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Abstract— We present an SoC testing approach that inte-

grates test data compression, TAM/test wrapper design, and test
scheduling. An improved LFSR reseeding technique is used as the
compression engine. All cores on the SoC share a single on-chip
LFSR. At any clock cycle, one or more cores can simultaneously
receive data from the LFSR. Seeds for the LFSR are computed
from the care bits from the test cubes for multiple cores. We
also propose a scan-slice-based scheduling algorithm that tries
to maximize the number of care bits the LFSR can produce
at each clock cycle, such that the overall test application time
is minimized. Experimental results for both ISCAS circuits and
industrial circuits show that optimal test application time, which
is determined by the largest core, can be achieved. The proposed
approach has small hardware overhead and is easy to deploy.
Only one LFSR, one phase shifter, and a few counters should
be added to the SoC. The scheduling algorithm is also scalable
for large industrial circuits. The CPU time for a large industrial
design ranges from 1 to 30 minutes.

I. INTRODUCTION

Recent growth in design complexity and the integration of
embedded cores in systems-on-chip (SoC) ICs have led to a
significant increase in test data volume, test application time
(TAT), and manufacturing test cost. Test data compression
provides a promising solution to these problems. Some state-
of-the-art compression methods such as [1] use test generation
techniques to generate patterns that are more suitable for
compression. The performance of most compression tech-
niques also depends on the number and lengths of scan
chains. However, some SoC chips contain IP cores that are
not provided to the system integrator with detailed structural
information. Many SoCs also include hard cores that are
delivered in the form of layouts such that the configurations
of scan chains cannot be modified. Existing compression
techniques for stand-alone ICs are less efficient for such SoCs.

In addition to the problem of limited applicability of exist-
ing test compression techniques, restricted access to internal
cores is another challenge in SoC testing. To tackle this prob-
lem, test access mechanism (TAM) and test wrappers have
been proposed as key components of an SoC test architecture
[2]. TAMs deliver pre-computed test sequences to cores on
the SoC, while test wrappers translate these test sequences
into patterns that can be applied directly to the cores. The
test wrapper and the TAM design directly impact the vector
memory depth required on the ATE, testing time, and thereby
affect test cost. Many techniques have been proposed for
TAM/wrapper design. However, these techniques either do
not consider test data compression, or they utilize relatively
inefficient compression techniques [3].

In [4], test patterns for each core in an SoC are compressed
separately using LFSR reseeding. Tester channels are time-
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multiplexed to transfer seed data to the LFSRs of each core.
Patterns of each core are first split into blocks of fixed
length. A seed is obtained by satisfying care bits from a
variable number of blocks. When an LFSR is expanding a
seed to a series of blocks, it need not receive data until all
blocks encoded by this seed have been generated. Hence,
seed streams for different cores can be time-multiplexed into
one stream. The overall TAT is therefore reduced by testing
cores simultaneously. The major drawback of [4] is that extra
data and hardware are needed to enable the time-multiplexing
mechanism. The use of fixed length blocks adversely affects
the encoding efficiency. An optimum block length for one core
is not necessarily optimum for other cores.

In [5], an XOR-network approach is used for test com-
pression, and a compression driven TAM design heuristic is
proposed. This heuristic is guided by a test time estimation
function, which is obtained using curve fitting. It is not clearly
reported in [5] how the estimation function can be derived,
and what impact this function has on the efficiency of the
TAM design heuristic. Test scheduling is also not considered.

In this paper, we propose an SoC testing approach that
integrates test data compression, TAM/test wrapper design,
and test scheduling. We choose the LFSR reseeding technique
proposed in [6] as the compression engine because of its
high encoding efficiency. In this paper, we assume that the
SoC is comprised of hard cores and cores whose structural
information is not available. A single on-chip LFSR-based
decompressor is used to feed all cores on the SoC. At a given
clock cycle, each core is in one of the following modes: (1)
Shift mode – data are shifted in from the LFSR, and output
responses are shifted out; (2) Capture mode – output responses
are captured into the scan cells; and (3) Inactive mode – the
core is not scheduled for test at this clock cycle. Therefore,
the LFSR is shared among the cores that are in the shift mode;
other cores do not receive data from the LFSR. With proper
TAM design and test scheduling, more cores can be tested
in parallel, and the test application time for the entire SoC
can be significantly reduced. Our experimental results show
that in most cases we can achieve a minimum TAT for the
SoC, which is the same as the TAT of the largest core. The
largest core is assigned a certain number of TAM lines, which
depends on the size of the LFSR, such that its TAT cannot be
further reduced.

Section II describes the proposed SoC testing approach.
The associated scheduling algorithm is presented in detail
in Section III. Section IV reports experimental results and
Section V concludes the paper.

II. PROPOSED APPROACH

An improved LFSR reseeding technique is proposed in [6].
It allows the generation of a single scan slice from multiple
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Fig. 1. Test architecture.

Fig. 2. Test control scheme.

seeds, or multiple scan slices from a single seed. An additional
tester channel is needed to control when reseeding occurs.
In this work, we choose to use the compression technique
of [6] because of its high encoding efficiency. The test data
volume achieved by [6] can be estimated as CB/En + ctrl,
where CB is the number of care bits, En is the Encoding
Efficiency, and ctrl is the volume of the controlling data.
Without loss of generality, we consider the test data volume
that is obtained with En = 90% and ctrl (in bits) equal to
TAT (in clock cycles). For large industrial circuits, the value
of En is considerably higher. Hence the estimated test data
volume is a pessimistic over-estimate.

The architecture of the proposed approach is shown in
Fig. 1. Each core is individually scheduled for test during
one or more clock ranges. If core A is scheduled for test
during clock range [t0, t1), then A starts receiving data from
the LFSR through the phase shifter at clock cycle t0, and
finishes scanning out the responses before clock cycle t1. We
refer to t0 and t1 as start cycle and end cycle, respectively.
Outside [t0, t1), core A is in the inactive mode. Therefore,
each core should have a separate Test Enable control signal,
which is active only during the scheduled clock ranges. The
Test Enable signal is AND-ed with the system clock as shown
in Fig. 2. The Test Enable signals are generated using on-chip
counters according to the scheduling data that are also stored
on-chip. Our experimental results show that in most cases
one core will only be assigned one clock range, hence the
storage for the scheduling data is very small. For handling
test responses, any compaction scheme can be used.

Each core is associated with a modulo counter that controls
when it should shift in test data, capture output responses, and
shift out output responses. The output of the modulo counter
is connected to the Scan Enable inputs of all scan cells, as
shown in Fig. 2. Section III provides more details.

At any clock cycle, the LFSR expands its seed to test data,
and simultaneously feeds multiple cores through the phase
shifter. Each seed is calculated from care bits that belong to
multiple cores. From the LFSR’s point of view, the SoC is
tested as a monolithic core, referred to as the equivalent core
of the SoC. By carefully designing the TAM and test wrappers,
together with proper test scheduling, an equivalent core can
be obtained whose testing time is minimized. Thereafter, the
LFSR reseeding technique of [6] is applied for the equivalent
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Fig. 3. Two cores and their equivalent core.

core. TAT is significantly reduced because: (1) Multiple cores
are tested in parallel, and (2) When some cores are in the
capture or inactive mode, other cores are in the shift mode
and receiving data from the LFSR.

Fig. 3 shows two cores A and B and their equivalent core.
In Fig. 3, each row represents a wrapper scan chain (WSC)
and each column represents a scan slice. Core A has 4 WSCs
and two patterns with each pattern having 4 scan slices. Core
B has 3 WSCs and one pattern that has 6 scan slices. Both
cores are scheduled for test starting from clock cycle 0. At
clock cycle 5, Core A is in the capture mode (marked as
“C” or “Capture”) while core B continues receiving data. The
equivalent core has 7 WSCs and 9 scan slices.

As shown in Fig. 1, the number of internal TAM lines is no
longer restricted by the number of scan IO pins of the SoC,
which are used as scan chain inputs/outputs. Compared with
existing test scheduling techniques [7], we have more freedom
to increase the number of internal TAM lines. Each internal
TAM line is connected to an output stage of the phase shifter,
which is usually an XOR gate [8]. Therefore, in this work
we assume there is no constraint on the number of internal
TAM lines. The number of external TAM lines depends on the
number of scan IO pins. In this paper, when we mention TAM
lines without stating whether they are internal or external, we
refer to internal TAM lines.

The LFSR reseeding technique of [6] requires that a seed
encode at least one scan slice. This implies that if the maxi-
mum number of care bits for all scan slices of the equivalent
core is Smax, then the seed size should be Smax+m, where m
is small (preferably 20, see [9]). In this work, we assume that
Smax is a user-defined parameter. The proposed TAM, test
wrapper, and test data compression co-optimization problem
is referred to as PTWC (TWC stands for TAM, Wrapper, and
Compression), and can be formally stated as follows:
PTWC : Consider an SoC having |C| cores (where C is

the set of cores). Given Smax and the test set parameters for
each core, i.e., the number of input, output, and bidirectional
terminals, and the test set with unspecified bits, determine the
internal TAM width and a wrapper design for each core, and a
test schedule to form an equivalent core, such that the testing
time for the SoC (or the equivalent core) is minimized. The
number of care bits in each scan slice of the equivalent core
cannot exceed Smax.

Ideally, given an equivalent core, if W tester channels are
used to test it, where W = Smax + m is the seed size
of the LFSR, the overall test application time is minimized.
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Fig. 4. Slice-based scheduling.

With fewer tester channels, sometimes the scan clock must be
paused to wait for a new seed to be completely transferred.
However, experimental results show that, especially for large
industrial circuits, most seeds can encode a sufficiently large
number of scan slices, such that the next seed can be trans-
ferred on time. To improve encoding efficiency, a larger seed
size W ′ = kSmax + m, k = 2, 3, . . ., can be used. In this
case, each seed can encode at least k scan slices, and the
ideal number of tester channels remains W .

We next propose a scheduling algorithm, referred to as
TWCScheduler. Most existing scheduling techniques work on
a per-core basis, i.e., each core as a whole is viewed as a block
and is packed into a rectangular bin [7]. TWCScheduler, as
shown in Fig. 4, works on a per-slice basis. In Fig. 4, each
core is shown as a rectangle. The height of the rectangle is
the number of internal TAM lines assigned to the core, and
the width is the corresponding test application time. The care-
bit distributions of each core are drawn in gray inside their
rectangles. All cores that are in the shift mode at a given clock
cycle t are “stacked” with each other. Cores are “stackable”
at t only if their total number of care bits at t does not exceed
Smax. During the scheduling process, TWCScheduler may (1)
change the shape of the blocks, i.e., change the number of
internal TAM lines assigned to each core, and (2) place the
blocks at proper places, i.e., allocate clock ranges to test the
cores. If necessary, TWCScheduler may vertically split a core
into multiple blocks with idential heights, such that the core is
tested during more than one clock range. This splitting action
is referred to as preemption.

III. SCHEDULING ALGORITHM

It was shown in [7] that, for a given core, the test application
time varies with the number of TAM lines (or TAM width)
assigned to it as a “staircase” function, and decreases only at
Pareto-optimal points, which are formally defined as follows:
A solution to the wrapper design problem for Core i can
be expressed as a 2-tuple (Wj , Ti(Wj)), where Wj is the
TAM width supplied to the wrapper and Ti(Wj) is the test
application time of Core i with the given wrapper. A solution
(Wj , Ti(Wj)) is Pareto-optimal if and only if there does
not exist a solution (Wk, Ti(Wk)) such that Wk ≤ Wj and
Ti(Wk) ≤ Ti(Wj), where at least one of the inequalities is
strict. Intuitively, the steps at which the testing time decreases
(as TAM width is increased) are the Pareto-optimal points.
Only these Pareto-optimal TAM widths need to be considered
when designing test wrappers. We use the design wrapper
algorithm from [7] to compute Pareto-optimal TAM widths
for a given core.

For the rest of the paper, we use Wi,k to denote the k-th
Pareto-optimal TAM width of Core i, k = 1, 2, . . . , Ni, where
Ni is the number of Pareto-optimal TAM widths of Core i.
The test application time of Core i with TAM width Wi,k

is Ti(Wi,k). All Pareto-optimal TAM widths of Core i are
sorted in an ascending order such that ∀(k, l), 1 ≤ k, l ≤ Ni,
l > k ⇒ Wi,l > Wi,k.

Given a core, let si (so) be the length of its longest wrapper
scan-in (scan-out) chain. The number of clock cycles required
to apply p test patterns to this core is given by [7]:

T = (1 + max{si, so}) · p + min{si, so} (1)
Once a test pattern has been shifted into the core, in the
next clock cycle the core will capture the responses of the
combinational parts to the scan cells. The “1+” part in (1)
corresponds to the clock cycles needed for response capture.
While output responses of a pattern are shifted out, the next
test pattern is shifted in at the same time. The “max{si, so}”
part in (1) reflects this fact. The modulo counter mentioned in
Section II is a modulo-(max{si, so} + 1) counter and drives
the Scan Enable signal, which controls scan operations of all
scan cells in the core. The output of the modulo counter is
reset to 0 in each capture cycle, incremented by 1 in each
shift cycle, and again reset to 0 in the next capture cycle.
A. Algorithm overview

TWCScheduler maintains an array timeLine, where time-
Line(t) is the total number of care bits at clock cycle t from
cores that are in the shift mode. Initially, timeLine contains
all zeros. Whenever a core is scheduled, timeLine is updated
to incorporate the care bits of this core. Once scheduling is
finished, timeLine(t) becomes the number of care bits in the
t-th slice of the equivalent core.

Before a core is scheduled, its test patterns are sorted in
ascending or descending order according to the total number
of care bits they have. This is motivated by the observation
that, given two cores, if we sort the patterns of one core in an
ascending order and patterns of the other core in a descending
order, the two cores are more likely to be stackable.

Procedure 1 High-level flow of TWCScheduler
1: Calculate Pareto-optimal TAM widths for each core;
2: Find maxCore;
3: Find bottleneck cores;
4: Preempt bottleneck cores;
5: Schedule maxCore;
6: Schedule other cores one by one;

The high level flow of TWCScheduler is shown in Procedure
1. Among all the cores, TWCScheduler first identifies one
maxCore. Given Smax, each Core i has a maximum acceptable
Pareto-optimal TAM width, referred to as Wi,max, such that
if the TAM width supplied to Core i exceeds Wi,max, there
exists at least one scan slice that contains more than Smax care
bits. Consequently, when Core i is assigned Wi,max TAM
lines, its minimum TAT, referred to as Ti,min, is achieved.
Core j is the maxCore if and only if ∀i 6= j, Ti,min ≤ Tj,min

(Tj,min is denoted as Tmin). Intuitively, Tmin is the lower
bound for the overall TAT for the SoC.

When the lower bound is achieved, an optimal solution
to PTWC is found. TWCScheduler always assigns to the



TABLE I DATA STRUCTURES

width(i) Current internal TAM width assigned to Core i.
TAT(i) TAT of Core i when supplied with width(i) TAM lines.

ncbCore(i, t) Number of care bits in the t-th scan slice of Core i.
StartTime(i) Latest start cycle assigned to Core i.
EndTime(i) Latest end cycle assigned to Core i.

begun(i) Boolean that indicates Core i has begun.
TABLE II SUPPORTING PROCEDURES

sortPattern
(i, dir)

Sorts patterns of Core i, the sort direction is speci-
fied by dir ∈ {DESC, ASC}.

designWrapper
(i, w)

Assigns w internal TAM lines to Core i, rearranges
scan slices and updates ncbCore(i).

doSchedule
(i, start, end)

Schedules Core i for test in clock range [start, end),
and updates timeLine.

maxCore its maximum Pareto-optimal TAM width, such that
an optimal solution is achievable. Section IV will show that
for most cases an optimal solution can be found.

Next, TWCScheduler identifies bottleneck cores. A Core i is
a bottleneck core if it satisfies ∀Wi,k < Wi,max, 1 ≤ k ≤ Ni,
Ti(Wi,k) > Tmin. Given an SoC and Smax, bottleneck
cores may not always exist. TWCScheduler always supplies a
bottleneck Core i with Wi,max TAM lines such that an optimal
solution is still achievable. Meanwhile, if a bottleneck Core
i has some highly specified test patterns that have more than
Smax − δ care bits in some scan slices, where δ is another
user-defined parameter, TWCScheduler will preempt this core.
Those highly specified patterns are scheduled earlier than
other patterns, which will be scheduled later together with
other non-bottleneck cores. The motivation for preemption
is two-fold. (1) Since highly specified patterns usually target
more stuck-at faults, applying them first can potentially lead
to a reduced average testing time if “abort-at-first-fail” test
strategies are used. (2) Since it is less likely that highly
specified patterns can be simultaneously applied with other
patterns from other cores, it will save CPU time by directly
scheduling them at the beginning of the test session.

In summary, TWCScheduler always attempts to make the
overall TAT equal to Tmin, the shortest possible TAT for
maxCore. This requires that maxCore and bottleneck cores be
supplied with their maximum acceptable Pareto-optimal TAM
widths. Highly specified patterns of bottleneck cores are first
scheduled, followed by maxCore. The patterns for maxCore
and all bottleneck cores are sorted in a descending order in
favor of “abort-at-first-fail” strategies. The remaining cores
are scheduled one by one in a random order, using a greedy
search strategy that will be discussed later.

B. Data structures and Supporting procedures

Table I summerizes the data structures used in TWCSched-
uler. Table II lists important supporting procedures.

Procedure trySchedule is the most time-consuming and is
shown in Procedure 2. It attemps to schedule Core i within
[start, end) as early as possible. First, test patterns are sorted
according to dir (Line 1). Then Core i and timeLine are
compared slice by slice to see if Core i can be scheduled
starting from startTime (Lines 4-13). Initially startTime is
set to start (Line 2). If a conflict occurs (Line 8), startTime
is incremented by 1 and the comparison is restarted (Line
9). If Core i can be scheduled, trySchedule calls doSchedule
to record the scheduling result and to update timeLine, and
returns 1 (Lines 14-17); otherwise returns 0 (Lines 10, 18).

Procedure 2 trySchedule(i, start, end, dir)
1: sortPattern(i, dir);
2: startTime = start;
3: currTime = startTime; currSlice = 0;
4: while currSlice < TAT(i) and currTime < end do
5: ncb1 = timeLine(currTime); ncb2 = ncbCore(i, currSlice);
6: if ncb1 + ncb2 ≤ Smax then
7: currTime ++; currSlice ++;
8: else
9: currSlice = 0; startTime ++;

10: if startTime + TAT(i) ≥ end then return 0;
11: currTime = startTime;
12: end if
13: end while
14: if currSlice == TAT(i) then
15: doSchedule(i, startTime, startTime + TAT(i));
16: return 1;
17: end if
18: return 0;

C. Procedure TWCScheduler
Procedure TWCScheduler is shown in Procedure 3. Lines 1-

2 are initialization operations and have been discussed earlier
in Section III-A. In Lines 3-10 bottleneck cores are preempted
before maxCore is scheduled in Lines 11-12. The patterns of
maxCore and all bottleneck cores are sorted in a descending
order in favor of “abort-at-first-fail” strategies.

Lines 13-33 form the main loop that schedules all other
cores except maxCore. If a Core i is a bottleneck core and has
been preempted, trySchedule tries to schedule its remaining
patterns after EndTime(i), when its heavilily specified patterns
have been applied (Line 15). If a Core i is a non-bottleneck
core and/or has not begun (Line 16), a greedy search strategy
is performed to find a schedule for it. We iterate over its
Pareto-optimal TAM widths in a descending order (Line
18), and assign w TAM lines to it (line 19). For each w,
trySchedule is called twice with different sort directions (Lines
21-28). The purpose of this greedy strategy is to find a Pareto-
optimal TAM width w and a sort direction that minimize
EndTime(i) (Line 23-27). When a solution is found that is
better than previous solutions, it is saved in Line 25. When the
search process is finished, the known best solution is restored
and timeLine is updated accordingly in Line 31.

Some early termination conditions are exploited to quickly
terminate the greedy search. Line 20 checks if the current w
will result in a test application time longer than minTime. If
so, then w and other smaller TAM widths will not result in
better solutions and should not be tried. Line 26 checks if
EndTime(i) equals to its test application time, which implies
that the core has been assigned a start cycle of 0. If so, then we
have found a best solution for this core. Line 29 checks if the
known best solution has been obtained with a Pareto-optimal
TAM width larger than w. If this happens, then in most cases
other smaller widths will not result in better solutions, since
they usually result in much longer test application times.

D. Optimize trySchedule
Procedure trySchedule compares Core i against array time-

Line slice by slice, trying to find a proper start clock cycle
for Core i. For large industrial circuits, this process may take
several hours for a mid-sized core (e.g., cores listed in Table V
in Section IV). To optimize trySchedule, whenever startTime
is changed (lines 2 and 9 of trySchedule), a new procedure
checkStart is called to quickly check if conflicts will occur. If



Procedure 3 TWCScheduler(C, Smax, δ)
1: Calculate Pareto-optimal TAM widths for each core;
2: Find maxCore; Find bottleneck cores;
3: currTime = 0; //Preempt bottleneck cores
4: for all Core i that is a bottleneck core do
5: sortPattern(i , DESC); designWrapper(i , Wi,max);
6: Find all patterns of Core i that have at least one scan slice with more

than Smax − δ care bits;
7: length = testing time to apply those patterns;
8: doSchedule(i , currTime, currTime + length);
9: begun(i) = 1; currTime = currTime + length;

10: end for
11: j = index of maxCore; //Schedule maxCore
12: designWrapper(j, Wj,max); trySchedule(j, 0, ∞, DESC);
13: for all Core i in |C|, i 6= j do
14: if begun(i) == 1 then
15: trySchedule(i, EndTime(i), ∞, DESC);
16: else
17: minTime = ∞; minW = −1;
18: for k = Ni to 1 do
19: w = Wi,k; designWrapper(i , w);
20: if TAT(i) ≥ minTime then break;
21: for dir ∈ {DESC, ASC} do
22: r =trySchedule(i, 0, minTime, dir);
23: if r == 1 and EndTime(i) < minTime then
24: minTime = EndTime(i); minW = w;
25: minDir = dir; saveSchedule(i);
26: if EndTime(i) == TAT(i) then break;
27: end if
28: end for //dir
29: if minW > w then break;
30: end for //w
31: restoreSchedule(i);
32: end if
33: end for //Core i

conflicts occur, checkStart returns 0 and startTime is directly
incremented by 1, without entering the time-consuming loop
in Lines 4-13. To call checkStart, the following code snippet
is inserted after Lines 2 and 9, respectively.

1: while checkStart(i, startTime) == 0 do startTime ++;
Procedure checkStart (shown in Procedure 4) uses three

caches for quick identification of conflicts. Cache A stores
all scan slices of Core i that have at least δ care bits.
Cache B stores all elements of timeLine that have at least
Smax − 3 care bits. Cache C stores all elements of timeLine
that have at least Smax−δ care bits. These numbers are chosen
through extensive experiments. These caches are updated
when timeLine is updated in Procedure doSchedule, and when
Core i is assigned a new number of internal TAM lines in
Procedure designWrapper. Cache B and C can be viewed as
Level 1 and 2 caches of timeLine. We do not remove duplicate
elements from the Level 2 cache that also belong to the Level
1 cache. To check Cache A (B or C) for conflicts, each slice
in it is compared against the corresponding slice in timeLine
(ncbCore). If the total number of care bits is greater than
Smax, then a conflict occurs. In most cases, Cache B contains
fewer elements and is first checked.

This optimization technique significantly accelerates Proce-
dure TWCScheduler. Without optimization, the scheduler does
not finish after 20 hours for the SoC described in Table V.
After optimization, it only takes about 30 mintues.

IV. EXPERIMENTAL RESULTS

First, we run TWCScheduler on the d695 benchmark SoC
[7]. Test patterns for the cores are compacted by Mintest.
Table III lists detailed information about d695. We assume

Procedure 4 checkStart(i, startTime)
1: check elements in Cache B for conflicts;
2: if Cache A contains fewer elements than Cache C then
3: check elements in Cache A for conflicts;
4: check elements in Cache C for conflicts;
5: else
6: check elements in Cache C for conflicts;
7: check elements in Cache A for conflicts;
8: end if

TABLE III BENCHMARK SOC D695

Core

s38584 38 304 1,426 136 32 45 44 35,287 
s38417 28 106 1,636 99 32 51 51 52,582 
c6288 32 32 0 29 0 0 0 910 
c7552 207 108 0 122 0 0 0 10,831 
s838 35 35 32 86 1 32 32 2,344 

s9234 36 39 211 159 4 54 52 10,601 
s13207 62 152 638 236 16 40 39 11,313 
s15850 77 150 534 126 16 34 33 12,657 
s5378 35 49 179 111 4 46 44 6,505 

s35932 35 320 1,728 16 32 54 54 18,251 

No. of 
Primary 
Inputs

No. of 
Primary 
Outputs

No. of 
Scan 
Cell

No. of 
Patterns

No. of 
Scan 

Chain

Max Scan 
Chain 
Length

Min Scan 
Chain 
Length

No. of 
Care 
Bits

that the internal scan chains of the cores cannot be modified.
Scheduling results for d695 with Smax = 32, 64 and δ = 10

are reported in Table IV. Column “TAM” reports the number
of internal TAM lines assigned to each core. Column “TAT”
shows the test application time. Clock ranges assigned to each
core are listed in Columns “Start” and “End”. Two bottleneck
cores, s38584 and s38417, are preempted when Smax = 32.
Core s13207 is maxCore for both values of Smax. The overall
test application time of the SoC is the same as the end cycle
of s13207 (in bold). The CPU time is less than 1 second.

Next, we present results for an SoC named NIM that
consists of 9 real-life industrial cores. Table V describes these
cores. For cores C1-C4 and C7-C9, primary inputs and outputs
are scannable and are part of the scan chains. Therefore, the
numbers of inputs or outputs for these cores are listed as 0.

Table VI reports scheduling results for NIM with Smax =
TABLE IV RESULTS FOR D695

Core TAM TAT Start End TAM TAT Start End

s38584 32 7,662 0 830 39 6,301 0 6,301 1,415 8,293 

s38417 32 5,599 830 1,389 32 5,599 0 5,599 2,520 7,615 
c6288 8 149 473 622 11 119 0 119 
c7552 16 1,715 3,009 4,724 42 735 95 830 
s838 3 2,870 955 3,825 3 2,870 0 2,870 

s9234 5 8,799 2,161 10,960 5 8,799 0 8,799 
s13207 20 9,716 1,333 11,049 20 9,716 0 9,716 
s15850 21 4,444 3,454 7,898 21 4,444 5 4,449 
s5378 5 5,263 4,551 9,814 5 5,263 11 5,274 

s35932 19 1,852 7,264 9,116 38 934 769 1,703 

Smax= 32 Smax= 64

TABLE V BENCHMARK SOC NIM

Core

C1 0 0 798 189 4 200 198 6,527 
C2 0 0 4,990 310 13 480 5 144,687 
C3 0 0 65,426 1,396 171 400 74 1,287,102 
C4 0 0 259,493 11,544 999 260 45 5,311,612 
C5 1,596 1,800 43,414 1,529 140 311 310 1,078,829 
C6 297 288 26,970 4,900 100 295 294 1,796,157 
C7 0 0 81,008 2,859 128 662 456 5,969,376 
C8 0 0 22,205 18,207 100 227 213 7,045,053 
C9 0 0 108,863 18,142 512 214 211 18,259,914 
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TABLE VI RESULTS FOR NIM
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16, 32, 48, 64 and δ = 10. Table VI is similar to Table IV.
Row “CPU time” lists the execution time in minutes and
seconds. As can be seen from the table, smaller values of
Smax may result in much higher CPU time. Unlike d695,
the scheduler finds no bottleneck cores and does not perform
preemption. For all cases, an optimal solution has been found.
When Smax = 64, the exact test data volume is 46,049,951
bits, if the LFSR size is 1044 (kSmax+20, k = 16, see Section
II) stages and 64 (532/k) ATE channels are used.

The following interesting observation can be made for NIM,
but not for d695. The rate at which the TAT for the SoC
decreases is relatively more compared to the rate at which
Smax increases. This is because the test sets for the industrial
circuits have lower care-bit densities compared to the test sets
for the ISCAS circuits in d695. A small increment in Smax

will enable a relatively large increment in the total number of
WSCs that can be driven by the LFSR in parallel. We also note
that the solution obtained with Smax = 64 is an especially
noteworthy optimal solution. The maxCore, C8, has at most
100 scan chains (Table V). If a smaller Smax is used, i.e.,
48 < Smax < 64, the overall TAT may still be 4,110,383
cycles, but the TATs for the other cores become higher.

Next we compare our work to some related prior work.
To compare with [4], we only considered the five cores for
d695 that were used in [4]. We carried out the same set of
experiments that are reported in Table IV. The resulting TAT
for the proposed work is the same as that when all cores are
considered, i.e., 11,049 clock cycles when Smax = 32. For 32
scan chains, the TAT reported by [4] is 11,658 clock cycles
(for the “seed-only” variant) and 9,612 clock cycles (for the
“seed-mux” variant) for Mintest-compacted test patterns. The
number of ATE channels is not reported in [4]. The estimated
test data volume for the proposed method is 190,250 bits
(161,281 care bits, En=90%, ctrl=11,049). The exact test data
volume is 181,821 bits (the LFSR size is 532 stages and there
are 34 ATE channels). The test data volume reported in [4]
is 419,688 bits (seed-only) and 442,152 bits (seed-mux). The
TAT reported in Figure 5 of [5] is higher than 50,000 clock
cycles when apparently 32 internal scan chains are used.

We also compare with the TAM optimization and test
scheduling techniques mentioned in [10], which do not use
compression. The best TAT reported in [10] for d695 with a
TAM width of 64 bits is 9,869 cycles. The TAT achieved by
the proposed work is 11,407 cycles when Smax = 32 (with
Smax+m ATE channels). Although the TAT is slightly higher,
the proposed work applies 1120 test patterns to the cores,
while the TAT in [10] is obtained for only 881 patterns. More

test patterns are expected to result in higher test quality.

V. CONCLUSIONS

We have presented an SoC testing approach that integrates
test data compression, TAM/test wrapper design, and test
scheduling. The LFSR reseeding technique from [6] is used
as the compression engine. All cores in the SoC share a
single on-chip LFSR, i.e., at any clock cycle one or more
cores can simultaneously receive data from the LFSR. To
reduce the overall test application time for the SoC, it is
necessary to increase the throughput of the LFSR (i.e., the
number of care bits the LFSR generates per clock cycle),
and configure the cores with as many wrapper scan chains
as possible. These objectives are accomplished using the
proposed scheduling algorithm TWCScheduler that determines
appropriate test wrappers and test schedules for each core.

Experimental results for both d695 and an SoC with indus-
trial circuits show that significant reduction in test application
time can be achieved. For most cases, an optimal solution
can be found such that the TAT of the SoC is the same
as that of the most time-consuming core. The scheduling
algorithm is also scalable for large industrial circuits. For the
larger benchmark SoC we used in the paper that consists of 9
industrial cores, the CPU time ranges from 1 to 30 minutes for
different values of Smax. The proposed approach has small
hardware overhead and is easy to deploy.
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