As this bus represents the backbone for
Test and Debug access, its correctness is of utmost perfor-
mance to the overall design. Bus correctness implies checks
such as the proper routing of data from and to intercon-
nected components, as well as arbitration correctness to en-
sure fairness in granting, and the absence of starvation and
deadlock. In many ways, the correctness of the pervasive
layer logic is even more critical than the correctness of the
functional logic, since an error of the pervasive interconnect
structure may well render a costly fabrication of a chip en-
tirely unusable or un-testable, whereas a functional logic er-
ror at least enables the analysis of other aspects of the chip.
Hence, applying formal verification techniques to verify the
pervasive layer logic is a promising approach to combat the
coverage problem of simulation-based techniques.

In this paper, we describe our experiences in formally
verifying the correctness of an industrial pervasive intercon-
nect bus system, which allows multiple internal and external
masters to access on-chip logic blocks. The structure con-
sists of two buses which are coupled by two unidirectional
bridges. Both buses are multi-master capable and run at
different asynchronous clock frequencies in different volt-
age domains. Masters and slaves are connected to the bus
via common interface components that, together with the
bus logic itself, represent our design-under-test (DUT). Ex-
isting and proven logic blocks connected to the DUT are
replaced by behavioral models in the testbench to minimize
the problem size. Our focus is on the bus correctness, es-
pecially to prove the absence of starvation and deadlock to
which this design was particularly prone due to diverse as-
pects such as asynchronous clock domains and power man-
agement. Due to the complexity of the logic being veri-
fied, we needed to resort to a variety of formal algorithms

978-3-9810801-2-4/DATE07 © 2007 EDAA 

 



to complete the proofs. We describe these algorithms in ad-
dition to the actual properties used to verify the system.

Related work. There have been publications that focus on
the formal verification of bus-based protocol compliance.

[12] defines a set of protocol rules to verify an imple-
mentation of an AMBA bus and peripherals with AMBA-
compliant interfaces. Their approach verifies the bus inter-
face compliance of a specific unit such as master or slave.
In contrast, we focus on verifying the inter-operation of sev-
eral masters and slaves attached via the bus, comprising
a greater degree of complexity than studied in prior work
due to aggressive power management logic and the need for
real-time deadlock resolution logic.

[11] presents a case study of formally specifying the
AMBA bus protocol, and model checking that formal model
to look for protocol errors. This is in contrast to our work
where the actual interconnected design components are ver-
ified.

[5] discusses the formal verification of an IBM CoreCon-
nect processor local bus. Similar to our approach, they use
behavioral models of masters and slaves to verify an ac-
tual bus arbiter. In contrast to their work, ours encapsulates
a larger portion of the implementation, including compo-
nents of the actual master and slave logic necessary to en-
capsulate the entire bus interface. This larger design slice
was necessary for verifying proper inter-operation of these
components, and our verification covers all aspects of the
bus functionality such as data routing and deadlock resolu-
tion logic, not merely arbitration correctness.

[4] proposed the usage of a hardware protocol kit to au-
tomatically generate formal testbenches from a formal doc-
umentation that is manually compiled for specific protocols.
In contrast to our work, since dealing with a generic frame-
work, they do not discuss the application of formal verifica-
tion to any particular hardware implementation.

Outline. This paper is organized as follows. In Section 2
we discuss the design under test. Section 3 describes the
setup of our formal verification testbenches and the formal
verification toolset used in our verification process. In Sec-
tion 4, we explain the properties used to verify our design
under test, and the results of the verification task including
chosen algorithms and bugs found. Finally, Section 5 con-
cludes this work.

2 Pervasive Interconnect Bus

In a high-performance microprocessor, there is a need
to access logic peripherals for a variety of purposes such
as Test and Debug access, configuring the Power-On-Reset
(POR) engine, run-time system monitoring, among others.

Figure 1 depicts the pervasive interconnect bus structure
that is implemented in our industrial chip project to arbitrate
competing requests of several masters to shared slaves. Ac-
cesses can either be initiated by the internal masters such as
the processor core(s) or by external masters via chip inter-
faces such as JTAG, and/or other proprietary protocols. To
be more specific, the JTAG interface is attached to Bus 1 as
master A, so that an external tester can access via master A
on-chip logic resources such as processor cores represented
as slave V.

All masters and slaves are connected to the bus via a
common Master Interface (MIF) or Slave Interface (SIF)
component, respectively. The use of common interfaces is
advantageous, since it reduces design and verification over-
head through enabling logic reuse. The logic in the un-
shaded region are existing and pre-verified IPs (Intellectual
Properties) whereas the shaded region denotes the newly
implemented logic that represents our DUT for formal ver-
ification. Note that for the sake of simplicity, only one mas-
ter instance A and one slave instance U connected to Bus 1
are shown in addition to the master bridge B12 and slave
bridge B21. In reality, Bus 1 has four master instances and
six slave instances attached to it.

Figure 1. Pervasive Interconnect Bus

In Figure 1, the arrows show the direction of access ini-
tiation which is equivalent to the address flow whereas data
flows in either direction, depending on whether a read or
write access is performed. The two different buses run
at different clock speeds and are connected to each other
by two uni-directional bridges. Each bridge not only syn-
chronizes the data across the asynchronous clock bound-
ary, performs voltage level conversion, but also translates
the communication protocol of Bus 1 to the protocol used
by Bus 2. Both bus protocols are proprietary, employing
a single-envelope protocol – i.e., once a transaction has
been initiated, the transfer must be completed before an-
other transaction can proceed over the bus.



Each bus provides a set of address and data signals as
well as dedicated control signals. Only peripherals with
master capability are able to initiate a transfer by raising
their request signal. Write data to slaves and read data to
masters are multiplexed onto the bus depending on the cur-
rent granted access. The bus interconnect logic consists
mainly of a bus controller, an arbiter and an address de-
coder (see Figure 2). The bus controller is the main finite
state machine that, once a request has been detected, ac-
tivates the arbiter, the address decoder and all other logic
timely according to the phases as defined by the bus proto-
col. The arbiter selects a winning master among the pending
incoming requests. The most-significant address bits of the
winning master are then passed to the decoder to determine
the target slave. A specific slave is selected by asserting its
corresponding sel signal. After granting a master to access
a target slave, the bus controller sets the internal logic such
that the granted master address and master write data (for
write access only) are available on the separated address
and write data bus going to all SIFs attached to this bus,
respectively. In case of a read access, the read data from
the target slave are routed through the bus logic to the read
data bus that is connected to all MIFs (see Figure 2). Parity
generation or check is performed on address and data for
accesses coming from and going over the bridge to protect
data integrity from noise caused by voltage level translators.

Figure 2. More details of Bus 1 with simplified
dataflow of address, write and read data

Due to the defined bus structure as shown in Figure 1,
the system may enter a starvation state in certain scenar-
ios. For example, consider the case where Master A re-
quests the bus to read from slave V, which is attached to
Bus 2. Bus 1 arbiter thus grants the bus to Master A, since

it is the only requesting master at this time. Bridge B12
is selected, which then transfers the request over the asyn-
chronous clock boundary, performing the necessary bus
protocol conversion. The master interface of B12 raises re-
quest to Bus 2. However, that bus may have been granted in
the meantime to Master B. In this specific case, Master B
wants to read from slave U, which is attached to Bus 1,
but can not do so since Bus 1 is reserved for Master A.
The transferred access of Master B over Bridge B21 will
be blocked at Bus 1 as well as Bridge B12 at Bus 2. Since
both buses are of single-envelope type, dedicated logic is
necessary in the system to resolve this type of starvation,
increasing the complexity of the implementation and verifi-
cation.

Another scenario for starvation is the independent oper-
ation of the two clock domains. Due to aggressive power
management, one clock domain can be shut off, possibly
leaving the request signal of an attached master tied to log-
ical one. This could translate to a constantly asserted bus
request through the bridge to the other bus. The request will
be served by the other bus, but the bridge can never respond
according to the protocol, either leading to a starvation or
a time-out that needs to be resolved. Figure 1 and 2 depict
a watchdog timer to resolve the bus hang condition as just
described.

The watchdog timer could also be used to detect the bus
deadlock scenario described above and to time out after a
certain number of cycles. This prior art solution, however,
just postpones the deadlock scenario and hopes that it is un-
likely that Master A and B will retry again within the crit-
ical time window that leads to the deadlock. In contrast to
that, our Bus 1 implements a new mechanism that resolves
the deadlock directly by stealing silently the bus from one
master, and by handing it over to the other master. This
new mechanism is one main target that needs to be verified
using the formal verification approach described in the fol-
lowing sections. We stress here again that we are not only
interested in formally verifying the arbiter logic but all the
logic involved in the new bus system, i.e. arbiter, address
decoder, datapath logic, watchdog timer, parity generation
and checking as well as MIFs and SIFs.

3 Formal Verification Methodology

This section describes our formal verification approach
as well as our selected tools and algorithms. The verifica-
tion paradigm we adopt in this paper is that of a testbench,
wherein one develops a set of checkers to assess the cor-
rect behavior of the design, in addition to a driver (some-
times called an environment) to constrain the input stimuli
to avoid spurious failures. The testbench also consists of
initialization data indicating which latches are to be initial-
ized to a 0, 1, or random state. The verification task thus



consists of trying to obtain a counterexample trace from a
specified initial state to one which drives a logical one onto
each checker signal (which we refer to as hitting the check),
or proving that no such counterexample exists. Note that the
usage of the testbench within our formal verification context
is to constrain the scenarios that the DUT can be exposed to.

We develop the testbench entirely in an HDL-based lan-
guage so that it could be reused between formal verification,
simulation, and emulation frameworks. Due to the potential
size and complexity of the design slice being verified, we
had initially thought that a semi-formal approach may be all
that could be offered by our formal toolset, motivating the
desire for a reusable specification. However, we ultimately
were able to prove all of our properties, hence did not need
to resort to simulation-based analysis.

In order to efficiently complete all of the required for-
mal analysis, we needed to leverage a variety of proof and
semi-formal algorithms, as well as a variety of reduction
and abstraction algorithms dictated by the engines. The en-
gines used in our verification process (please refer also to
Table 2) include the following:

• COM: a combinational optimization engine, which at-
tempts to merge functionally equivalent gates and rewrite
logic cones to reduce their overall size [7, 8].

• EQV: a sequential redundancy removal engine, which
first attempts to guess the set of gates that are functionally
redundant across all time-frames, then a variety of algo-
rithms including induction to prove that suspected redun-
dancy [2, 9].

• RET: a min-area retiming engine [6] that reduces the
number of state elements in the netlist by shifting them
across combinational gates.

• CUT: an input-reducing engine that replaces a portion of
the netlist local to the primary inputs with a functionally-
corresponding piece of logic [10, 1].

• LOC: a localization engine, which isolates a critical sub-
set of the netlist local to the properties by replacing inter-
nal gates by inputs. [13].

• RCH: a BDD-based reachability engine.

• MOD: a structural state-folding engine used to abstract
certain clocking and latching schemes [3].

• SCH: a semi-formal search engine iterating bounded
model checking (leveraging a circuit-based SAT solver
with redundancy removal, and structural rewriting algo-
rithms, similar to [7]) with random simulation and vari-
ous state-prioritization schemes.

4 Verification Testbench

The partition into DUT and remaining logic has been de-
picted in Figure 1. We note that the remaining components
are existing IPs that have been verified by other means.
Hence, they are behaviorally modeled by drivers in our test-
bench, conservatively capable of producing a superset of
the behavior that the actual logic can produce. Each master
is modeled as being able to nondeterministically initiate re-
quests, which covers all possible timing windows between a
complete absence of requests to back-to-back requests. Re-
sponse times of slaves as well as other relevant parameters
of the bus protocol were similarly modeled in a maximally
nondeterministic way. Though such modeling may result
in behavior that does not comply with the actual interface
specification such as non-terminating requests, this serves
to verify recovery aspects of the system such as starvation
detection.

Our testbench non-deterministically initializes all state
elements in the design, and asserts the reset signal, dis-
tributed across all devices in the DUT, for the first clock
period. This reset mechanism forces the design into a well-
defined functional state; the masters are disallowed from
driving any requests during this phase. After the reset phase,
the masters are allowed to begin their requests. This setup
validates, that the system properly initializes itself with its
own reset mechanism regardless of what state it may be in,
and that it behaves correctly after the reset phase. Note
that we utilize a single testbench to implicitly test the re-
set mechanism, by validating that the correctness properties
hold after the reset phase. The properties comprised in our
testbench include:

• Coverage events: These must be hit in order to ensure
that our testbench is able to drive all meaningful scenar-
ios. Examples are events checking for reachability of all
arbiter state machine states, and events checking for cov-
erage of interesting sequences of transactions (like sev-
eral occurrences of any of our bridge transactions). We
suppress checking the coverage goals during the reset
phase in order to avoid reporting bogus hits of coverage
events due to arbitrary initialization states.

• Assertions: These correctness checks must be disable
during the reset phase. Assertions include the liveness
and fairness checks as well as the checks for data and ad-
dress integrity. Special consideration was needed in case
of a clock domain that was stopped and for data/address
integrity checks in case of the associated transactions that
resulted in timeouts. The liveness and fairness checks
also verify the functionality of the watchdog timer as well
as the bus stealing functionality for deadlock prevention:
both features result in a substantially longer maximum
duration between the master request event and the com-
pletion of the bus transaction.



4.1 Arbiter Properties

The most basic arbiter verification correctness property
is that of liveness which means that every request is eventu-
ally granted and completed. Due to the computational ex-
pense of checking such unbounded liveness, we opted to
check a more conservative bounded liveness property: ev-
ery request will terminate within a pre-defined time bound.
This time-bound is a function of parameters like the number
of clock periods that are needed to complete a request (once
granted), and the maximum possible number of outstand-
ing requests. We implemented this bounded liveness check
using a counter for each master that reflected the number
of clock periods between an assertion of its request and the
termination of its transaction, and verifying that this counter
always remains less than the allowable upper-bound. This
property also needs to consider the stop clock condition,
which can occur at any time driven by our testbench, that
stops one of the buses in Figure 1 and thus otherwise could
cause uninteresting violations of the property. We recall that
the stop clock condition is to model the effect of power man-
agement that can shut off the two clock domains of Bus 1
and Bus 2 independently.

We also checked fairness properties of the arbiter, which
implements a weighted round-robin (WRR) scheme to as-
sign an individual weight to each master. The assigned
weight impacts how often its associated master should re-
ceive grants under heavy-load situations. Note that the well-
known non-weighted round robin (RR) scheme, which as-
signs the same weight to all masters, is merely a special case
of WRR. Both WRR and RR schedule work functionally by
assigning slots to the masters. In the arbitration phase, a
search over the slots is performed. The first slot owner, who
happens to be also requesting the bus, will get granted. The
search starts from a current slot pointer and is incremented
modulo the total number of slots (hence round robin).

Table 1. Some possible slot assignments for
WRR compared to a RR
Slot index (mod 6) 0 1 2 3 4 5

(a) Slot owner M1 M2 M1 M3 M1 M4
(b) Slot owner M1 M1 M1 M2 M3 M4

RR (c) Slot owner M1 M2 M3 M4 – –

In our DUT case, there are N = 4 masters denoted by Mi,
i = {1,2,3,4}. Due to our system requirements, master M1
is specified with a weight of 3 whereas the other masters
have only a weight of 1. Two possible slot assignments (a)
and (b) for this WRR are exemplarily given in Table 1. Note
that the total number of unique slots is 6 although there are
only 4 masters. Under heavy load situations, it can be ob-
served that with assignment (a), the worst-case waiting time
are 2 slots for M1 and 6 slots for the other masters. With as-
signment (b), M1 has a higher worst-case waiting time of 4

slots, but could be in turn granted 3 times in row. The selec-
tion of an assignment for a specific WRR implementation
depends solely on the system requirements. Assignment (c)
for the RR scheme is shown as a special case of WRR for
comparison.

We use a general scheme consisting of a counter for each
master as fail property to verify the priority scheme accord-
ing to a given slot assignment. Instead of counting the num-
ber of clock periods between a request and grant, we count
the number of grants given to any master other than the
one associated with the counter. The counter starts count-
ing whenever the associated master raises its request, and
is reset whenever that master wins the arbitration phase.
Each master i has a maximal count Ci that should never be
reached, otherwise the assertion is violated. Ci must be set
to the worst-case waiting time given by the implemented
assignment. Given the implemented assignment (a) in Ta-
ble 1, C1 = 2 for M1, and C2 = C3 = C4 = 6.

4.2 Datapath Properties

In addition to the liveness and fairness properties, the
correctness of the DUT requires us to verify the integrity of
all address and data transmissions of the bus. We differen-
tiate between read and write operations as follows:

• Write operations require checking that the correct slave is
selected based on the most significant bits of the address.
Furthermore, the least significant bits of the address and
the write data must be correctly routed to the same slave.

• Read operations require checking the same properties for
the address as write operations, but additionally require
checking, that the read data from the slave is correctly
routed back to the master.

In order to verify these properties, we implemented a
checker that contains an address decoder compliant with the
bus specification. This checker monitors the interface sig-
nals between all masters and slaves. If a master is granted
access to the bus, the checker decodes its address and ver-
ifies that the slave activated by the DUT is the correct one.
An additional check for read and write data as well as ad-
dress bits was implemented for each master. Our testbench
is able to handle the individual latency between bus input
and bus output for any combination of master and slave,
which is caused by the asynchronous boundaries.

4.3 Verification Results

The total number of properties that we have used in our
verification testbench is 145. Among these 145 properties
we have 4 liveness and 4 fairness properties as well as 4 data
and 4 address integrity properties. Other properties cover
illegal state transitions of the internal logic and correctness



Size Metric Initial COM EQV MOD,COM EQV RET COM CUT,COM EQV LOC1 CUT RCH

Inputs 1388 118 115 115 108 414 169 157 156 112 46 0
AND Gates 16427 3951 2322 2015 1689 1658 1552 1522 1436 1058 895 0
Registers 2055 619 451 341 304 260 259 259 247 133 133 0
Properties 145 6 4 4 3 3 3 3 3 11 1 0
Resources 7915s /640 MB

Table 2. Verification results for arbitration assertions. 1LOC performs a case-split per target; the
largest abstraction is shown. Resources are cumulative across all properties.

of the parity detection logic; the remaining properties are
coverage goals. Table 2 shows the unsolved properties as
well as the design complexity in terms of its primary inputs,
AND gates and registers after applying the formal reduction
and proof engines mentioned in the first line. It also indi-
cates the accumulative resources in terms of runtime and
memory consumption on a computer running at 2.33GHz
with 2GB memory. The applied engines have been shortly
described in Section 3.

The coverage goals turned out to be extremely helpful
to find and resolve problems in our environment: several
non-trivial problems of our drivers have been found mainly
caused by the fact, that each master and slave are supposed
to behave slightly different. For the bridge interfaces, we
found a subtle bug, that resulted in a starvation condition of
the bridge B12 after the first successful transaction. Con-
sequently, we implemented sequence checkers to cover the
occurrence of several interesting events and combinations
of events to increase our confidence in the testbench.

For the DUT we found 11 different design bugs that can
be classified as follows:

• forgotten reset mechanism for important state latches

• incorrect arbitration (fairness violation) due to wrong
state transitions in the arbiter resulting in a starvation of
the complete bus

• problems with recovering from the clock stop condition

• wrong/forgotten implementation of clock edge detection
logic

5 Summary and Conclusion

We have been discussing the formal verification of our
pervasive interconnect bus system, which provides, among
others, Test and Debug access to our high-performance pro-
cessor. Despite the high complexity of the DUT together
with its comprehensive testbench, we could formally prove
all critical liveness, fairness and data integrity properties.
This success was enabled by leveraging a variety of proof
and semi-formal algorithms as well as different reduction
and abstraction algorithms. It is also worth mentioning,

that all of the design bugs would have been fatal in the fi-
nal chip and would have rendered it mostly unusable. The
majority of the discovered design bugs are corner cases: a
simulation-based approach would most likely have missed
them or at least would have required an excessive amount of
simulation cycles to hit them. Last, but no least, the verifica-
tion effort in terms of man hours for writing the drivers and
checkers in our methodology and the runtime for the formal
analysis makes it very attractive to use formal verification
for more and more complex designs.

References

[1] J. Baumgartner and H. Mony. Maximal input reduction of
sequential netlists via synergistic reparameterization and lo-
calization strategies. In CHARME, Oct. 2005.

[2] P. Bjesse and K. Claessen. SAT-based verification without
state space traversal. In FMCAD, November 2000.

[3] P. Bjesse and J. Kukula. Automatic generalized phase ab-
straction for formal verification. In ICCAD, Nov. 2005.

[4] S. Dellacherie. Bringing automation to the verification of
SoC based designs. In GSPx 2005, Oct. 2005.

[5] A. Goel and W. R. Lee. Formal verification of an IBM
coreconnectT M processor local bus arbiter core. In DAC
2000, 2003.

[6] A. Kuehlmann and J. Baumgartner. Transformation-based
verification using generalized retiming. In CAV, July 2001.

[7] A. Kuehlmann, V. Paruthi, F. Krohm, and M. Ganai. Robust
Boolean reasoning for equivalence checking and functional
property verification. IEEE Trans. CAD, Dec. 2002.

[8] A. Mishchenko, S. Chatterjee, and R. Brayton. DAG-aware
AIG rewriting: A fresh look at combinational logic synthe-
sis. In DAC, July 2006.

[9] H. Mony, J. Baumgartner, V. Paruthi, and R. Kanzelman.
Exploiting suspected redundancy without proving it. In
DAC, June 2005.

[10] I.-H. Moon, H. H. Kwak, J. Kukula, T. Shiple, and C. Pixley.
Simplifying circuits for formal verification using parametric
representation. In FMCAD, Nov. 2002.

[11] A. Roychoudhury, T. Mitra, and S. R. Karri. Using formal
techniques to debug the AMBA system-on-chip bus proto-
col. In DATE, March 2003.

[12] C. Sayer and J. Sonander. Formal verification of AMBA bus
systems. In Information Quaterly, Vol. 2, No. 3, 2003.

[13] D. Wang. SAT based Abstraction Refinement for Hardware
Verification. PhD thesis, Carnegie Mellon Univ., May 2003.


	Main
	DATE07
	Front Matter
	Table of Contents
	Author Index




