
An Efficient Hardware Architecture for H.264 Intra Prediction Algorithm

Esra Sahin and Ilker Hamzaoglu
Faculty of Engineering and Natural Sciences, Sabanci University, 34956, Istanbul, TURKEY

Email: hamzaoglu@sabanciuniv.edu

Abstract

 In this paper, we present an efficient hardware
architecture for real-time implementation of intra prediction
algorithm used in H.264 / MPEG4 Part 10 video coding
standard. The hardware design is based on a novel
organization of the intra prediction equations. This
hardware is designed to be used as part of a complete
H.264 video coding system for portable applications. The
proposed architecture is implemented in Verilog HDL. The
Verilog RTL code is verified to work at 90 MHz in a Xilinx
Virtex II FPGA. The FPGA implementation can process 27
VGA frames (640x480) per second.

1. Introduction
Video compression systems are used in many

commercial products, from consumer electronic devices such
as digital camcorders, cellular phones to video
teleconferencing systems. These applications make the video
compression hardware devices an inevitable part of many
commercial products. To improve the performance of the
existing applications and to enable the applicability of video
compression to new real-time applications, recently, a new
international standard for video compression is developed.
This new standard, offering significantly better video
compression efficiency than previous video compression
standards, is developed with the collobaration of ITU and
ISO standardization organizations. Hence it is called with
two different names, H.264 and MPEG4 Part 10.

The video compression efficiency achieved in H.264
standard is not a result of any single feature but rather a
combination of a number of encoding tools. As it is shown in
the top-level block diagram of an H.264 encoder in Fig. 1,
one of these tools is the intra prediction algorithm used in the
baseline profile of H.264 standard [1, 2, 3]. Intra prediction
algorithm generates a prediction for a Macroblock (MB)
based on spatial redundancy. H.264 intra prediction
algorithm achieves better coding results than the intra
prediction algorithms used in the previous video
compression standards. However, this coding gain comes
with an increase in encoding complexity which makes it an
exciting challenge to have a real-time implementation of
H.264 intra prediction algorithm.

Figure 1. H.264 Encoder Block Diagram

In this paper, we present an efficient hardware
architecture for real-time implementation of intra prediction
algorithm used in H.264 / MPEG4 Part 10 video coding
standard. The hardware design is based on a novel
organization of the intra prediction equations. This hardware
is designed to be used as part of a complete H.264 video
coding system for portable applications. The proposed
architecture is implemented in Verilog HDL. The Verilog
RTL code is verified to work at 90 MHz in a Xilinx Virtex II
FPGA. The FPGA implementation can process 27 VGA
frames (640x480) per second.

A hardware architecture for real-time implementation of
H.264 intra prediction algorithm is presented in [4, 5]. This
hardware achieves higher performance than our hardware
design at the expense of a much higher hardware cost. Our
hardware design is a more cost-effective solution for portable
applications. They use four reconfigurable datapaths, which
include 12 adders, 16 multiplexers, 4 shifters and 4 clippers,
in their design. They use additional adders and multiplexers
for preprocessing in 16x16 plane mode and 8x8 plane mode.
On the other hand, we use three reconfigurable datapaths,
which include 6 adders, 12 multiplexers, 6 shifters and 2
clippers, in our design. We don’t use any aditional hardware
resources for 16x16 plane mode and 8x8 plane mode.

The rest of the paper is organized as follows. Section 2
explains the H.264 intra prediction algorithm. Section 3
describes the proposed architecture in detail. The
implementation results are given in Section 4. Finally,
Section 5 presents the conclusions.

978-3-9810801-2-4/DATE07 © 2007 EDAA

2. Overview of H.264 Intra Prediction Algorithm
Intra prediction algorithm predicts the pixels in a MB

using the pixels in the available neighboring blocks. For the
luma component of a MB, a 16x16 predicted luma block is
formed by performing intra predictions for each 4x4 luma
block in the MB and by performing intra prediction for the
16x16 MB. There are nine prediction modes for each 4x4
luma block and four prediction modes for a 16x16 luma
block. A mode decision algorithm is then used to compare
the 4x4 and 16x16 predictions and select the best luma
prediction mode for the MB. 4x4 prediction modes are
generally selected for highly textured regions while 16x16
prediction modes are selected for flat regions.

There are nine 4x4 luma prediction modes designed in a
directional manner. A 4x4 luma block consisting of the
pixels a to p is shown in Fig. 2. The pixels A to M belong to
the neighboring blocks and are assumed to be already
encoded and reconstructed and are therefore available in the
encoder and decoder to generate a prediction for the current
MB. Each 4x4 luma prediction mode generates 16 predicted
pixel values using some or all of the neighboring pixels A to
M as shown in Fig. 3. The arrows indicate the direction of
prediction in each mode. The predicted pixels are calculated
by a weighted average of the neighboring pixels A-M for
each mode except Vertical, Horizontal and DC modes.

The prediction equations used in 4x4 Diagonal Down-
Left prediction mode are shown in Fig. 4 where [y,x] denotes
the position of the pixel in a 4x4 block (the top left, top right,
bottom left, and bottom right positions of a 4x4 block are
denoted as [0, 0], [0, 3], [3, 0], and [3, 3], respectively) and
pred[y,x] is the prediction for the pixel in the position [y,x].

Figure 2. A 4x4 Luma Block and Neighboring Pixels

Figure 3. 4x4 Luma Prediction Modes

pred[0, 0] = A + 2B + C + 2 >> 2
pred[0, 1] = B + 2C + D + 2 >> 2
pred[0, 2] = C + 2D + E + 2 >> 2
pred[0, 3] = D + 2E + F + 2 >> 2
pred[1, 0] = B + 2C + D + 2 >> 2
pred[1, 1] = C + 2D + E + 2 >> 2
pred[1, 2] = D + 2E + F + 2 >> 2
pred[1, 3] = E + 2F + G + 2 >> 2
pred[2, 0] = C + 2D + E + 2 >> 2
pred[2, 1] = D + 2E + F + 2 >> 2
pred[2, 2] = E + 2F + G + 2 >> 2
pred[2, 3] = F + 2G + H + 2 >> 2
pred[3, 0] = D + 2E + F + 2 >> 2
pred[3, 1] = E + 2F + G + 2 >> 2
pred[3, 2] = F + 2G + H + 2 >> 2

 pred[3, 3] = G + 3H + 2 >> 2
Figure 4. Prediction Equations for 4x4 Diagonal Down-Left

Mode

Table 1. Availability of 4x4 Luma Prediction Modes

Availability of Neighboring
4x4 Luma Blocks

Available 4x4 Luma
Prediction Modes

None available DC
Left available, Top not available Horizontal, DC, Horizontal-Up
Top available, Left not available Vertical Right, DC, Vertical

Left, Diagonal Down-Left
Both available All Modes

DC mode is always used regardless of the availability of
the neighboring pixels. However, it is adopted based on
which neighboring pixels A-M are available. If pixels E, F,
G and H have not yet been encoded and reconstructed, the
value of pixel D is copied to these positions and they are
marked as available for DC mode. The other prediction
modes can only be used if all of the required neighboring
pixels are available [2, 3]. Available 4x4 luma prediction
modes for a 4x4 luma block depending on the availability of
the neighboring 4x4 luma blocks are given in Table 1.

There are four 16x16 luma prediction modes designed in
a directional manner. Each 16x16 luma prediction mode
generates 256 predicted pixel values using some or all of the
upper (H) and left-hand (V) neighboring pixels as shown in
Fig. 5. Vertical, Horizontal and DC modes are similar to 4x4
luma prediction modes. Plane mode is an approximation of
bilinear transform with only integer arithmetic. The
prediction equations used in 16x16 Plane mode are shown in
Fig. 6 where [y,x] denotes the position of the pixel in a MB
(the top left, top right, bottom left, and bottom right positions
of a MB are denoted as [0,0], [0,15], [15,0], and [15,15],
respectively), p represents the neighboring pixel values and
Clip1 is to clip the result between 0 and 255.

DC mode is always used regardless of the availability of
the neighboring pixels. However, it is adopted based on
which neighboring pixels are available. The other prediction
modes can only be used if all of the required neighboring
pixels are available [2, 3]. Available 16x16 luma prediction
modes for a MB depending on the availability of the
neighboring MBs are given in Table 2.

 Horizontal Vertical

H G F E D C B A M
I
J
K
L

H G F E D C B A M
I
J
K
L

Mean
(A..D
I...L)

 DC

HGF E DC B A M
I
J
K
L

H G F E D C B A M

 Diagonal Down-Left

I
J
K
L

 Horizontal Down

I
J
K
L

H G F E D C B A M

 Diagonal Down-Right

I
J
K
L

HGF E DC B A M

 Vertical Left

I
J
K
L

H G F E D C B A M

 Horizontal Up

I
J
K
L

H G F E D C B A M

 Vertical Right

I
J
K
L

HGF E DC B A M

H G F E D C B A M
I
J
K
L

g h e f
c a b d

l i j k
m n o p

Figure 5. 16x16 Luma Prediction Modes

pred[y,x] = Clip1 [((a + b * (x – 3) + c * (y – 3) + 16) >> 5]

a = 16 *(p[-1,15] + p[15,-1])
b = (5 * H + 32) >> 6
c = (5 * V + 32) >> 6

H = ∑ (x’+1)*(p[-1,8 + x’] + p[-1, 6- x’]), x’ = 0, 1, 2, 3, 4, 5, 6, 7
V = ∑ (y’+1)*(p[8 + y’,-1] + p[6- y’,-1]), y’ = 0, 1, 2, 3, 4, 5, 6, 7

Figure 6. Prediction Equations for 16x16 Plane Mode

Table 2. Availability of 16x16 Luma Prediction Modes

Availability of Neighboring MBs Available 16x16 Luma
Prediction Modes

None available DC
Left available, Top not available Horizontal, DC
Top available, Left not available Vertical, DC
Both available All Modes

For the chroma components of a MB, a predicted 8x8
chroma block is formed for each 8x8 chroma component by
performing intra prediction for the MB. There are four 8x8
chroma prediction modes which are similar to 16x16 luma
prediction modes. A mode decision algorithm is used to
compare the 8x8 predictions and select the best chroma
prediction mode for each chroma component of the MB.
Both chroma components of a MB always use the same
prediction mode.

3. Proposed Hardware Architecture
The proposed hardware architecture for intra prediction is

shown in Fig. 7. The proposed hardware generates the
predicted pixels for both luma and chroma components of a
MB using available prediction modes. In the proposed
hardware, there are two parts operating in parallel in order to
perform intra prediction faster.

The upper part is used for generating the predicted pixels
for the luma component of a MB using available 16x16 luma
prediction modes and for generating the predicted pixels for
the chroma components of a MB using available 8x8 chroma
prediction modes. The size of register files that are used for
the current MB and the prediction buffer is 384x8, because
they are used for storing both luma and chroma components
of the current and predicted MB respectively.

The lower part is used for generating the predicted pixels
for each 4x4 block in the luma component of a MB using
available 4x4 luma prediction modes. The lower part is more
computationally demanding and it is the bottleneck in the

Figure 7. Intra Prediction Hardware

Figure 8. 16x16 and 4x4 Luma Blocks in a Frame

intra prediction hardware. The size of the current MB
register file is 256x8, because it is used for storing only luma
components of the current MB. The size of the prediction
buffer is 16x8 since it is used for storing the predicted pixels
for a 4x4 luma block.

Two local neighboring buffers, local vertical register file
and local horizontal register file, are used to store the
neighboring pixels in the previously coded and reconstructed
neighboring 4x4 luma blocks in the current MB. After a 4x4
luma block in the current MB is coded and reconstructed,
the neighboring pixels in this block are stored in the
corresponding local register files.

Local vertical register file is used to store the neighboring
pixels d, h, l, and p in the left-hand previously coded and
reconstructed neighboring 4x4 luma blocks in the current
MB. Local horizontal register file is used to store the
neighboring pixels m, n, o, and p in the upper previously
coded and reconstructed 4x4 luma blocks in the current MB.
The proposed hardware uses this data to determine the
neighboring pixels in the left-hand and upper previously
coded neighboring 4x4 luma blocks in the current MB.

Six global neighboring buffers, three global vertical
neighboring buffers and three global horizontal neighboring
buffers, are used to store the neighboring pixels in the

H

V

 Vertical
H

V

 Plane
H

V

Horizontal
H

V
Mean
(H+V)

 DC

previously coded and reconstructed neighboring MBs of the
current MB. The 16x16 luma components of the MBs in a
frame and the 4x4 luma blocks in them are shown in Fig. 8.

Global luma vertical register file is used to store the
neighboring pixels d, h, l, and p in the 4x4 luma blocks 5, 7,
13 and 15 of the previously coded MB. The proposed
hardware uses this data to determine the neighboring pixels
in the left-hand previously coded neighboring MB of the 4x4
luma blocks 0, 2, 8, and 10 in the current MB. Global Cb
vertical register file and global Cr vertical register file are
used for the chroma (Cb and Cr) components of the MBs.

Global luma horizontal register file is used to store the
neighboring pixels m, n, o, and p in the luma blocks 10, 11,
14, and 15 of the previously coded MBs in the previously
coded MB row of the frame. The proposed hardware uses
this data to determine the neighboring pixels in the upper
previously coded neighboring MB of the 4x4 luma blocks 0,
1, 4, and 5 in the current MB. Global Cb horizontal register
file and global Cr horizontal register file are used for the
chroma (Cb and Cr) components of the MBs.

Instead of using one large external SRAM, we have used
8 internal register files to store the neighboring reconstructed
pixels in order to reduce power consumption. The power
consumption is reduced by accessing a small register file for
storing and reading a reconstructed pixel instead of accessing
a large external SRAM. In addition, we have disabled the
register files when they are not accessed in order to reduce
power consumption.

3.1 Proposed Hardware for 4x4 Luma Prediction Modes
After a careful analysis of the equations used in 4x4 luma

prediction modes, it is observed that there are common parts
in the equations and some of the equations are identical. The
intra prediction equations are organized for exploiting these
observations to reduce both the number of memory accesses
and computation time required for generating the predicted
pixels. The organized prediction equations for Diagonal
Down-Left, Diagonal Down-Right, Vertical Right and
Vertical Left 4x4 luma prediction modes are shown in Fig. 9.
As it can be seen from the figure, (A + B), (B + C), (C + D),
(D + E), (E + F), (F + G), (G + H), (J + K), (I + J), (M + I)
and (M + A) are common in two or more equations, and
some of the prediction equations (e.g. [(A + B) + (B + C) +
2] >> 2) are identical.

The proposed hardware first calculates the results of the
common parts in all the 4x4 luma prediction modes and
stores them in temporary registers. It, then, calculates the
results of the prediction equations using the values stored in
these temporary registers. If both the left and top neighboring
blocks of a 4x4 luma block are available, 12 common parts
are calculated in the preprocessing step and this takes 8 clock
cycles. The neighboring buffers are only accessed during this
preprocessing. Therefore, they are disabled after the
preprocessing for reducing power consumption.

The proposed hardware calculates the results of the
identical prediction equations only once and stores them in

temporary registers. It, then, determines the results of
identical prediction equations by reading the values stored in
these temporary registers, instead of calculating the same
equations again.

The proposed datapath for generating predicted pixels for
a 4x4 luma block using all 4x4 luma prediction modes is
shown in Fig. 10. Level0 (L0) registers are used to store the
results of the common parts in the equations of all the 4x4
luma prediction modes. Level1 (L1) registers are used to
store the results of the identical prediction equations used in
all the 4x4 luma prediction modes. If both the left and top
neighboring blocks of a 4x4 luma block are available, it
takes 165 clock cycles to generate the predicted pixels for
that 4x4 block using available 4x4 luma prediction modes.

pred[0, 0] = [(A + B) + (B + C) + 2] >> 2
pred[0, 1] = pred[1, 0] = [(C + D) + (B + C) + 2] >> 2
 pred[0, 2] = pred[1, 1] = pred[2, 0] = [(C + D) + (D + E) + 2] >> 2
 pred[0, 3] = pred[1, 2] = pred[2, 1] = [(E + F) + (D + E) + 2] >> 2
 pred[3, 0] = [(E + F) + (D + E) + 2] >> 2
 pred[1, 3] = pred[2, 2] = pred[3, 1] = [(E + F) + (F + G) + 2] >> 2
 pred[2, 3] = pred[3, 2] = [(G + H) + (F + G) + 2] >> 2
pred[3, 3] = [(G + H) + (H +H) + 2] >> 2

(a) 4x4 Diagonal Down-Left Prediction Mode

pred[0, 2] = pred[1, 3] = [(A + B) + (B + C) + 2] >> 2
pred[0, 3] = [(C + D) + (B + C) + 2] >> 2
pred[3, 0] = [(J + K) + (K+ L) + 2] >> 2
pred[2, 0] = pred[3, 1] = [(J + K) + (I + J) + 2] >> 2
pred[1, 0] = pred[2, 1] = pred[3, 2] = [(M + I) + (I + J) + 2] >> 2
pred[0, 0] = pred[1, 1] = pred[2, 2] =
 pred[3, 3] = [(M + I) + (M + A) + 2] >> 2
pred[0, 1] = pred[1, 2] = pred[2, 3] = [(A + B) + (M + A) + 2] >> 2

(b) 4x4 Diagonal Down-Right Prediction Mode

pred[3, 0] = [(I + J) + (J + K) + 2] >> 2
pred[2, 0] = [(I + J) + (M + I) + 2] >> 2
pred[1, 0] = pred[3, 1] = [(M + A) + (M + I) + 2] >> 2
pred[1, 1] = pred[3, 2] = [(M + A) + (A + B) + 2] >> 2
pred[1, 2] = pred[3, 3] = [(B + C) + (A + B) + 2] >> 2
pred[1, 3] = [(B + C) + (C + D) + 2] >> 2
pred[0, 1] = pred[2, 1] = [(A + B) + 1] >> 1
pred[0, 3] = [(C + D) + 1] >> 1
pred[0, 0] = pred[2, 1] = [(M + A) + 1] >> 1
pred[0, 2] = pred[2, 3] = [(B + C) + 1] >> 1

(c) 4x4 Vertical Right Prediction Mode

pred[1, 0] = [(A + B) + (B + C) + 2] >> 2
pred[1, 1] = pred[3, 0] = [(C + D) + (B + C) + 2] >> 2
pred[1, 2] = pred[3, 1] = [(C + D) + (D + E) + 2] >> 2
pred[1, 3] = pred[3, 2] = [(E + F) + (D + E) + 2] >> 2
pred[3, 3] = [(E + F) + (F + G) + 2] >> 2
pred[0, 0] = [(A + B) + 1] >> 1
pred[0, 1] = pred[2, 0] = [(B + C) + 1] >> 1
pred[0, 2] = pred[2, 1] = [(C + D) + 1] >> 1
pred[0, 3] = pred[2, 2] = [(D + E) + 1] >> 1
pred[2, 3] = [(E + F) + 1] >> 1

(d) 4x4 Vertical Left Prediction Mode

Figure 9. Organized Prediction Equations for 4x4 Luma
Prediction Modes

Figure 10. Datapath for 4x4 Luma Prediction Modes

Since the order of the equations used in a 4x4 luma
prediction mode is not important for functional correctness,
the equations are ordered to keep the inputs of the adders the
same for as many consecutive clock cycles as possible. This
avoids unnecessary switching activity and reduces the power
consumption.

3.2 Proposed Hardware for 16x16 Luma Prediction
Modes

After a careful analysis of the equations used in 16x16
luma prediction modes, it is observed that Vertical,
Horizontal and DC mode equations can directly be
implemented using adders and shifters, however the
equations used in Plane mode can be organized to avoid
using a multiplier and to reduce computation time required
for generating the predicted pixels. The organized Plane
mode prediction equations for block 0 in a MB are shown in
Fig. 11. A similar organization of the Plane mode prediction
equations is given in [4, 5]. However, our hardware design is
different than their design and it is a more cost-effective
solution for portable applications.

The proposed hardware first calculates the common parts
C0, (C0 + b), (C0 + 2b), and (C0 + 3b) and stores them in
temporary registers. It, then, generates the predicted pixels in
the first row by using the values stored in these temporary
registers. The proposed hardware, then, adds c to the values
stored in the temporary registers and stores the resulting
values in the same temporary registers. It, then, generates the
predicted pixels in the second row by using the values stored
in these temporary registers. The proposed hardware repeats
this process until all the predicted pixels for the current MB
are generated.

The proposed datapath for generating predicted pixels for
a 16x16 luma block using all 16x16 luma prediction modes
is shown in Fig. 12. REG0 - REG7 registers are used to store
the results of the common parts in the equations. The
neighboring reconstructed pixels stored in the neighboring
buffers are given as inputs to the datapath. If both the left
and top neighboring MBs of a 16x16 luma block are
available, it takes 1127 clock cycles to generate the predicted

a = (p[-1,15] + p[15,-1]) << 4
b = [(H << 2) + (H + 32)] >> 6
c = [(V << 2) + (V + 32)] >> 6

C0 = [a – (7 * b) - (7 * c) + 16]

pred[0, 0] = Clip1 [(C0) >> 5]
pred[0, 1] = Clip1 [(C0 + b) >> 5]
pred[0, 2] = Clip1 [(C0 + 2b) >> 5]
pred[0, 3] = Clip1 [(C0 + 3b) >> 5]

pred[1, 0] = Clip1 [(C0 + c) >> 5]
pred[1, 1] = Clip1 [((C0 + c) + b) >> 5]
pred[1, 2] = Clip1 [((C0 + c) + 2b) >> 5]
pred[1, 3] = Clip1 [((C0 + c) + 3b) >> 5]

pred[2, 0] = Clip1 [(C0 + 2c) >> 5]
pred[2, 1] = Clip1 [((C0 + 2c) + b) >> 5]
pred[2, 2] = Clip1 [((C0 + 2c) + 2b) >> 5]
pred[2, 3] = Clip1 [((C0 + 2c) + 3b) >> 5]

pred[3, 0] = Clip1 [(C0 + 3c) >> 5]
pred[3, 1] = Clip1 [((C0 + 3c) + b) >> 5]
pred[3, 2] = Clip1 [((C0 + 3c) + 2b) >> 5]
pred[3, 3] = Clip1 [((C0 + 3c) + 3b) >> 5]

Figure 11. Organized Prediction Equations for 16x16 Luma
Plane Mode

Figure 12. Datapath for 16x16 Luma Prediction Modes

pixels for that 16x16 luma block using available 16x16 luma
prediction modes.

Plane mode is the most computationally demanding
16x16 luma prediction mode. Therefore, using two parallel
adders and shifters in the proposed datapath is especially
important for Plane mode. The predicted pixels for a 16x16
luma block are generated in 340 clock cycles using Plane
mode.

3.3 Proposed Hardware for 8x8 Chroma Prediction
Modes

 Since the 8x8 chroma prediction modes are similar to
16x16 luma prediction modes, the proposed hardware for
8x8 chroma prediction modes is also similar to the proposed
hardware for 16x16 luma prediction modes. If both the left
and top neighboring MBs of an 8x8 chroma block are
available, it takes 302 clock cycles to generate the predicted

pixels for that 8x8 chroma block using available 8x8 chroma
prediction modes. Plane mode is also the most
computationally demanding 8x8 chroma prediction mode.
The predicted pixels for an 8x8 chroma block are generated
in 95 clock cycles using Plane mode.

4. Implementation Results
The proposed architecture is implemented in Verilog

HDL. The implementation is verified with RTL simulations
using Mentor Graphics ModelSim SE. The Verilog RTL is
then synthesized to a 2V8000ff1152 Xilinx Virtex II FPGA
with speed grade 5 using Mentor Graphics Leonardo
Spectrum. The resulting netlist is placed and routed to the
same FPGA at 90 MHz under worst-case PVT conditions
using Xilinx ISE Series 7.1i.

The Verilog RTL for proposed architecture is integrated
into an H.264 intra frame coder hardware [6]. The H.264
intra frame coder hardware is integrated into the
2V8000ff1152 Xilinx Virtex II FPGA on the logic tile of the
ARM Versatile / PB926EJ-S development board shown in
Fig. 13 as a master of the AHB S bus and it is verified to
work correctly on this development board.

As shown in Table 3, the number of clock cycles it takes
to perform intra prediction for a MB using 4x4 luma
prediction modes depends on the availability of the
neighboring MBs. In a VGA frame (40x30 = 1200 MBs),
there is only 1 MB (MB0) which has no available
neighboring MBs, there are 39 MBs (the first row of MBs
except MB0) which have only left neighboring MBs
available, there are 29 MBs (the first column of MBs except
MB0) which have only top neighboring MBs available, and
there are 1131 MBs (remaining MBs) which have both left
and top neighboring MBs available.

In addition to the number clock cycles given in Table 3,
16 clock cycles are required for loading the neighboring
reconstructed pixels to the corresponding neighboring
buffers for each 4x4 luma block. Therefore, generating the
predicted pixels for a VGA frame using 4x4 luma prediction
modes takes 1910 + (1980 x 39) + (1797 x 29) + (2640 x
1131) + (16x16x1200) = 3424283 clock cycles.

Since, in the proposed hardware, there are two parts
operating in parallel and the lower part which is used for
generating the predicted pixels for a MB using 4x4 luma
prediction modes is the bottleneck, the FPGA
implementation can process a VGA frame in 37.6 msec
(3424283 clock cycles per VGA frame x 11 ns clock cycle =
37.6 msec). Therefore, it can process 1000/37.6 = 27 VGA
frames per second.

The FPGA implementation including input, output and
internal RAMs and register files uses the following FPGA
resources; 2002 Function Generators, 1001 CLB Slices, and
518 DFFs, i.e. %2.15 of Function Generators, %2.15 of CLB
Slices, and %0.54 of DFFs.

Figure 13. Arm Versatile / PB926EJ-S Development Board

Table 3. Number of Clock Cycles for Performing Intra
Prediction for a MB Using 4x4 Luma Prediction Modes

Availability of Neighboring MBs Clock Cycles/MB
None available 1910
Left available, Top not available 1980
Top available, Left not available 1797
Both available 2640

5. Conclusion
In this paper, we presented an efficient hardware

architecture for real-time implementation of intra prediction
algorithm used in H.264 / MPEG4 Part 10 video coding
standard. The hardware design is based on a novel
organization of the intra prediction equations. The proposed
architecture is implemented in Verilog HDL. The Verilog
RTL code is verified to work at 90 MHz in a Xilinx Virtex II
FPGA. The FPGA implementation can process 27 VGA
frames per second.

6. References

[1] T. Wiegand, G. J. Sullivan, G. Bjøntegaard, and A. Luthra,
“Overview of the H.264/AVC Video Coding Standard”, IEEE
Trans. on Circuits and Systems for Video Technology, vol.
13, no. 7, pp. 560–576, July 2003.

[2] I. G. Richardson, H.264 and MPEG-4 Video Compression,
Wiley, 2003.

[3] Joint Video Team (JVT) of ITU-T VCEG and ISO/IEC
MPEG, Draft ITU-T Recommendation and Final Draft
International Standard of Joint Video Specification, ITU-T
Rec. H.264 and ISO/IEC 14496-10 AVC, May 2003.

[4] Y. Huang, B. Hsieh, T. Chen, and L. Chen, “Hardware
Architecture Design for H.264/AVC Intra Frame Coder”,
Proc. of IEEE ISCAS, pp. 269-272, April 2004.

[5] Y. Huang, B. Hsieh, T. Chen, and L. Chen, “Analysis, Fast
Algorithm, and VLSI Architecture Design for H.264/AVC
Intra Frame Coder”, IEEE Transactions on Circuits and
Systems for Video Technology, Vol. 15, No. 3, March 2005.

[6] Esra Sahin, “An Efficient H.264 Intra Frame Coder Hardware
Design”, MS Thesis, Sabanci University, August 2006.

	Main
	DATE07
	Front Matter
	Table of Contents
	Author Index

