Radix 4 SRT Division with Quotient Prediction and Operand Scaling

Nishant R Srivastava

[linois Institute of Technology
Chicago, Illinois 60616, USA

Abstract

SRT division is an efficient method for implementing high radix

division circuits. However, as the radix increases the size of a quotient digit
selection table increases exponentially. To overcome the limitations of guo-
tient prediction, a methed in which a guotient digit is speculated has been
proposed. The speculated guotient digit is utilized to update the possible
partial remainders while the speculated quotient is corrected. In this paper,
instead of using a huge quotient selection table an estimation and correction
scheme is used for prediction of quotient digit. The prediction is done in par-
allel with the calculation of the partial remainder for the guotient predicted
earlier thus improving the latency. In addition, since this method tends to
consume less area as the radix increases compared to previous methods, it
has the ability to improve higher radix implementations for SRT divisi

1. Introduction

Many general-purpose microprocessors require an empha-
sis on functional units that can compute addition, subtraction,
multiplication, division, and square root with relatively small
number of cycles. While many advancements within these
functional units has been placed on improving addition and
multiplication, there still remains plenty of advancements that
can be made for division and square root. In fact, data based
on SpecFP benchmarks has shown that for the slowest divi-
sion hardware with a latency of 60 cycles or more, a cycle per
instruction (CPI) penalty up to 0.50 can be incurred [1]. Con-
sequently, finding a cost-effective implementation for division
that can compute a quotient in a relatively small number of
cycles is beneficial in many applications.

There are many implementations for computing division
and square root, however, the two methods that are most-often
utilized are digit-recurrence and multiplicative methods [2].
Digit-recurrence methods, such as SRT division, use subtrac-
tion as a fundamental operator to retire a fixed number of quo-
tient digits in every iteration. SRT division is named for three
researchers, Sweeney, Robertson [3], and Tocher who devel-
oped the algorithm independently at approximately the same
time. Atkins [4] published the first major analysis of the SRT
algorithm and Ercegovac and Lang [5] developed many of the
enhancements, including studies demonstrating trade-offs us-
ing several optimizations for static CMOS standard-cells, that
are now incorporated in many current designs.

Although SRT division can be effective at providing fast and
efficient implementations, performance can be smaller com-
pared to multiplicative-based methods because the latter con-

978-3-9810801-2-4/DATEQ7 © 2007 EDAA

verges quadratically. Moreover, various techniques for increas-
ing the performance of digit-recurrence division, such as in-
cluding staging of low-radix stages, using high-radix digit sets,
overlapping sections of one stage with another, and prescaling
the input operand introduce area-performance trade-offs.

One of the simplest methods for improving digit-recurrence
dividers is by increasing the radix. Although increasing the
radix reduces the number of iterations necessary to produce a
quotient, a more complex implementation of the QST is often
required. The simplest way for computing the quotient digit
selection is by using a single quotient digit selection table, usu-
ally using a ROM or PLA. Unfortunately, the problem with this
implementation is that the size of the quotient selection table
(QST) increases exponentially with the radix contributing to a
high amount of area consumption and slower worst-case de-
lays. Therefore, as the radix increases the complexity of hard-
ware implementation increases for most implementations that
utilize simple QSTs mitigating the advantage of the reduction
in the number of iterations.

Recently, an improvement in quotient selection was intro-
duced that uses two separate units. One unit estimates an ap-
proximate value of quotient and another unit corrects the es-
timated value and selects the correct partial remainder out of
different possible partial remainders calculated using the esti-
mated value of quotient [6]. The disadvantage with this design
is that although it reduces the complexity of the QST, the dif-
ferent partial remainders, which are calculated in parallel, may
lead to increased area as the radix increases. The partial re-
mainder can be calculated after a correction step but it will
almost double the latency since the extra time required for the
calculation of correct partial remainder will be added to the
latency.

This paper improves upon previous designs by incorporat-
ing both quotient prediction and operand scaling to avoid hav-
ing to estimate the value of the quotient by storing it. In our
method, the partial remainder for the quotient selected in an
earlier cycle is calculated in parallel with quotient prediction,
therefore, eliminating the parallel circuits required for calcu-
lating the partial remainder, decreasing the area as the radix
increases.

Since, quotient selection and calculation of the partial re-

mainder takes place in parallel, the latency is also improved.
In simple division methods, the critical path corresponds to the
sum of delays of the quotient digit selection plus the selection
of divisor multiple plus the redundant adder (CSA or signed
digit) used for calculation of partial remainder plus loading of
the registers. The critical path is reduced by prediction of quo-
tient digit, which operates in parallel with the computation of
partial remainder. In this case, the critical path becomes the
maximum of quotient digit selection plus the register loading
and of division multiple selection plus the adder plus the regis-
ter loading.

By pre-scaling the operands close to unity, which is required
in the suggested implementation, the complexity of quotient
selection further reduces. Consequently, the proposed method
has the ability to enhance area and speed for architectures
that support digit recurrence division. Power savings can be
also obtained with proper modifications to this architecture [7].
This scheme is proposed for higher radices, however, for sim-
plicity, it is implemented for radix-4.

This paper is organized as follows: Section 2 discusses the
background material and Section 3 discusses the implementa-
tion. Section 4 presents the results in a TSMC 0.25 pm feature
size [8]. Finally, Section 5 presents our conclusions.

II. Background Information

Digit-recurrence algorithms produce a fixed number of re-
sult bits in each iteration determined by the radix of implemen-
tation. Higher radices reduce the number of iterations to com-
plete the operation, but increase the cycle time and the com-
plexity of the circuit. The division algorithm, z = q-d + rem,
is implemented by the residual recurrence

rewlj]l — g1 -dy J=0,1,....m—=1 (1)

where qj+1 € {a,a | I,..., I,O,],...,a— I,a} with initial
value 'wf{}] — x, where r is the radix, = is the dividend, d is the
divisor, and g, is the quotient digit at the j-th iteration. The
quotient is computed as

m'
o .
%= > g (2)

q—1

wlj + 1]

where m’ is the number of iterations needed to produce the
n + 1 bits of the representation. Both d and = are nor-
malized in [0.5, 1), however, it is common to normalize the
operand between [1,2) for IEEE-754 implementations [9].
The quotient digit is in Signed-Digit (SD) representation
a,...,1,0,1,...,a and the residual w[j] is stored in carry-save
form (wS and wC') [10].
The quotient digit is determined, at each iteration, by a se-

lection function

qj+1 = sel(dd, g) (3)
where dd is the divisor d truncated after the d-th fractional bit
and

g = rwSy + rwCy (4)
where rwS; and rwC} refer to the carry-save representation of
the shifted residual truncated after ¢ fractional bits. The quo-
tient digit is selected such that

(a3 3

—__1-d<w|jj<?__1-d (5)

However, a correction step is required at the end if the final
residual is negative.

Rounding is also implemented according to the IEEE-754
by adding a unit in the last place (ulp) to the b-th position
where b is the actual number of bits required to represent the
quotient. Moreover, to perform this correction and rounding,
the sign of the final residual is computed and logic computes
whether it is zero or not (i.e. necessary for the round-to-
nearest-even scheme). That is, the signed-digit representation
of the quotient must be converted to the conventional repre-
sentation in two’s complement. A conversion block performs
the conversion from the SD quotient using on-the-fly conver-
sion [11]. This conversion is faster than what is done conven-
tionally because no carry-propagate addition (CPA) is needed.
The rounding unit requires the remainder to determine the sign
of the final residual. The rounding unit also contains the sign-
zero-detection block (SZD) which produces the signal that de-
tects if the final residual is zero [11]. The number of bits in
the recurrence depends on the radix » and on the redundancy
factor k = [a/(r — 1)].

In order to simplify the quotient selection, it is important
to guarantee a bounded next residual. This is accomplished
according to a containment condition that selects the proper
interval for ¢;,1 and |wj| < k - d Therefore, the upper limit
and lower limit, according to our containment condition for
the partial remainder, P, is

Proz=(k+4q)-d (6)

and

Prin = (_k + q) -d (?)

The values of P, and Pj; denote the upper and lower limits of
P over the divisor range [Dnin, Dimaz) for g =3
and

Py = (=k+3)-d 9)

assuming dpin, < d < dpas
The representation of the residual can be represented in ei-
ther nonredundant or redundant form. The redundant form has
the advantage that the addition/subtraction in the recurrence
can be utilized using carry-free addition, however, this com-
plicates the QST. On the other hand, the use of a digit set that
is redundant influences the complexity of the QST by creat-
ing possible selection intervals that are redundant. Therefore,
a second requirement for the selection interval is the continuity
condition which states that for any value of v - w|j], it must be
possible to select some value from a digit set for the quotient
digit between its range [5]. The overlap that exists between
two consecutive values of a quotient digit given as
Pjii=(-k+j+1)-d<P<(ktj)-d (10
Since the QST contains regions which must obey the con-
tainment and continuity conditions, the partial remainder is ex-
amined to determine the proper quotient based on the divisor.
Although this can lead to large table sizes, the utilization of a

redundant digit simplifies the QST by selecting truncated com-
parison multiples. Unfortunately, even if a low amount of pre-
cision is employed in the truncated comparison multiples, the
QST can still be large.

Recently, it has been proposed that instead of selecting the
correct quotient digit g, an estimate is utilized such that the
recurrence divider stores both values associated with the con-
tainment condition, and then, during the subsequent cycle, the
proper containment is selected [6]. That is, the actual quotient
digit is expressed as ¢ = ¢" 4 ¢*, where the correction value
q* =0,1,---,~v. In other words, q € ¢, q" +1,.....q7 +.
Therefore the upper and lower limits for P assuming ¢# = j
are

}_)T]!fl.'f-' (k | qTfJ-fl.'f-') : d (;: I q# I nl() . (‘!
(k+3+7)-d= Py (1)

Prin = (_k+q?mln) d = (_k + qﬂ) -d
(=k+j7)-d= Py (12)

Therefore their overlap region P; ;1 for ¢* = j and ¢* =
j+1lis
Pjjpi=(-k+j+1)-d<P<(k+j+7)-d (13)
and dpin < d < dpgo
Normally, the QST implementation of the containment con-
dition, assuming C' is some constant, is

(_k+J+l)dmaxS("S(k+J+l)dmsn (14)

making the selection of g independent of d and depending only
on P. Wey and Wang’s impelementation alter the QST after
estimating the quotient digit ¢* [6]. Consequently, the actual
quotient digit is selected from (¢#,¢# + 1,...,¢™ +~). With
this enhancement, the overlap region for ¢ = ¢ and ¢ = ¢ +
lis

(=k+q” +1)-d<P<(k+q") d (15)

or

(—k+1)-d<P—q" . d<k-d (16)

Therefore, assuming the adjusted partial remainder is P*
P — ¢ d, the equation can be rewritten as
(=k+1)-d<P*<k-d (17)
Comparing it with overlap equation of conventional QST ap-
proach shows that P* is included in overlap region (Pj.., Pji).
Hence the correction value ¢* is determined by the comparison
constant derived from this overlap region. Therefore, the value
of the actual subtraction to get the residual is selected using
this ¢*. Therefore, the final value of quotient is calculated as

(18)

In hardware, this implementation creates the remainders for
g g% +1,q" +2,---,¢" +~ that are calculated in parallel
and then the correct partial remainder is selected depending on
value of ¢*. Since the QST gets decomposed into a bipartite

q=q" +4q"

table, it makes the QST smaller. Although this implementation
method makes the QST smaller, the hardware used for calcu-
lating the remainder increases depending upon the increase in
radix value and the estimation limit. Therefore, this method
can become disadvantageous for higher radices and higher es-
timation limits.
III. Proposed Implementation

This paper enhances the previous technique by utilizing pre-
diction of the quotient digit. Using prediction of the quotient
digit allows the simultaneous computation of the quotient digit
and of the residual. In this implementation, since the overlap
region is largest close to d = 1, it is convenient to restrict the
divisor close to 1 by prescaling the divisor. By pre-scaling the
operands, the complexity of calculation is reduced since the
overlap region in the P-D) plot is maximum near unity. In ad-
dition, since the truncated bits of the partial remainder are used
for estimation and the partial remainder from this estimate is
used for correction, the error induced must be absorbed in the
overlap [12], [13], [14] . To reduce the complexity of predic-
tion unit the divisor D is neglected in correction part, since the
divisor has been pre-scaled close to unity.

For this implementation, there exists an overlapping region
forg=jandq =7+ 1 givenas

Pjjiin=(-k+j+1)-d<sP<(k+j+1)-d (19

where, k=redundancy factor. The redundant form has the
advantage that the addition/subtraction is completed using a
carry-free adder. A carry-save adder (CSA) as opposed to
a SD adder is implemented, however, either could be utilized.
The disadvantage to using carry- free addition is that is com-
plicates the quotient-digit selection and introduces some error.
The error introduced by using a CSA is

2-r-a-|(1-d) (20)

CEmaz — Emin

where a represents the redundant digit set for quotient g;
{a,a+1,...,1,0,1,...,a}

The proposed design absorbs the error in the overlap sec-
tion. Therefore, the new containment condition becomes

(k+3+1)d_(_k+_'f+1)d2 Smaz — Smin
2-k-d>2r-a-|(1-d)

2-k-d+2-r-a-d>2-r-a (20)
hence, ,
2ra 2ra
{ > 22
2ra — 2k »az 2ra + 2k (22)

where, k = a/(r — 1) is redundancy factor
Therefore, the divisor d is scaled to 1) = m - d where m is
the scaling factor such that, 1 —a < |D| <1+ 3, a and 3 are
chosen so as to have a simple scaling implementation [14]. The
factor m can be determined as an approximation of 1/d [15]

such that
r—2

1 — -d <1
4‘?‘A(?‘_I)<m <1+

-2

4-7r-(r—1) (23)

The suggested scaling for our implementation is shown in Ta-
ble 1 which gives an attractive implementation {; < |D| <

d m D

[14/16, 1) 9/8=1+1/8 [252/256, 288/256)
[13/16,14/16) 10/8=1+1/4 [260/256,280/256)
[12/16,13/16) 11/8=1+1/4+1/8 [264/256, 286/256)
[11/16,12/16) 12/8=1+1/2 [264/256, 288/256)
[10/16, 11/16) 13/8=1+1/2+1/8 [260/256, 286/256)
[9/16, 10/16) 14/8=1+1/2+1/4 [252/256, 280/256)
[8/16, 9/16) 16/8=111 [256/256, 288/256)
TABLE1

SELECTION OF SCALING FACTORFOR 7 =4

nable 1 enable enable enable
AND ARRAY AND ARRAY AND ARRAY
reg efhj W 1M w2
oLhj
x12 x 18
b
9+ s WS

o 56 iy 56 by 2 —
[t
enable 1 v v
enable enable

Fig. 1. Scaling Unit

s [12]. Since the scaling is only in terms of multiples of

two, it can be simplified with combinational logic defined as
m=1+e 4+ f-1+h-5+7 3. The binary variables
e, f,h and j are determined by combinational logic utilizing
of D[55 : 49], the first 7 bits of a divisor and the sign bit,
D|55] = S.

The scaling of operands is done in a sequence. First, the
scaling block scales the divisor d to [J = m.d in one pass
through a scaling block and value of D is stored in a regis-
ter. The value of m is also stored in a register. Then the block
scales the dividend to X = m - d . In further cycles the scal-
ing block is disabled and ¢ D is generated along with rwy s and
rwjc, the sum and carry parts of the partial remainder, respec-
tively. The output components of scaling blocks are passed
through a three input CSA to get the required partial remainder.
The implementation of the scaling unit is shown in Figure 1.

This research utilizes a QST lookup and modifying it so that
it is easier to store or compute using combinational logic [6].
Without the modified QST, a staircase function is usually cre-
ated which can be area intensive. However, with this method,
by partitioning the QST into separate, smaller tables, the selec-
tion is simpler. A simplified diagram of this method is shown
in Figure 2. In this figure, @S, QH, and QC are the modified
QSTs. In addition, the dashed line represents the baseline logic
that is repeated depending on the radix. For radiz = 4, only
two baseline modules are needed, however, for radiz = 16,
four baseline modules would be required including larger mul-
tiplexors and registers [16].

Block QS generates the correction value, ¢* from the com-

Fig. 2. Block diagram of Radix-4 divider [6].

i G [Dj-1,Dj)
1 000.011 [0.11101, 1.00010)
2 000.100 [1.00011,1.00110)

TABLE I
COMPARISON CONSTANT FOR ¢*

puted partial remainder, P°. The correction value ¢* is deter-
mined by the comparison constants in the overlap region (i.e.,
(=k+1)-D < P* < k- D)andthe overlap region is expressed

as
a
1 —
[r—1

The comparison constants can then be systematically gen-
erated as follows assuming » = 27 and a = r/2 = 2m~!
The range of divider D is equally partitioned into regions
“)J,)")J:+|), where

}-DgPSLfJ-D (24)

D

"‘)m.u.::: - !)m-&n .
q D min i

@

(25)

and a = r/2 = 2™~! For example, if = 4 with the scaled
divisor in the range 0.923076923 < D < 1.2, it produces the
value

D

;= 0.923076923 + 0.138461539 - 5 (26)

In order to separate the QST into a separate QS block, it is nec-
essary to make sure that the partial remainder obeys the con-
tainment condition. Therefore, for each constant €7, it must
satisfy the following condition

@ . @

27}!—| -1 . 27}!—|
om _ 'Dj = (Jj = om _ 'D.‘f—l (2?)

For r = 4 and m = 2, this produces 1/3-Dj < C; < 2/3-
D; 1. The comparison constants utilized in this paper for r =
4 and a = 2 are shown in Table 2.

On the other hand, block QH generates the estimated value,
¢*. The truncated partial remainder is used for estimation of

st mjct

||

w1 =rw()t-
a+1)4d t)

' ()= kiw' j+1)
where, r=2 exp k

QH SELECTION
selects q &

—

' (j2)mrw(+1) - g

l

Q5 BLOCK
caleulates g*

l

QC BLOCK
qj+2= gi+q

qj#1 ——

qj+2

Fig. 3. Quotient Prediction Scheme

¢* in QH block and the approximate truncated partial remain-
der for next iteration is calculated, however, the divisor, D), is
neglected since it was scaled near unity.

?'w’('j Loy = TW(41) — q" (28)
The correction value ¢* from the computed partial remainder
rw(; o) is calculated in QS. This partial remainder lies in the
overlap region and is used to find the correction value ¢*. The
final predicted value is calculated by ¢;2 = ¢” + ¢* inthe QC
block.

A block diagram of the quotient prediction scheme includ-
ing QS, QH, and QC is given in Figure 3. In this block diagram,
rwj st and rwject=sum and carry parts of the partial remainder
truncated to ¢ bits, respectively. Initially, the truncated partial
remainder rw; 1 is calculated using

rwi, g = rwjis; +rwjce — qj1 - D (29)
After this the truncated partial remainder is computed, QS and
QH are utilized to select the proper quotient digit. Block QC
utilizes the estimated quotient digit g7 and the correction value
¢* to produce the actual quotient digit ¢;+o as shown in Ta-
ble 3.

IV. VLSI Implementation

The overall implementation is shown in the Figure 3. Ini-
tially, in the first clock cycle the operand scaling block selects
the divisor d and scales it to D = d - m, where m is the mul-
tiplying factor. Because the scaling is produced in carry-save
form, it must be sent through a carry-propagate adder (CPA).
In our case, we utilized a carry-lookahead adder for the CPA.
Although this logic is area-intensive it only needs to be com-
puted once at the beginning of the divide operation.

The scaled operands are passed through a 3-2 CSA that is
also used in the recurrence steps to give the partial remainder.

g g
11 2
10 1
0o 1 1
0 0 0
1 1 0
10 -
2 1 -
2 0 =2

TABLE III

FINAL SPECULATED VALUE OF qj+2

D is loaded in a register. In the second clock, the divisor z is
scaled to X = 2 - m and stored in the register for the partial re-
mainder and used as the first partial remainder for prediction of
quotient. The predicted quotient is stored in the low power ‘on
the fly conversion’ unit which converts the sign-digit quotient
to conventional representation [11]. Sign-zero detection block
is used for rounding the final value to nearest even [7].

Delay and area estimates were made to compare estimated
QST version [6] to the scaled version in this paper. Although
previous implementations implemented each cycle in parallel,
the implementation is designed to perform the division by re-
currence serially as in most digit-recurrence dividers [2]. The
dividend and divisor are initially assume to be 56 bits and the
radiz = 4. Although radiz = 4 is compared in this paper,
there would be obvious benefits to using this method for high
radices since it would have less baseline logic as shown in Fig-
ure 2. In other words, the area should scale linearly as opposed
to exponentially.

The implementations were coded at the RTL level using the
Verilog hardware descriptive language. The design is synthe-
sized using Synopsys design compiler and layout is generated
using Silicon Ensemble for TSMC 0.25 gm SCMOS DEEP
submicron technology [8]. All designs were extensively sim-
ulated with at least 10,000 vectors and compared versus a
golden file.

In order to achieve a good delay model, the gate and net de-
lay are extracted using Cadence’s HyperExtract and Synopsys’
Primetime. The output obtained from HyperExtract is back-
annotated into Primetime to obtain the critical path delay. The
results are presented in Table 4. The area is expressed in terms
of mm? and the number of cells is the number of gates utilized
from synthesis. Results indicate a 24.93% increase in area and
a 12.68% improvement in delay. The area increases in our
design because of the area consumed by the full-length carry-
propagate adder. Since the CPA utilized in the implementation
without prediction is much smaller than the design prposed in
this paper, the adder consumes a large portion of the design. If
an adder that has a better balance between delay and area was
utilized, the area comparisons would be comparable since the
proposed design has less registers. Moreover, this design could
provide benefits for high radices since it does not incur expo-
nentially increasing area provided the scaling can be done effi-
ciently. On the other hand, since the input operand is scaled in
our implementation it consumes one additional cycle. The de-

V6 bt T 0

56 bil Regater 1o load D

* E ‘T

ON THE FLY CONVERSION |-<—| X

56
bits

QJ

Cuotoent Digd Regrster
Selection Loading

e |

Scale Divisor +
CLA Step+Store

Scale Dividend

+ Store Cycle Time

Division Recurrence ; t 1 1 t — et |

Quotient Conversion -t — — —
Fig. 4. Overall implementation
Quotient Number of Area Critical Latency
Selection Cells (mm?2) Path(ns) (cycles)
Scaling and
Prediction 5,240 0.373 6.2 31
Without prediction,
with estimation 3,695 (.280 7.1 30
and correction
TABLE IV

COMPARISON OF DIFFERENT IMPLEMENTATIONS

lay estimates were based off parasitically extracted layout and,
therefore, reflect rough estimates of the layout. Further reduc-
tions in delay could be achieved with hand-optimized custom
layouts.

V. Conclusion

The method suggested in this paper presents a design in

which the operands are first scaled and then used for predict-
ing quotient digit using speculation and correction. The result
shows an improvement in delay of approximately 13% per cy-
cle over previous implementations. However, the implemen-
tation shows an increase in the area compared to the previ-
ous radix-4 implementation, however, this design can provide
benefits for high radices since it does not require additional
registers for storing the partial remainder estimates. In addi-
tion, utilizing efficient adders that are more conservative with

OPERAND SCALING BLOCK
L Y y
A] Y
56 bit Scaled i d x 1/4 x1/2
A puisor D - xiz| | x1/e
A
\ABK: 4
| MUX | / /
56 bit
] L] L]
[56bit 3 to 2 CSAs |
anable 55 s6 L.
—+ v b 4
JI’ i
[55 B AND Arra]
1 ‘{x -
| 56 bit CLA |
3 ba predicted
A // quntient

area might show that the method illustrated in this paper might
have similar area consumption compared to previous imple-
mentations. By modifying the initial containment and conti-
nuity equations, this paper also shows that quotient prediction
and operand scaling can provide a fast implementation for SRT
dividers.

References

% [1] S. F. Oberman and M. J. Flynn, “Design issues in division and other

floating-point operations,” IEEE Transactions, vol. 46, no. 2, pp. 154

wor 161, 1997.

"“12] P. Soderquist and M. Leeser, “Division and square root: Choosing the

right implementation,” JEEE Micro, vol. 17, no. 4, pp. 56-66, 1997.

[3] I E. Robertson, “A New Class of Digital Division Methods.” [RE Trans-
actions on Electronic Computers, vol. EC-7, pp. 218-222, 1958.

[4] D. E. Atkins, “Higher Radix Division Using Estimates of the Divisor
and Partial Remainder,” IEEE Transactions on Computer, vol, C-17,
pp- 925-934, 1968.

[5] M. D. Ercegovac and T. Lang, Division and Square-root: Digit-
Recurrence Algoritms and Implementations. Boston: Kluwer Academic
Publishers, 1994,

[6] C.-L. Wey, T.-H. Tzu, and Y. Chun, “High-radix division with specula-
tion of quotient digits.” in International Conference of Computer Design
(ICCD), Austin, Texas, pp. 479-482, 1995,

[7]1 A. Nannarelli and T. Lang, “Low-power divider,” [EEE Transactions on
Computers, vol. 48, pp. 2-14, Jan 1999,

[8] J. B. Sulistyo and D. S. Ha, “Developing Standard Cells for TSMC
0.25um Technology under MOSIS DEEP Rules,” Tech. Rep. VISC-
2002-01, Virginia Tech, 2002,

[9] Standards Committee of the IEEE Computer Society, IEEE Standard

754 for Binary Floating Point Arithmetic. IEEE Press, August 1985,

A. Avizienis, “Signed-Digit Number Representations for Fast Paral-

lel Arithmetic,” [RE Transactions on Electronic Computers, vol. 10,

pp- 389-400, 1961.

M. D. Ercegovac and T. Lang, “On-the-fly Rounding,” IEEE Transac-

tions on Computer, vol. C-41, no. 12, pp. 1497-1503, 1992,

M. D. Ercegovac and T. Lang, “Simple radix-4 division with divisor scal-

ing,” tech. rep., UCLA, 1987.

M. D. Ercegovac and T. Lang, “Implementation of fast radix-4 division

with operand scaling,” [EEE Transactions, vol. 39, pp. 1204-1208, Nov

1990.

M. D. Ercegovac, T. Lang, and R. Modiri, “Implementation of fast radix-

4 division with operand scaling,” IEEE Transactions, vol. 37, no. 11,

pp- 486-489, 1998.

P. Montuschi and T. Lang, “Boosting very high radix division with pre-

scaling and selection by rounding,” IEEE Transactions on Computers,

vol. 50, pp. 909-918, Jan 2001.

C.-L. Wey and C. P. Wang, “A high performance modular embedded rom

architecture,” in IEE Proc., Comput. Digital Tech.,, pp. 275-281, July

2000.

[10]

[11]
[12]

[13]

[14]

[15]

[16]

	Main
	DATE07
	Front Matter
	Table of Contents
	Author Index

