
Optimized Integration of Test Compression and Sharing
for SOC Testing

Anders Larsson, Erik Larsson, Petru Eles, and Zebo Peng

Embedded Systems Laboratory
Linköpings Universitet

SE-582 83 Linköping, Sweden

Abstract1

The increasing test data volume needed to test core-based
System-on-Chip contributes to long test application times (TAT)
and huge automatic test equipment (ATE) memory requirements.
TAT and ATE memory requirement can be reduced by test
architecture design, test scheduling, sharing the same tests
among several cores, and test data compression. We propose, in
contrast to previous work that addresses one or few of the
problems, an integrated framework with heuristics for sharing
and compression and a Constraint Logic Programming technique
for architecture design and test scheduling that minimizes the TAT
without violating a given ATE memory constraint. The
significance of our approach is demonstrated by experiments with
ITC’02 benchmark designs.

1. Introduction
The technology development has made it possible to build

highly complex integrated circuits, so called system chips or
System-on-Chips (SOCs). A common way to design SOC is to
employ a modular core-based approach where each module can
be tested as a separate unit. The testing of these chips requires
high test data volume, which leads to long test application times
(TAT) and a need for large automatic test equipment (ATE)
memory. Different techniques have been proposed to lower the
TAT and ATE memory requirement such as; test architecture
design, test scheduling, test data compression, and test sharing.

Test architecture design and test scheduling techniques have
been proposed while minimizing TAT [13, 14] which also has
been extended for an abort-on-fail environment [15]. These
techniques efficiently reduces the TAT and the utilization of the
ATE memory. However, the test data volumes are increasing and
techniques such as test data compression and test sharing have
been proposed.

For test data compression several schemes have been
investigated, for instance Huffman [3], Colomb [4], and
Frequency-Directed Run-Length (FDR) [2] codes. The general
scheme is that the high number of unspecified bits [1, 2], so called
don’t-care bits, in the test stimuli (TS) are filled such that high test
data compression ratio is achieved. Compressed TS for each core
are stored in the ATE, and at test application the code words are
sent to the system under test, decompressed and applied to the
cores. The produced responses (PR) are usually compressed using

either a multiple-input signature-register (MISR) or by some
other compaction logic such as combinational compactors. In the
case when MISRs are used, at the end of the testing the MISR
signature is shifted out and compared with the expected signature.
The draw-backs with MISRs and combinational compactors are
the sensitivity to unknown values. Additional logic must therefore
be added for tolerating them [10]; however only a limited number
of unknown bits can be handled. Further, by using a MISR the
testing cannot be terminated immediately when a fault is present
(abort-on-fail testing). Instead, the testing must continue until the
final signature is produced. To address these problems, an
architecture that does not make use of MISRs has been proposed
[11].

For test sharing, the aim is to find overlapping tests where an
overlapping test set is used to test several cores [5, 6, 9]. For an
overlapping tests, the same TS are sent to all cores that share the
test, and the PR are transported on dedicated test access
mechanism (TAM) wires separately, since cores that share a test
can output different PR these cannot share TAM to the ATE for
evaluation. The advantage of sharing is that it reduces the test
time, the ATE memory requirement and the TAM wire usage (as
TS is broadcasted to several cores).

In this paper we address the test architecture design and test
scheduling problems as well as the test compression and test
sharing problems. We assume that given is a core-based modular
SOC with a dedicated TAM and tests for each core. We make use
of an architecture that does not require MISRs [11] but instead of
using a processor for decompression we use the nine code (9C)
compression technique [16]. The following trade-offs have been
identified and addressed: between compression and sharing in
terms of test data volume (number of bits), and between sharing
and test architecture design in terms of TAT.

The trade-off between compression and sharing in terms of the
test data volume is explained by considering two tests. By
sharing, i.e., finding overlapping sequences in the two tests,
which is used to create a new test, the amount of don’t-care bits
will decrease. Since the shared test will have less don’t-care bits,
it is likely that it will suffer from a lower compression ratio
compared to when the tests are compressed individually. This
means that the size of the compressed shared test could be larger
than the sum of the two separately compressed tests. Hence, it is
not obvious to determine which tests that should be shared and
which tests that should be compressed.

The trade-off between sharing and test architecture design in
terms of TAT is explained as follows: as described above, only the
TS are shared between cores, the PR are transported on separate1. The research is partially supported by the Strategic Integrated

Electronic Systems Research (STRINGENT) program.

978-3-9810801-2-4/DATE07 © 2007 EDAA

TAM wires, hence the TAM wire architecture will be different
when using sharing compared when sharing is not used,
consequently affecting the TAT.

The major contribution of this paper is twofold. First, we
demonstrate that the integration of test sharing and test
compression for core-based SOCs will lead to decreased test data
volume. Second, we address the test scheduling and test
architecture problem, exploring the trade-off between sharing and
compression, while minimizing the TAT under ATE memory
constraints. The problem has been implemented and solved using
Constraint Logic Programming (CLP) [8]. The efficiency of the
proposed technique has been demonstrated by experiments using
ITC’02 benchmark designs.

The rest of this paper is organized as follows. In Section 2 the
used SOC test architecture is described. The problem is
formulated in Section 3 and the techniques for test sharing and
compression are described in Section 4. In Section 5 the test
application time minimization is described and the experimental
results are presented in Section 6. Conclusions are in Section 7.

2. SOC test architecture
In this section the test architecture used for the test data

transportation and decompression is described.
Let us first describe the common practice test architecture. The

cores are scan tested and the scanned elements at each core are
formed to wrapper chains that are connected to TAM wires. The
TAM wires are connected to the ATE. At test application, TS are
sent to the SOC and the PR are sent to the ATE. The ATE compares
the PR with the expected test responses (ER) to determine if the
chip is faulty.

In the case when test data compression is used, it is common to
make use of MISRs for compaction of the PR. However, as
discussed above, there are a number of disadvantages with MISRs
and we therefor make use of a MISR free architecture proposed by
Larsson and Persson [11]. The general idea is to store compressed
TS, compressed ER, and compressed masks (M) in the ATE, as
illustrated in Figure 1. The compressed TS, ER, and M are sent to
the SOC under test and decompressed on the chip. Test evaluation
is also performed on-chip using a comparator. Figure 1 also shows
the placement of the decoder and comparator.

In contrast to using a processor core for the decompression [11],
we make use of an on-chip decoder [16] to decompress the
compressed tests. We assume a decoder where for each TAM wire
we have a decoder block. A decoder block can act as an input
decoder d-in in the case the decoder block is configured to receive
TS. If the decoder block is configured as output decoder d-out it
receives ER and a mask.

3. Problem formulation
Given is a system with n cores where for each core

ci the following is given:

 • sci - the number of scan chains,
 • ffij - the number of flip-flops in scan chain j,
 • wii - the number of input wrapper cells,
 • woi - the number of output wrapper cells,

 • - the total number of flip-flops,

 • - an initially given dedicated test
consisting of TSi, ERi, and a test mask Mi,

 • - a sequence of l patterns, where tsik
consists of bits and each bit can be 0, 1, or x,

 • - a sequence of l patterns, where erik
consists of bits and each bit can be 0, 1, or x,

 • - a sequence of l mask patterns, where
mik consists of bits and each bit can be 0 or 1. A 1
indicates that the corresponding bit in the PR is a care bit and
should be checked with the ER otherwise it is a don’t-care bit
and should be masked.

Also given for the system is the number of TAM wires, WTAM.
For the ATE the following is given:

 • MATE - the number of bits that can be stored in the ATE
memory,

 • fATE - the clock frequency of the ATE.
The share and compress functions take two tests and one test

respectively as input and generate a new test that is added to the
list of alternative tests. This process of generating alternative tests
is explained using two initially given dedicated tests T1 and T2.
Table 1 shows how these two tests are used to generate new
alternative tests. Column one lists the alternative tests and column
two and three list which core(s) is tested by each test (marked as
X in the table). For example, core c1 can be tested using TA1, TA3,
TA5, or TA6 (one test is sufficient in our approach). The fourth
column lists the function used to generate the test.

Given the above, our problem is to select one test alternative for
each core ci, determine the architcture (the TAM wire usage), and
start time ti such that the TAT is minimized without exceeding the
memory constraint MATE.

4. Sharing and compression
In this section we describe the sharing and compression

techniques. The common objective of sharing and compression is
to decrease the size of the test, which is stored in the ATE.
4.1 Sharing

The sharing problem is formulated as follows: for a given
number of test sequences (TS and ER), find overlapping sequences
that are used to generate a new test such that the size of the new
test is minimal. An overlapping between two sequences is found
iff for each position in the sequences both has the same value (0,
1, x) or one is a don’t-care (x).

Let us use a small example to illustrate the test architecture
when sharing is used. The example depicted in Figure 2 consists

Figure 1. Test architecture and ATE memory organization.

Core

TAM wires

c1 c2

SOCATE memory

cn

Decoder &

...

comparator
TS

ER

M

c1 c2 … cn, , ,

 Table 1. Test alternatives per core
Alternative test Core c1 Core c2 Note

TA1 X Initially given
TA2 X Initially given
TA3 X compress(T1)
TA4 X compress(T2)
TA5 X X share(T1,T2)
TA6 X X compress(share(T1,T2))

nffi ffij
j 1=

sci

∑=

Ti TSi ERi Mi, ,{ }=

TSi tsi1 … tsil, ,()=

nffi wii+
ERi eri1 … er, i l,()=

nffi woi+
Mi mi1 … m, i l,()=

nffi woi+

of two cores, c1 and c2, which are tested by test T1 and T2,
presented in Figure 3, respectively. The tests consist of TS1 and
TS2, and ER1 and ER2. By using a mask (M1, M2 in Figure 3) for
each test that marks the positions of each specified bit in the ER,
it is possible to determine if the PR from the core are correct or
not even in the presence of unspecified values. The latter is
important since unspecified bits in the PR are becoming more
common with technology scaling. A similar approach with a
mechanism for masking unspecified values has been proposed for
different purpose [12]. The scan chains, a to d in c1 and e to g in
c2, are partitioned into wrapper chains that are connected to six
TAM wires, TAM1 to TAM6.

The example illustrated in Figure 2(a) shows how the scan
chains have been partitioned to wrapper chains and connected to
TAM wires when the cores are tested using the dedicated tests,
i.e., no sharing is used. In the example illustrated in Figure 2(b),
it is assumed that test T1 and T2 have been merged into a new
shared test, which will be broadcasted to c1 and c2 on TAM1 and
TAM2. In this way, the merged test is shared. In order to separate
the different PR from different cores the PR from each core is
transported on separate TAM wires, TAM3 to TAM6. The shared
TS and ER are stored in the ATE memory together with the masks
M1 and M2.

How two tests can be shared is illustrated in Figure 4, where
the stimuli sequences TS1 and TS2 from Figure 3 have been
partitioned into two wrapper chains, wr1 and wr2. In this example,
scan chains a, c, and e have been assigned to wrapper chain wr1
and scan chains b, d, f, and g to wrapper chain wr2 that
corresponds to the architecture in Figure 2 (b).

For balancing the wrapper chains before sharing, idle bits
(don’t-cares) are added such that all wrapper chains have equal
length as illustrated in Figure 4(a). For ts11 three possible test
sequence can potentially be overlapped, ts21, ts22, or ts23. In
Figure 4(b), ts11 and ts21, are not overlapping (there are
conflicting care bits that prohibits overlapping), hence, they
cannot be shared. In Figure 4(c) ts11 and ts22, are overlapping and
a new, shared, TS sequence ts_new is generated.

We introduce a function called share that takes two tests2 (TS

and ER), Ti and Tj, as input and generates a new test, Tk:

The share function, presented in Figure 5, consist of two steps. In
Step1 (line 1 to 4) the TS are sorted according to the percentage
of don’t-care bits, such that the sequences with the most care bits
are placed first in each test. The sorting is done in order to increase
the utilization of the don’t-care bits in each sequence. The test
with the most patterns is selected as the reference, ref_test. In this
example, test T1 is selected. In Step2 (line 5 to 19), the sharing is
performed by finding overlapping sequences. The size of the new
shared test Tk will be equal to the size of the reference test if there
exist an overlapping sequence for all sequences in the reference
test. If an overlap is not found the size of Tk is increased.
4.2 Compression

The objective of the compression is to generate a compressed
test with minimal size. The compression function compress takes
a test Ti as input and generates a new compressed test Tk:

Figure 2. Test architecture (a) without sharing
and (b) with sharing.

c1 c2

f
b e

c1 c2

c f

a

d

b

g

e

TAM1

TAM6

...

d g

a

c

a) b)

...

TAM6

TAM1

Wrapper
chain

Scan chain

Figure 3. Initially given tests with don’t-cares.

ER1{T1 ER2T2

b dca

TS1

M1

e f g

TS2

M2

Scan chain

{
0xx
0xx
xx0

xx11
xxxx
xxx0

xxxx1
xxx01
xx0xx

xxx1
xxxx

xxxx

1xx
11x
xx0

xxx1
xxxx
xxxx

xxxx0
xxxx1
xxxxx

xxxx
xxxx

xxxx

100
110

0001
0000

00001
00001 0000

0000

001 0000 00000 0000

xx11
x1xx
xxx1

xx0 1x
1x
xx

xxx
1xx

xxx0
xxxx
1xxx

xx0 x1
xx
xx

x1x
x1x

0001
0000
1000

001
010
010

01
00
00

2. From here and through the rest of the paper we use Ti to denote a
given dedicated test or an alternative test.

share Ti Tj,() Tk→ (1)

Figure 4. Sharing using different sequences.

a) Sequences to share

share

Not allowed

b) No overlap

ts_new

share
No overlap

c) Overlap

{ wr2{ wr1

Added
idle bits

b dca
0xx xx11xxxx1 xxxxts11

e f g
xx11 xxxx xx0 1x xxxts21

e f g
xx11 xx01xts21

x1xx
xxx1 xxxx

xxxx xxx
1xx

1x xxx
xx xxx

b dca
0xx xx11xxxx1 xxxxts11

e f g
x1xx xxxx 1xxxx xxx

xxxx xxx

01xxxxx1 1xxx1 xxx

ts22
ts23

{ wr2{ wr1

{ wr2{ wr1

ts22

b dca
0xx xx11xxxx1 xxxxts11

{ wr2{ wr1

 // Input: T1 and T2
// Output: A new test, new_test
// Step1:

1. Sort(T1) // Sort T1 according to % of don’t-cares
2. Sort(T2)
3. ref_test = GetRefTest(T1, T2)
4. new_test = {}

// Step2: Find overlapping sequences
5. for each sequence i in ref_test begin // ref_test = T1
6. for each sequence j in T2 begin
7. if ts_new = Overlap(ts1i,ts2j)
8. new_test = new_test {ts_new}
9. break
10. end if
11. end
12. new_test = new_test {ts1i}
13. end
14. for each sequence j in T2 begin
15. if ts2j is not previously added to new_test
16. new_test = new_test {ts2j}
17. end if
18. end
19. return new_test

∪

∪

∪

Figure 5. Share function.

compress Ti() Tk→ (2)

We have made use of the fixed-length Nine-Coded Compression
(9C) technique [16]. In the 9C coding the test sequence are
divided into K-bits blocks. Each such block is then split into two
halves and coded using nine different symbols (code words). This
coding scheme enables test independent coding and it can be
implemented using a small decoder.

The 9C coding technique is illustrated, with K=8 [16], in
Figure 6 for different TS. In our work, each wrapper chain is
coded separately. These examples also illustrate the trade-off
between compression and sharing in terms of the test data volume.
Using only compression for the initially given TS1 and TS2, the
total number of bits to be stored in the ATE memory is 39 (20+19).
This is less than the 49 bits needed to store the shared and
compressed test alternative. This is due to the reduced amount of
don’t-care bits in the shared test that, for this case, leads to a poor
compression.

5. Test application time minimization
In this section we describe the TAT minimization scheme,

using integrated compression and sharing. We assume that the
share and compress functions described in Section 4 have been
used to generate a number of test alternatives per core. The TAT
for the system is minimized by selecting one test for each core,
defining the start time and TAM usage for each selected test.

We assume one test at a time on the TAM. Note, that due to
sharing a test can be used to test one or more cores. Hence, the test
transportation on the TAM is sequential, however, several cores
may be tested concurrently. As described in Section 4, the cores
that share a test will be connected to the same TAM wires for the
TS and in order to separate the different test responses from
different cores the PR from each core is transported on separate
TAM wires.

The number of wrapper chains wi for a test or alternative test Ti
depends on the number of cores z that shares the test, and is given
by:

If no sharing is used (z=1) , which means that half
of the TAM width is used for the transportation of TS and the
second half is used for PR as illustrated in Figure 2(a). In the case
when two cores share a test (z=2) ; one third of the
TAM width is occupied transporting the TS that are broadcasted
to both cores and two thirds are used for the PR, one third for each
core separately as illustrated in Figure 2(b).

The timing of the test transportation is illustrated in Figure 7.
The tests are stored in the ATE memory and the control signals,
Comp and Share, are used to determine the operation of the
decoder. For example, if a test is not compressed (Comp = 0) the
decoder is bypassed. In this work the ATE synchronization
problem is solved by using an acknowledgement signal ACK from
the decoder to the ATE, holding the ATE from transporting the

next codeword while the decoder is busy [16]. In the example in
Figure 7, the TS sequence tsij is coded using three code words
cw1, cw2, and cw3. The code words are transported from the ATE
to the decoder using the ATE frequency fATE and the
decompressed stimuli are transported and applied to the wrapper
chains using the scan frequency fscan.

The decompressed ER and mask must be synchronized with
PR such that the comparator receives the correct sequences at
correct time. We have two cases; when compression is not used
and used. In the case when compression is not used, the test data
is arranged such that the ER and mask are placed after the TS
(according to the length of the wrapper chains) in the ATE such
that ER and mask arrive to the comparator when PR are ready. In
the case when compression is used, decompression takes different
time depending on code words. We assume the longest
decompression time for each code word.

The synchronization when compression is used is solved by
applying TS with a frequency fscan that is lower than the frequency
of the ATE, fATE. The value of fscan is calculated using a constant,
9CConst, which is multiplied with the value of fATE. The value of
9CConst is given by the number of test bits that each codeword
contain (K=8) [16], which is divided by he maximum number of
clock cycles needed to apply the longest codeword that the 9C
coding uses (12+8) [16]. When a test that is not compressed is
applied, the decoder is bypassed and the scan frequency will be
the same as the ATE frequency. The value of fscan is then given as
follows:

The scan frequency fscan is used to calculate the TAT for a
test, Ti at core ci as follows:

where sii and soi are the length of the longest wrapper scan-in and
scan-out chain of core ci respectively and l is the number of test
sequences.

The TAT for a schedule with n tests is given as:

where ti is the start time when the test is applied to the core ci.
Given above definitions, the TAT minimization problem can be

regarded as a problem of selecting one test alternative, i.e.,
determine which test to compress and/or share, for each core in
the system. In order to solve the test selection problem a number
of H possible alternative tests is generated for the system using the
initially given dedicated tests. To illustrate the complexity of the
test selection problem, we consider a system consisting of n cores.
The number of tests generated using the dedicated given tests and
the share function equals the sum of the number of possible k-
subset (where k = {1, 2, ..., n}) of a set of size n. For example, a

wi WTAM z 1+()⁄= (3)

wi WTAM 2⁄=

wi WTAM 3⁄=

Figure 6. Sharing and compression of tests.

TS1 TS2
0xx
0xx
xx0

xx11
xxxx
xxx0

xxxx1
xxx01
xx0xx

xxx1
xxxx

xxxx

11000
11100xx01
0

10
10
0

10
10
10

11011xx01
10
10

01x
0x1
xx0

xx11
xx01
1xx0

xxxx1
1xx01
1x0xx

xxx1
xxxx

xxxx

11011xx01
1110x11xx01
11101xx01

10
11011xx01
111011xx0

xx11 xxxx xx0 1x xxx
x1xx
xxx1 xxxx

xxxx xxx
1xx

1x xxx
xx xxx

(19 bits)(20 bits) (49 bits)

share

compresscompresscompress

{ wr2{ wr1 { wr2{ wr1 { wr2{ wr1

Figure 7. Test application using compression.

{

cw3

Time for decoding
Time for shifting

cw2 cw1

{

TAM

fscan

tsijTS

M
ER

fATE

TAM

...
...

...

d-in

d-out

tsij-1

trij-1

tsij+1

trij

TAT

ATE memory

SOCATE

Comp
ACK

Share
tsij+2

test data

fscan

fATE, without using compression

9CConst fATE× , with compression

= (4)

τi

τi 1 max sii soi,{ }+() l× min sii soi,{ }+() fscan⁄ ,= (5)

τtot
τtot max i i,∀ 1 2 … n, , ,{ }=() ti τi+()(),= (6)

system consisting of 2 cores (n=2) has the following k-subsets:
{1}, {2}, and {1, 2}, i.e., three different alternative tests. Since
each such alternative test can be either compressed or not
compressed the sum is multiplied by two. The value of H is then
given as:

In order to avoid excessively large optimization times due to the
large number of possible test alternatives H we limit the number
of possible alternative tests for the system by restricting the
number of possible permutations for the sharing. In this work we
restrict the generation of new tests by only considering possible 2-
subset combinations during the sharing of tests. In addition, we do
not consider those permutations that have minor effect on the ATE
memory requirement. We only share those tests that have similar
size in term of number of sequences and scanned elements. We,
therefore, define a maximum share ratio as follows:

where the size(Ti) is given as the number of bits in the TS and ER,
which is considered during the sharing. This ratio is further
explained by the example presented in Figure 8, where MSR is
calculated for two different combinations of tests. Merging test Ti
(size(Ti) = 100) with Tj (size(Tj)=20) will lead to a maximum
decrease of only 17% of the memory, while merging Ti with Tk
(size(Tk) = 90) potentially reduces the size with 47%. By setting a
limit on the MSR during the pre-process stage it is possible to
avoid those alternatives that have little possibility to be part of the
optimal solution and therefore will not be explored during the
optimization process.

The test selection, scheduling and architecture design problem
have been formulated as a CLP problem [8]. The CLP-tool CHIP
[17] has been used for the implementation and the built in
predicates labeling and min_max are used for the enumeration and
search for the optimal solution. A short description of the program
is depicted in Figure 9. The variables such as the TAT and
used memory Mtot are defined (line 1 to 5) and two new predicates,
sum_test_time and sum_test_mem (line 6 and 7), have been
implemented that calculate the TAT and the required memory for
a specific solution. On line 8 the constraint expressing that the
memory used is less than the size of the ATE memory is defined,
and finally the optimization is done by using labeling for the
enumeration inside the min_max predicate (line 9).

6. Experimental results
In this section the significance of integrating both test sharing

and compression in one framework is demonstrated by
experiments. The TAT is minimized under ATE memory
constraints using the following four techniques: no compression
and no sharing (NC, NS), only compression (C), only sharing (S)

and both sharing and compression (C, S).
For the experiments we have used the following three ITC’02

benchmark designs: d695, g1023, and p34395 [18]. The input
characteristics for the designs are collected in Table 2 where
Column one contains the name of the design and Column two the
number of tests given as input. Column three lists the amount of
memory required to store the original TS and ER for the given
tests. The last column, Column four, contains the number of TAM
wires, which is specified by us.

For the d695 design the TS and ER (with don’t-care bits
marked) are given [1]. We have randomly generated TS and ER
for designs g1023 and p34395 such that the amount of don’t-care
bits is 95% [19]. We assume, in these experiments that the designs
are tested using an ATE with a frequency fATE of 100MHz and
after running extensive experiments, the MSR threshold is set to
35%. The memory constraint MATE has been determined by
multiplying the amount of memory required for each design
(given in Table 2 Column three) with a constant, MConst. In total,
three experiments has been performed each with different ATE
memory constraint, , , and

.
The experimental results are collected in Table 3. Column one

lists the different designs and Column two the different techniques
for each design respectively. Column three lists the total number
of test alternatives considered during the optimization. The
following columns, column four to twelve lists the memory
constraint, the TAT, and the optimization time (CPU time) for each
of the three experiments.

The results obtained using our integrated approach, using both
compression and sharing (denoted C, S in Table 3), are compared
to the following three techniques. First, using no compression and
no sharing (NC, NS), i.e., only the dedicated, initially given, tests
are used to test the system. Second, using only compression (C)
and third, using only sharing (S).

Without using either sharing nor compression, results are only
obtained when the ATE memory is large enough as in
Experiment 1 (). When reducing the ATE memory
size as in Experiment 2 (), sharing only is
sufficient to decrease the amount of memory used for the design

H
n
k

k 1=

n

∑

2×= (7)

MSR

MSR 100
max size Ti() size Tj(),()

size Ti() size Tj()+

 100× ,–= (8)

Figure 8. Maximum share ratio for different tests.

size(Ti)=100

MSR = 17% MSR = 47%

size(Tj)=20

size(Ti)=100

size(Tk)=90

No. of scanned elements

N
o.

 o
f t

es
t s

eq
ue

nc
es

τtot

 Table 2. Input characteristics

Design No. of input
tests

Memory requirement
(kbit)

No. of TAM
wires

d695 10 3398 48
g1023 14 4789 60
p34392 19 125332 60

MConst 1= MConst 2 3⁄=
MConst 1 3⁄=

// Define variables
1. ::0..100000,
2. Mtot::0..100000,
3. get_max_mem(MATE),
4. get_input_tests(InputTests),
5. get_input_cores(InputCores),

// Define constraint
6. sum_test_time(InputTests, InputCores,),
7. sum_test_mem(InputTests,InputCores,Mtot),
8. Mtot #<=MATE,

// Search for the optimal solution
9. min_max((labeling(InputCores)),).

τtot

τtot

τtot

Figure 9. CLP formulation in CHIP for test
application time minimization.

MConst 1=
MConst 2 3⁄=

d695 and p34392, for the design g1023 the compression technique
must be applied to obtain a solution. The compression technique
is required for all three designs in Experiment 3 ()
since only sharing does not decrease the required memory
sufficiently.

When using compression the test size is reduced and less ATE
memory is used but the TAT is increased due to the slower scan
frequency, (Equation (4)). For all three experiments, the results
show a decrease in the TAT when sharing is used. Experiment 3
show that our proposed technique, using both sharing and
compression, is able to considerably reduce the TAT when using
a small ATE memory. When using a large ATE memory such that
sharing only (S) is able to obtain a solution our method is not able
to further decrease the TAT, however, our proposed integrated
technique always produces solutions that are equal or better
compared to when sharing or compression is used separately.

The results also show the trade-off between the TAT obtained
using the proposed approach, and the amount of optimization time
needed. In general, the optimization time is increased using our
approach since the complexity (the number of test alternatives) is
increased.

7. Conclusions
The high test data volume needed for testing modern chips

leads to long test application times and high ATE memory
requirements. In this paper we propose a technique where we
integrated test data compression, test sharing, test architecture
design and test scheduling with the objective to minimize the test
application time under ATE memory constraint. We assume a
core-based system with tests per module and we define techniques
for test data compression and test sharing to find the best test
alternatives for the testing of each core. We make use of a
Constraint Logic Programming for selection of test for each
module, scheduling and architecture design for the selected tests.
The efficiency of our approach has been demonstrated with
experiments on several ITC’02 designs.

References
[1] S. Kajihara and K. Miyase, “On Identifying Don't Care Inputs of

Test Patterns for Combinational Circuits,” IEEE/ACM
International Conference on Computer Aided Design (ICCAD),
pp. 364–369, 2001.

[2] A. Chandra and K. Chakrabarty, “A unified approach to reduce
SOC test data volume, scan power and testing time,” IEEE
Transactions on CAD of Integrated Circuits and Systems, Vol.
22, Issue 3, pp. 352–363, 2003.

[3] A. Jas, J. Ghosh-Dastidar, M. Ng, and N. Touba, “An Efficient
Test Vector Compression Scheme Using Selective Huffman

Coding,” IEEE Transaction on Computer-Aided Design (TCAD),
Vol. 22, pp. 797–806, 2003.

[4] A. Chandra and K. Chakrabarty, “System-on-a-Chip Test-Data
Compression and Decompression Architectures Based on
Colomb Codes,” IEEE Transaction on CAD of Integrated
Circuits and Systems, Vol. 20, Issue 3, pp. 355–368, 2001.

[5] T. Shinogi, Y. Yamada, T. Hayashi, T. Yoshikawa, and S.
Tsuruoka, “Test Vector Overlapping for Test Cost Reduction in
Parallel Testing of Cores with Multiple Scan Chains,“ Digest of
Papers of Workshop on RTL and High Level Testing (WRTLT),
pp. 117–122, 2004.

[6] K-J. Lee, J-J. Chen, C-H. Huang, “Broadcasting Test Patterns to
Multiple Circuits,” IEEE Transactions on CAD of Integrated
Circuits and Systems, Vol. 18, Issue. 12, pp. 1793–1802, 1999.

[7] G. Zeng and H. Ito, “Concurrent Core Test for SOC Using
Shared Test Set and Scan Chain Disable,” Proceedings of
Design, Automation and Test in Europe (DATE), pp. 1045–1050,
2006.

[8] J. Jaffar and J.-L. Lassez, “Constraint Logic Programming,”
Proceedings of the 14th. ACM Symposium on Principles of
Programming Languages (POPL), pp. 111–119, 1987.

[9] A. Larsson, E. Larsson, P. Eles, and Z. Peng , “SOC Test
Scheduling with Test Set Sharing and Broadcasting,”
Proceedings of IEEE Asian Test Symposium, pp. 162–169, 2005.

[10] S. Mitra, M. Mitzenmacher, S. S. Lumetta, and N. Patil, “X-
Tolerant Test Response Compaction,” IEEE Design & Test of
Computers, Vol. 22, Issue 6, pp. 566–574, 2005.

[11] E. Larsson and J. Persson, “An Architecture for Combined Test
Data Compression and Abort-on-Fail Test,” Asia and South
Pacific Design Conference (ASP-DAC), Accepted for
publication, 2007.

[12] F. Poehl, J. Rzeha, M. Beck, M. Goessel. R. “Arnold, and P.
Ossimitz, “On-Chip Evaluation, Compensation, and Storage of
Scan Diagnosis Data - A Test Time Efficient Scan Diagnosis
Architecture,” Proceedings of IEEE European Test Symposium
(ETS), pp. 239–244, 2006.

[13] E. J. Marinissen, S. K. Goel, and M. Lousberg, “Wrapper Design
for Embedded Core Test,” Proceedings of International Test
Conference, pp. 911-920, 2000.

[14] V. Iyengar, K. Chakrabarty, and E. J. Marinissen, “Test Wrapper
and Test Access Mechanism Co-Optimization for System-on-
Chip,” Proceedings of International Test Conference (ITC), pp.
1023–1032, 2001.

[15] U. Ingelsson, S. K. Goel, E. Larsson, and E. J. Marinissen, “Test
Scheduling for Modular SOCs in an Abort-on-Fail
Environment,” Proceedings of IEEE European Test Symposium
(ETS), pp. 8–13, 2005.

[16] M. Tehranipoor, M. Nourani, and K. Chakrabarty, “Nine-Coded
Compression Technique for Tesing Embedded Cores in SoCs,”
IEEE Transactions on Very Large Scale Integration (VLSI)
Systems ,Vol. 13, Issue 6, pp. 719–731, 2005.

[17] CHIP, System Documentation, COSYTEC, 1996.
[18] E. J. Marinissen, V. Iyengar, and K. Chakrabarty, “A Set of

Benchmarks for Modular Testing of SOCs,” Proceedings of the
IEEE International Test Conference (ITC), pp. 519–528, 2002.

[19] E. Larsson, A. Larsson, and Z. Peng, “Linköping University
SOC Test Site,” http://www.ida.liu.se/labs/eslab/soctest, 2006.

MConst 1 3⁄=

 Table 3. Experimental results

Design

Technique
(No compression (NC),

No sharing (NS),
Compression (C),

Sharing (S))

No. of test
alternative

Experiment 1
(MConst = 1)

Experiment 2
(MConst = 2/3)

 Experiment 3
(MConst = 1/3)

Memory
constraint

(kbit)

TAT
(ms)

CPU
time (s)

Memory
constraint

(kbit)

TAT
(ms)

CPU
time (s)

Memory
constraint

(kbit)

TAT
(ms)

CPU
time (s)

d695

NC, NS 10

3398

0.49 0.2

2265

n.s. n.s.

1132

n.s. n.s.
C 20 0.49 0.2 0.82 0.8 1.22 0.3
S 20 0.36 1.0 0.36 0.9 n.s. n.s.

C, S 40 0.36 1.0 0.36 0.9 0.44 1.0

g1023

NC, NS 14

4789

0.56 0.2

3193

n.s. n.s.

1596

n.s. n.s.
C 28 0.56 0.3 0.90 1.6 1.28 0.5
S 35 0.47 15.9 n.s. n.s. n.s. n.s.

C, S 70 0.47 51.9 0.55 29.8 0.94 40.4

p34392

NC, NS 19

125332

14.72 0.3

83551

n.s. n.s.

41784

n.s. n.s.
C 38 14.72 216.2 23.68 204.4 33.30 46.9
S 37 10.93 313.3 10.93 5.8 n.s. n.s.

C, S 74 10.93 2255.6 10.93 1902.8 16.43 437.7

	Main
	DATE07
	Front Matter
	Table of Contents
	Author Index

