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Abstract

In this paper, a two-step methodology is introduced to

analyse the mapping of Cyclostationary Feature Detection

(CFD) onto a multi-core processing platform. In the first

step, the tasks to be executed by each core are determined

in a structured way using techniques known from the design

of array processors. In the second step, the implementa-

tion of tasks on a processing core is analysed. Using this

methodology, it is shown that calculating a 127 × 127 Dis-

crete Spectral Correlation Function requires approximately

140 µs on a tiled System on Chip (SoC) with 4 Montium

cores.

1 Introduction

Cognitive Radio ([6]) is an emerging area of research

where the goal is to find methods to exploit under-utilized

electro-magnetic spectrum. Within our AAF project ([1]),

Cognitive Radio is proposed for establishing communica-

tion infrastructure in emergency situations. This results in

two tracks of research conducted in parallel: research on a

platform for Cognitive Radio and research on the required

cognitive functionality. An essential part within Cognitive

Radio is spectrum sensing ([6]). For spectrum sensing,

several alternatives have been presented in [7]. The most

promising but computationally intensive alternative is Cy-

clostationary Feature Detection (CFD). CFD allows to ex-

ploit the periodicity that especially communication signals

exhibit ([2]). This is an important feature for detecting li-

censed users. In [8], a real time detector for cyclostationary

RFI is described. However, the periodicity of the signal to

be detected is known, which is generally not the case in

Cognitive Radio. No research on the realisation of CFD in

the context of Cognitive Radio is known to the authors. In

[5], the need for this research is acknowledged and a testbed

is proposed, however, without a detailed analysis of map-

ping CFD onto this testbed.

The digital signal processing requirements of Cognitive

Radio heavily depend on the environmental conditions dur-

ing operation. For that reason, we use the Software Ra-

dio concept to guide the research on the platform. To pro-

vide both flexibility and power efficiency, we propose to use

coarse grain reconfigurable processing elements: the Digi-

tal Reconfigurable Baseband Processing Fabric (DRBPF).

In this paper, we will elaborate on the mapping of the spec-

trum sensing part of the Cognitive Radio onto this platform.

We introduce a mapping methodology that consists of two

steps. In the first step (section 3) we analyse the spectrum

sensing part using techniques generally applied to design

array processors ([4]). The transformations applied in this

step aim at the implementation of spectrum sensing onto an

existing reconfigurable platform. For each processing core

of the reconfigurable platform, the tasks to be executed and

the interconnection structure between cores are determined.

In the second step (section 4), the mapping of the tasks onto

a processing core is analysed and by means of simulation,

an indication of performance is given.

2 Cyclostationary Feature Detection

Cyclostationary Feature Detection (CFD) consists of a

combination of an energy detector and a single correlator

block. Because we aim at the implementation of CFD in the

digital domain, we will give the time discrete expressions

for CFD (DCFD). We first define the sampled signal.

xk = x(k ·
1

fs

) (1)

where fs indicates the sampling frequency. The discrete

Fourier Transform is applied to K samples.

Xn,v =

K−1
∑

k=0

xn+k · e
j2π n+k

fs
v

(2)
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Figure 1. Structure for single n

Finally, the Discrete Spectral Correlation Function (DSCF)

is determined.

S a
f =

1

N

N−1
∑

n=0

Xn, f+a · X
∗
n, f−a (3)

where ∗ indicates the complex conjugate. In case N = 2n,

where n = 1, 2..., the Discrete Fourier Transform becomes

a Fast Fourier Transform (FFT) and the number of complex

multiplications that are involved becomes 1
2
N (2log N). De-

termining the DSCF involves 1
4
N2 complex multiplications.

As an example, calculating the DSCF for a 256 point spec-

trum involves 16 times as many complex multiplications

than the determination of the spectrum itself. For the analy-

sis of the platform requirements, we will therefore concen-

trate on calculating the DSCF.

Determining the DSCF involves a summation over n (ex-

pression 3). For each n, a similar type of computation has

to be executed which is illustrated in Figure 1. Figure 1

illustrates the structure of the calculations for a single n,

a = −3..3 and for f = i, i + 1, i + 2, i + 3. For other val-

ues of a and f , the structure is similar and for that reason

in the remainder of this paper we will use examples where

f = 0, 1, 2, 3 and a = −3..3 .

The results of the FFT (Xn,v, expression 2) and their com-

plex conjugates (X∗n,v) are at the top of Figure 1. The solid

dots represent the multiplications within expression 3. A

solid line connects a spectral value Xn,v to different multi-

plications, a dotted line connects a conjugated value X∗n,v to

different multiplications. The interconnection pattern con-

nects every multiplication to a ’normal’ value and to a con-

jugated value. Within a row, all S a
f

values are determined

for a specific frequency f and within a column, all S a
f

val-

n = 0 n = 1 n = 2 n = N − 1

f

n

a

S −3
2

Figure 2. Representation of expression 3

ues are determined for a specific frequency offset a. The

summation over n is illustrated in Figure 2. For simplicity,

we omitted the reshuffling of the conjugated values. For the

specific value S −3
2

, it is illustrated that it is the result of the

summation over n of corresponding multiplications. For all

values S a
f
, a similar summation is executed.

3 Mapping onto a System-on-Chip consisting

of reconfigurable tiles (Step 1)

Figure 2 basically presents a three-dimensional Depen-

dence Graph (DG) of DCFD ([4]). Each point of the

DG is identified by a vector v = ( f , a, n)T where T in-

dicates the transpose operation. Each edge from an ‘n-1’

plane to the ‘n’ plane is identified by the 2-tuple (v,∆v) =

(( f , a, n)T
, (0, 0, 1)T). Traditionally, the DG is used to sys-

tematically deduct a multiprocessor architecture. We will

follow the traditional approach but the main goal is first to

determine the tasks to be executed by the processing cores

and second to analyze the interconnection patterns between

the processing cores. In the final application we assume that

we will use Montium coarse grain reconfigurable proces-

sors ([3]) as processing cores. They offer flexibility against

acceptable power consumption. Each dot in the DG could

represent a (Montium) processor, resulting in an architec-

ture with many processors.

3.1 Tasks to be executed by the processing cores

To reduce the required number of processors, multi-

ple tasks can be mapped onto one processor by means of

a processor assignment matrix P1 and a scheduling vec-

tor s1. The processor assignment matrix P1 determines

on which ’processor’ vnew an operation vold is mapped:

vnew = P1
T vold. It also determines the displacement parts

of the edges: ∆vnew = P1
T
∆vold. The scheduling vector de-
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after mapping in the n­dimension

termines the time at which an operation is executed after

mapping: t = s1
T vold.

For our application there are numerous possibilities for

P1 and s1 but we choose a straightforward option:
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(4)

The result is that all operations with identical f and a are

executed by the same processor and that the operations in

plane n − 1 are executed before the operations in plane n.

The result after mapping is basically a DG equivalent to

Figure 1 where each node represents, instead of a complex

multiplication, a combination of a complex multiplication

and integration (register + adder) as depicted in Figure 3.

To further reduce the number of processors, starting with

the two dimensional DG in Figure 1, we apply the following

processor assignment matrix (which is a vector in the two-

dimensional case) and scheduling vector:

P2 =

(

0

1

)

and s2 =

(

1

0

)

(5)

The result of the processor assignment is a processor array

where each processor calculates results for all frequencies

f where the results for f = 0 are calculated at t = 0, etc.

Because of this time multiplexing, results of the integration

operation have to be stored. The storage location depends

on the frequency f (which equals time t). This is depicted

in Figure 4.

3.2 Interconnection patterns

Given the processor assignment, the interconnection pat-

tern between the processing elements can be determined.

We start by analysing Figure 1 (Note that without limiting

the applicability of our approach, we have set i = 0). The

dotted line originating at the left-most processor for f = 0

(which is processed at t = 0) indicates that X∗
n,3

is used by

memory

f (= t)

X∗
n, f−a

Xn, f+a

Figure 4. Stucture of a processing element

after mapping in the n­ and f ­dimensions
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Figure 5. ’Space’­’time delay’ diagram

the leftmost processor at t = 0, used by the adjacent proces-

sor at t = 1, and so on. Because of the processor assign-

ment, all dotted lines are mapped on top of each other and

therefore share their communication resources. A similar

reasoning is valid for the solid lines: they are mapped on

top of each other, sharing a second communication struc-

ture. Based on this observation, we split the transformation

of expression 5.

First, we remove the dependency of absolute time for

each set of parallel lines in the DG by means of matrices

P2a1
and P2a2

where

P2a1
=

(

0 0

1 1

)

and P2a2
=

(

0 0

−1 1

)

(6)

For the dotted lines we use matrix P2a1
to remove absolute

time dependence. The result is presented in Figure 5.

For the solid lines we use matrix P2a2
which results in a

Figure similar to Figure 5 but with a flow from top-right to

bottom-left.

Second, we do a (trivial) mapping onto a processor array

by means of projection matrix P2b where

P2b =

(

0

1

)

(7)

Note that the two-stage mapping for determing the intercon-

nection pattern equals the single stage mapping for mapping
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Figure 7. Register based architecture

tasks onto processors by means of P2 (expression 5) because

P2b
T P2a1

T = P2
T and P2b

T P2a2

T = P2
T .

For determining the interconnection pattern, we return

to the mapping by matrices P2a1
and P2a2

. Figure 5 gives

the ’space’-’time delay’ requirements for the communica-

tion path of the conjugated values after mapping by means

of P2a1
. There are many options for realizing these commu-

nication paths. Below we present a register based solution.

3.3 Register based solution

To obtain the register based solution, we start with the

assumption that the propagation delays of data traversing

between processors is negligible compared to one period

of the clock. Note that this clock also determines the rate

at which the multiplications are executed. Consequently,

we can only create delays through clocked registers. This

means that, to satisfy the requirements in Figure 5, we can

only travel in horizontal and vertical directions where we

need registers to traverse in the vertical direction. In Figure

6, a communication structure with minimal register usage is

given for the conjugated values.

For the non-conjugated values, a similar structure can be

drawn from top-right to bottom-left. After the final assign-

ment by P2b and combining the two communication struc-

tures, the result is the architecture presented in Figure 7.

The result is a systolic array where the benefits are: high

memory

a(q+1)T−1a(q+1)T−1 aqTaqT

aqT

Xn, f+ai
X∗

n, f−ai

f (= t)

T

F

Figure 8. Processing core q

performance and expandability.

The number of processors (complex multipliers and inte-

grators), however, can still be relatively large. If, for exam-

ple, 256-point specta are processed, both f and a can range

from −63 to +63. Consequently, 127 complex multipliers

are needed. When realizing CFD on a platform having less

than 127 processors, an additional mapping step is required.

Again, there are many options of which we will elaborate

one.

Suppose the initial array of processors ranges from

−(M − 1) to M − 1. The total number of initial processors

equals P = 2M+1. The final array consists of Q processors.

For a balanced distribution of the load, each final processor

has to be able to process at least T tasks from the initial

array where

T =

⌈

P

Q

⌉

(8)

and ⌈⌉ indicates the ceil operation. A task p out of the initial

array is mapped onto processor q of the final array by means

of the following expression.

q =

⌊

p

T

⌋

(9)

where ⌊⌋ indicates the floor operation. So, the tasks of

the intial array mapped onto processor q are tasks qT to

(q + 1)T − 1. A resulting processing core after mapping

is represented in Figure 8. Both inputs of the multiplier

are connected to a switch. These switches are synchronized

and select inputs X and conjugated inputs X∗ out of the shift

registers as indicated in Figure 9, where T = 4. The inputs

to the switches are stable until T tasks are executed. After

that, the elements within the shift registers are shifted one

position.

The output of the multiplier is connected to one of the

inputs of the adder. The second input of the adder is con-

nected to memory. The memory location selection depends
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Figure 9. Architecture with multiple tasks on

a single processing core

on the frequency f and the tasknumber to be executed. Note

that, during the processing of the T tasks in which the in-

puts to the switch remain constant, the frequency f does

not change either. Furthermore, if the total number of fre-

quency points to be processed equals F, the overall memory

requirement equals T · F complex values.

4 Mapping onto the AAF DRBPF (Step 2)

Within the AAF project, we plan to map Cyclostationary

Feature Detection onto a tiled SoC which consists of four

word level reconfigurable processing cores called Montium

([3]). A global overview of a Montium core is given in Fig-

ure 10.

M01 M02 M03 M04 M05 M06 M07 M08 M09 M10

Interconnection Network

 Control / Configuration / Communication

RF01 RF02 RF03 RF04 RF05

Complex ALU

Figure 10. Overview of a Montium core

A Montium core consists of a memory bank of 10 sep-

arate memories (M01 to M10) which can be addressed in

parallel. The register files of the core (RF01 to RF05) are

connected to the memories via an interconnection network.

The ALU is tailored towards signal processing applications.

It can, for example, execute one complex multiplication per

clockcycle. The tasks to be executed by the ALU and the

settings of the interconnection network are determined by

the control and configuration block which is also used for

communication purposes. The processing core as illustrated

in Figure 8, has to be mapped onto the Montium core. The

mapping is illustrated in Figure 11. The memories for the

integration of values are mapped onto Montium memories

memory

a(q+1)T−1a(q+1)T−1

ALU

M01-M08

M09-M10 aqTaqT

aqT

Xn, f+ai
X∗

n, f−ai

f (= t)

Figure 11. CFD onto a Montium core

M01 to M08. The multiplication and addition are executed

by the ALU. The Montium memories M09 and M10 can

be used to incorporate those registers of the communication

network of which the outputs are connected to the same pro-

cessing core. The settings of the interconnection network

and the control and configuration of the ALU are deter-

mined by the control / configuration / communication block

and are not illustrated in Figure 11.

Because the memories M09 and M10 are used to realize

the registers of the communication structure, data needs to

be exchanged between Montium cores. The rate at which

data is exchanged is a factor T times lower than the rate at

which the basic computation (complex multiplication and

integration) is executed. For that reason we assume that the

inter-core communication will not significantly influence

system performance and the following quantitative analy-

sis will therefore concentrate on the performance of one

processing core. Because all processing cores have similar

tasks, the results of the performance analysis for one core

can be used to determine the performance of the complete

multi-core platform.

4.1 Simulation results

The quantitative analysis of mapping CFD onto multiple

Montium cores is based on the simulation of an applica-

tion where 256-point spectra are analysed. Both f and a

range from −63 to +63 which implies that P = 127 and

F = 127. The platform used within the AAF project con-

sists of 4 Montium cores (Q = 4). The number of tasks to

be executed by one Montium core is therefore smaller than

or equal to 32 (T = 32). The number of memory locations

needed for storing the results, when accumulating over n,

equals T · F = 32 · 127 < 4K complex values or less than

8K real values. The total memory capacity of the Montium

memories M01 to M08 equals 8K words of 16 bits. So, for

dynamic ranges smaller than 96 dB, the Montium memo-

ries are sufficiently large. The communication shift registers
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Task #cycles

multiply accumulate 12192

read data 381

FFT 1040

reshuffling 256

initialisation 127

total 13996

Table 1. Number of processor cycles

are mapped onto memories M09 and M10. Each memory

contains 32 complex values. From each memory a value is

read every clockcycle. The read-address is generated by an

Address Generation Unit (AGU) which accompanies each

memory ([3]).

We simulated the tasks for a single Montium tile with

the Montium simulator. Table 1 gives an overview of the

number of processor cycles required for the different tasks.

The total number of complex multiply accumulate op-

erations equals T · F = 4064. Simulations show that a

multiply-accumulate requires three clockcycles, so the re-

quired number of clock cycles equals 12192. For each

32 multiply accumulate operations, 3 additional clockcy-

cles are needed to read data which leads to 381 additional

clockcyles. The DSCF is based on a 256-point spectrum

which can be calculated by one Montium in 1040 clockcy-

cles ([3]). The reshuffling of the conjugated values (Figure

1) is done in 256 clockcycles and initially loading the Mon-

tium with data requires 127 clockcycles. The total number

of clockcycles for 1 integration step in the calculation of a

DSCF then equals 13996. The maximum clockspeed of a

Montium core equals 100 MHz and therefore the time re-

quired for the calculation of one integration step in the cal-

culation of the DSCF equals 139.96 µs.

5 Evaluation of the results

As we stated in the introduction, no comparable studies

are known to us. We will therefore limit ourselves to an

overview of the most important results.

To analyse 256 samples takes approximately 140 µs. If

all samples of a stream are analysed in blocks of 256 sam-

ples, an analysed bandwidth of approximately 915 kHz is

realised. A single Montium occupies approximately 2 mm2

using the Philips 0.13 µm CMOS12 process technology. A

platform consisting of 4 Montium processors will occupy

approximately 8 mm2. Typical power consumption of a

Montium processor is estimated to be 500 µW/MHz. When

running on 100 MHz, this results for 4 Montium tiles in

200 mW. In this evaluation we already used the scalability

property of the application, the mapping and the platform.

The analysed bandwidth, chip area and power consumption

scale linearly with the number of Montium processors. This

property can be used to estimate performance of other plat-

form configurations.

6 Conclusion

In this paper, Cyclostationary Feature Detection (CFD)

is mapped onto a platform consisting of multiple processing

cores. A two-step methodology is introduced where in the

first step, the functionality is mapped onto the multi-core

platform. This results in a set of tasks for each core. In the

second step the realisation of these tasks on the processing

core is analysed. The advantage of this approach is that the

mapping of step 1 is done in a structured way where the

communication structure is separated from the processing

tasks. Furthermore, the set of tasks for each processing core

is almost identical which eases the mapping process in step

2.

For the CFD application, the two-step methodology is

elaborated resulting in estimates of performance. A pro-

cessing platform, consisting of 4 Montium cores is used.

The result of the analysis is that on this platform, a spec-

trum (256 points) and a DSCF (127 × 127 points) can be

determined within approximately 140 µs.
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