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Abstract - This paper introduces an innovative design 
which implements a high-performance JPEG-LS encoder. The 
encoding process follows the principles of the JPEG-LS 
lossless mode. The proposed implementation consists of an 
efficient pipelined JPEG-LS encoder, which operates at a 
significantly higher encoding rate than any other JPEG-LS 
hardware or software implementation while keeping area 
small. 
 

Index Terms - Image processing, lossless compression, JPEG-
LS, LOCO-I, VLSI implementation. 
 

I. INTRODUCTION 
There are two main categories of image compression 

algorithms, the lossy and the lossless compression algorithms. 
The first category, which is more widely used, defines 
encoding processes that omit parts of the data to be encoded, 
exploiting the redundancy of the visual information. Hence the 
lossy algorithms present much higher ratios of compression 
than the lossless ones, which, as implied by their name, keep 
the data to be encoded intact. However the latter group of 
algorithms allows the complete reconstruction of the encoded 
image without loss of information, a property which lossy 
algorithms lack. Baseline JPEG is a very commonly used 
lossy compression algorithm and JPEG-LS, which is the 
targeted algorithm of this paper, is a typical lossless algorithm. 
In general, lossless algorithms are used in many specialized 
applications that emphasize more on the attainment of high 
fidelity and less on the compression ratio. These applications 
need to process images that may be satellite captured, medical 
or biometric. Furthermore, professional photography is a field 
in which lossless algorithms are able to thrive successfully.  

The aforementioned group of applications presents a 
fundamental requirement. Large volumes of image data have 
to be compressed and transferred in real time. The latter 
disallows the use of software implementations, while in the 
same time renders the need for the development of hardware-
implemented solutions imperative, as their advantages in 
terms of throughput, especially when considering an ASIC 
implementation, are widely known. Furthermore their 
operation is not impeded by other processes, something very 
common in the field of software implementations, which have 
to share their CPU time with other applications. 

The JPEG-LS is an established standard for lossless and 

near-lossless compression of grayscale and color continuous-
tone images [1]. It provides better compression ratios than the 
lossless JPEG standard, while maintaining a fairly low level of 
complexity. In the heart of the JPEG-LS lies the algorithm 
LOCO-I (Low Complexity Lossless Compression for Images) 
[2] and [3], a product of the collaboration of M. J. Weinberger 
and G. Seroussi (Hewlett Packard laboratories). The main 
feature of LOCO-I is that it combines the effective 
compression models proposed by context modeling with a low 
complexity level. This is achieved by the use of a 
combinational method that matches a simple coding unit to its 
modeling unit, while avoiding composite operations. Thus a 
low complexity instance of the universal context modeling is 
obtained. These attributes allow one of the highest 
compression ratios when compared to other lossless 
compression algorithms. Needless to say that most of those 
algorithms are also significantly more complex. However the 
potential of the JPEG-LS while in near-lossless mode is 
limited, and its performance in aspects of compression is not 
as good as that of other lossy compression algorithms (lossy 
JPEG). This does not affect the range of applicability of 
JPEG-LS in the fields of satellite or medical image 
compression, which require the reconstruction of the original 
information without alterations after the decoding process. 

    During the development process it was decided to 
propose a hardware implementation of JPEG-LS which 
implements the highly effective LOCO-I lossless compression 
mode and not the near lossless one. That decision presented 
two more advantages. First of all it reduces further the 
complexity of the algorithm, which leads to a smaller in terms 
of area and less energy-consuming integrated circuit. Apart 
from that by removing the elements of the LOCO-I algorithm 
that are used only in the near-lossless mode, the algorithm 
itself is simplified and its stages can be lessened. This can be 
exploited by applying various design techniques, leading to 
the reduction of the overall maximum delay that is necessary 
for the execution of the operations of the algorithm. 

The designing process resulted in the ASIC implementation 
of an encoding unit which increases the throughput about five 
times when compared to other proposed ASIC 
implementations, while maintaining low area requirements in 
such a way that renders it suitable for use in portable 
communication devices. The main achievement of this work is 
the introduction of a real-time, small-sized, high-performance 
JPEG-LS lossless encoder, which maintains a wide range of 
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applicability. 
In the following sections of this paper we will delve into 

the operations of the algorithm and the architecture of the 
proposed hardware solution. The second section contains an 
overview of the JPEG-LS algorithm and a presentation of its 
most important functions. Section III analyzes the proposed 
JPEG-LS implementation in depth, providing details regarding 
its architecture, logic and any modifications made in order to 
decrease its critical path, as well as the prospective features of 
the integrated circuit. In Section IV the proposed JPEG-LS is 
implemented using ASIC technology. Its performance is 
compared to that of other implementations. Finally, in Section 
V the paper concludes. 

II. THE JPEG-LS ALGORITHM  
The JPEG-LS algorithm consists of two main units, a 

context modeler and an encoder. The context modeler uses the 
values of the adjacent to the current (the pixel to encode) 
pixels, correlates it to a specific context and predicts the 
current pixel value. The statistics of the selected context, 
which are based on past data, are used for the calculation of 
the prediction error and the coding variables. The statistic 
parameters are updated with the new information derived from 
the current pixel, and the coding unit encodes the prediction 
error using a Golomb-Rice code.  

LOCO-I also uses a run mode, in order to compress 
constant regions. Run mode consists of a run scanner, which, 
when operation is set to run mode, checks if the current pixel 
is equal to the previous one; if so, run mode continues, else the 
modeler enters run interruption mode. Run coder either 
encodes the run length or the pixel that caused the run 
interruption. A closer look at the operations which comprise 
JPEG-LS follows. 

A. Context Modeler 
When in normal mode, the context modeler uses the values 

of the neighboring to the current pixels, in order to compute  
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Fig. 1.  Causal template. 

 
the local gradients D1= Rd - Rb D2 = Rb - Rc and D3= Rc – 
Ra. The neighboring pixels Ra, Rb, Rc and Rd compose the 
“causal template” of the current pixel x, as illustrated in fig.1. 

The local gradients are quantized and the modeler, using 
these three quantized vectors, selects one of 365 available 
contexts for the current pixel. Four statistic parameters are 
kept for each context. These consist of the accumulator of the 
magnitudes of previous prediction errors Α[Q], the bias 
variable B[Q], which accumulates the errors’ values, the 
prediction error correction parameter C[Q] and the 

occurrences counter N[Q]. 
The modeler uses a median edge detector to predict the 

value of the current pixel Px: 
min( , ) if max( , )
max( , ) f min( , )

otherwise.

Ra Rb Rc Ra Rb
Px Ra Rb i Rc Ra Rb

Ra Rb Rc

         ,    ≥  
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 + −         ,  

 

This operation is followed by the computation of the 
prediction error, which is corrected using the bias cancellation 
variable C[Q], and clamped in the appropriate range for the 
coding unit.  

The final step before the encoding of the prediction error 
involves the calculation of the value of the Golomb variable k 
and the update of the current context statistic parameters. The 
derivation of k is performed using the parameters Α[Q] and 
N[Q]: 

      for (k=0; (Ν[Q]<< k)< Α[Q]; k++); 
The prediction error is mapped to a non-negative value, 

with the use of variable k and the parameters B[Q] and N[Q], 
as Golomb codes can only be applied on positive values. 

After the computation of Golomb variable k, the statistics 
are updated with the new prediction error. The bias correction 
parameter C[Q] is updated with at most one unit per iteration, 
according to the updated value of the bias variable B[Q]. This 
preserves the low complexity of LOCO-I. 

B. Golomb Code 
The operations of the context modeler are followed by the 

encoding of the mapped prediction error. This is performed 
using the optimal codes for a Two Sided Geometric 
Distribution (TSGD) [4], based on Golomb codes [3]. The 
encoding procedure is carried out as follows:  

• If the number formed by all but the k least significant bits 
of the mapped error value is less than LIMIT – qbpp – 1, this 
number is encoded in the output bit stream in unary 
representation. This means that the number is represented with 
a number of zeros equal to its value, which are followed by a 
single ‘1’. Then the k least significant bits are appended to the 
output bit stream unaltered.  

• If the aforementioned condition does not apply, a number 
of LIMIT – qbpp – 1 zeros and a single binary one is encoded 
in the output bit stream to represent a maximum length code. 
The entire mapped error value reduced by 1 is then encoded in 
the output bit stream unchanged, using qbpp bits. LIMIT and 
qbpp stand for the maximum number of bits of the Golomb 
code and the number of bits necessary to represent the mapped 
error value respectively. For 8-bit images, LIMIT is equal to 
32 and qbpp to 8. 

C. Overview 
The LOCO-I block diagram (based on [2]) is illustrated in 

fig. 2. It is not difficult to notice the existence of a data- 
dependency loop in the algorithm flow. Every time that the 
context modeler determines that two subsequent samples 
belong in the same context, the previously updated parameter 
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Fig. 2.  LOCO-I block diagram (based on [2]). 

C[Q] has to be used in order to perform the bias cancellation 
of the prediction error of the next sample. Thus the 
aforementioned loop includes the functions of the prediction 
error calculation and the statistic parameters’ update. The 
statistic parameters can not be updated before the execution 
of the computations necessary to calculate the value of 
Golomb variable k and the mapping of the prediction error, 
operations that require the current values of Α[Q], B[Q] and 
N[Q].  

III. PROPOSED  JPEG-LS IMPLEMENTATION 
The main design technique used in this implementation is 

pipelining. It leads to a significant reduction of the critical 
path and thus to a high maximum throughput. It has been 
shown that the execution of the LOCO-I involves several 
functions and processes, from the context determination to 
the encoding of the mapped error. If an attempt to implement 
the algorithm’s flow in a single stage was made, a critical 
path of unacceptable delay would be produced. This would 
limit extremely the maximum operating frequency. However, 
the distribution of the processes of the algorithm into more 
than one stage, via pipelining, minimizes the critical path and 
reduces the overall maximum delay significantly. 

A. JPEG-LS Data Path 
The most important aspect while breaking down the 

algorithm into stages is the placement of the pipeline 
registers. It is fundamental for delay-equivalent algorithmic 
phases to be produced. The placement of such registers after 
the context determination for the current sample, as well as 
before the encoding of the mapped error, is apparent as these 
processes are data-independent. The difficulty lies in 
separating the data-dependent processes such as the 
calculation of the prediction error and the update of the 
context statistic parameters. The calculation of the following 

prediction error needs the previously updated bias 
cancellation parameter C[Q] so pipelining can not be applied 
in this data-dependent loop. The critical path of the design is 
then observed in the data-loop circuit, including the 
prediction error calculation and the update of the statistic 
parameters. These functions are complex, resulting in a 
critical path whose delay would be higher than the desirable 
for a high-performance core. 

Nevertheless, the low-complexity scheme of LOCO-I 
indicates that the update of the bias cancellation parameter 
C[Q] is limited to at most one unit per iteration. Thus, the 
next value of the bias parameter for the same context will be 
the same, reduced, or incremented by one. Since there are 
only three possible values for the updated parameter C[Q], 
the look-ahead technique can be applied to the computation 
of the error residual. The prediction error can be estimated 
for these three possible values and then stored in a pipeline 
register. At the next stage it will be possible to decide which 
one of the three estimated errors has to be used, by 
comparing the previous value of C[Q] with the updated one, 
as demonstrated in fig. 3. 

The pipeline register’s context update feeds the bias 
cancellation value to the prediction estimation only when two 
subsequent samples occur in the same context. Otherwise, 
C[Q] is provided by the context parameters’ memory. It is 
necessary for that reason to have a double sized memory in 
order to store the values for bias cancellation C[Q], since two 
different values of bias cancellation have to be read from the 
memory in the same clock cycle: one for the error estimation 
and one for the parameters’ update. 

Apart from that, due to the fact that an extra clock cycle is 
required after the context determination in order to access the  
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Fig. 3.  Prediction error calculation with estimated bias cancellation. 

 
selected context’s parameters from the memory, it is possible 
to apply an additional pipeline stage before the error 
estimation phase. During the process of addressing the 
context memory several pre-computations which will 
speedup the error estimation of the next phase can be 
performed. For instance, Px can be subtracted from Ix 
beforehand, since both their values are already available (Ix 
and Px stand for the error and the Golomb variable k). Two 
pipeline stages have been used to implement the encoding 
process. The first stage produces the code for the current 
mapped error, while the second concatenates the code and 
produces the final encoded bitstream as its output. The 
calculations that need to be executed for the run mode scan 
can be implemented in the first pipeline stage, while 
determining the context of the current sample. The technique 
of pipelining has been used also in the implementation of the 
run interruption encoding procedures, even though those 
operations are simpler than when in normal mode, which 
makes their effect on the overall delay of the critical path 
negligible. 

The data path’s block diagram is illustrated in fig. 4. The 

first stage involves the determination of the context and 
computation of the prediction of the median edge detector. 
necessary to access the desired context parameters. The The 
pre-computations of the errors take place in the second stage, 
while the memory’s decoding unit produces the address 
estimation of the prediction error is carried out in the third 
stage. It is done using the last updated value of C[Q]. In the 
fourth stage the selection of the correct estimated value of the 
prediction error is made. The next step involves the 
computation of the value of the Golomb variable and the 
mapping of the errors, while the context updater calculates 
the new values of the context statistic parameters. The 
mapped error is encoded in the two final pipeline stages. 

The operations that take place in stage 4 are the ones that 
present the critical path of the design. In that stage the 
comparison between the previous and the updated value of 
C[Q] is carried out. It includes the multiplexer for the choice 
of the correct error estimation and also the parameters’ 
update. The update is performed concurrently to the Golomb 
variable calculation and the error mapping, but its operations 
are slower. 
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Fig. 4.  LOCO-I’s modified data path. 
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Fig. 5.  Use of  image line memory. 
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Fig. 6.  Proposed JPEG-LS architecture. 

 
 

B. Memory Requirements 
The size of the required memory for the JPEG-LS 

encoding process depends on the storage of the context 
parameters and of the previously encoded samples. The C [Q] 
memory is double-sized, since two different addresses need 
to be accessed concurrently, in order for the operations of 
stage three and four to be carried out. The bit lengths of 
Α[Q], B[Q], C[Q] and N[Q] for 8-bit images are 13, 7, 8 and 
7, respectively. They are deduced from the possible range of 
their values. Thus the total size of the context memory is 
about 1.9 KB. 

The minimum required memory needed to store the 
neighbor samples’ values is one image line as demonstrated 
in fig. 5. Only the values of the neighbors a, b, c and d have 
to be accessed for the context determination of the current 
pixel x. A technique which allowed us to lessen the overall 
size of the memory is presented next. Sample x of instance t 
will become the neighbor a for the following image sample, 
thus it can be stored in a single register. The pixel c of t-1 
instance will be no longer necessary as a neighbor so it can 
be replaced. Thus the memory size is minimized. Only one 
image line is required, while the works in [6] and [8] use a 
memory size of two image lines. This minimizes the total 
area of the ASIC design, since the on-chip memory consumes 
most of the area in such designs. The memories used are 
DUAL-RAMs, making it feasible to perform both read and 
write operations in the same clock cycle. 

C. JPEG-LS Architecture 
The architecture of the proposed JPEG-LS encoder is 

illustrated in fig. 6. It consists of the LOCO-I pipelined data, 
the context and the image line memory and two memory 
control interfaces. The line memory interface addresses the 
line memory, stores the new neighbor samples and feeds the 
LOCO-I data path with the values of the neighbors of the 
current sample. The context memory interface addresses the 
determined context parameters and feeds the error estimation 
stage with the last updated value of C[Q] as well as the fourth 
stage with the parameters of the context which was 
previously addressed. Finally the updated values are stored 

back in the context memory. 

IV. IMPLEMENTATION AND RESULTS  
The design was captured in VHDL and was fully 

simulated and verified using the Model Technology’s 
ModelSim Simulator. The goal of this work was to propose a 
competitive hardware solution, so the design was synthesized 
for ASIC technology. Synthesis was performed in a Synopsys 
environment using several process libraries. The back-
annotated information that was extracted from the synthesis 
tool was used to carry out the simulation of the design. The 
verification of the design’s functionality and compatibility 
was based on the collection of test images [1] and on various 
popular testing images with the use of HP LOCO-I 
executable [5] as software benchmark.  

The characteristics of the JPEG-LS implementation are 
demonstrated in table I, while the corresponding properties of 
other implementations available in academia are 
demonstrated in table II. 

The authors have tried their best to be fair to the 
comparison with other works. Surprisingly, none of the 
available works gives a full report of the implementation’s 
characteristics, in terms of area, operation frequency and 
throughput. Thus, the authors have assumed for some 
implementations that throughput is always the theoretic 
maximum and this is how table II was derived. At this point, 
it should be mentioned that implementation suggested by [7], 
also available in the scientific literacy, does not state its 
overall characteristics specifically. 

Table III contains a comparison of the proposed TSMC 
0.18µm implementation to other implementations available in 
academia. From the following table, it is easily observed that 
the proposed JPEG-LS implementation presents significantly 
higher throughput than any other available implementation, 
while minimizing the area requirements. This was expected 
due to the simplicity of the proposed implementation’s 
algorithm and the application of pipeline stages at critical 
points of the encoder. It has to be remarked that the 
manipulation of the LOCO-I functions in a way that allowed 
us to produce a simpler design, of course with no effect on 



 

 

the functionality of the algorithm, has offered significant 
gains in terms of throughput. 

 
TABLE I 

CHARACTERISTICS OF THE PROPOSED JPEG-LS IMPLEMENTATION FOR 
THE TARGETED ASIC TECHNOLOGIES 

ASIC 
TECH. 

LOGIC 
AREA 
(EQ. 

GATES
) 

MEM 
USAGE 
(BITS) 

OPERATING 
FREQUENCY 

(MHZ) 

THROUGHPUT 
(MPIXELS/S) 

TSMC 
0.18 µm 27681 23887 * 

20815 ** 183 183 

UMC 
0.18 µm 28127 23887 * 

20815 ** 160 160 

TSMC 
0.09 µm 
Sage-X 
Artisan 

25709 23887 * 
20815 ** 265 265 

*   For 1024 pixels per image line 
** For 640 pixels per image line 
 

TABLE II 
CHARACTERISTICS OF OTHER JPEG-LS IMPLEMENTATIONS 

WORK TECH. 

LOGIC 
AREA 
(EQ. 

GATES) 

MEM 
USAGE 
(BITS) 

OPERATING 
FREQUENCY 

(MHZ) 

THROUGHPUT 
(MPIXELS/S) 

[6] * - 49,457 
gates 

32768 
(1024) 66 66 upper limit 

(theoretic) 

[8] * 0.18 
µm 

70,000 
gates 

24000 
(640) 40 40 upper limit 

(theoretic) 

*     Implementing lossless and near-lossless mode 
 
 

TABLE III 
COMPARISONS WITH THE OTHER JPEG-LS IMPLEMENTATIONS 

WORK 

COMPARED 
TO THE 

PROPOSED 
AREA 
(%) 

COMPARED 
TO THE 

PROPOSED 
MEMORY 

(%) 

COMPARED 
TO THE 

PROPOSED 
THROUGHPUT 

(%) 
[6] 178.7 % 137 % 36.1% 
[8] 252.9 % 115 % 21.8% 

 
Table III reveals that the proposed implementation is by 

far the most efficient in terms of throughput as it presents 
almost five times higher throughput than the other ASIC 
implementations. Also its requirements in terms of area are 
significantly lower, being at least 1.7 times less than those of 
other ASIC implementations. 

V. CONCLUSION 
This paper presented a novel implementation of a lossless 

JPEG-LS hardware encoder. The pipelining design 
techniques used allowed the full exploitation of the low-
complexity features of the LOCO-I algorithmic functions 
leading to a very high operating frequency, the highest ever 

reported for a JPEG-LS encoder in academia or industry. The 
proposed implementation presents up to five times higher 
throughput than any other available ASIC JPEG-LS 
implementation. 

Apart from its outstanding performance in speed, the 
proposed design approach is quite efficient in terms of area, 
where its requirements are very low. Finally, as it was 
manifested in the section containing the results of the 
implementation, the proposed encoder is very cost-effective 
while being fully defined in terms of area, operation 
frequency and throughput.  
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