

A Shift Register based Clause Evaluator for Reconfigurable SAT Solver

Mona Safar, Mohamed Shalan, M.Watheq El-Kharashi
Computer and Systems Engineering Department

Ain Shams University
 Cairo, Egypt

Ashraf Salem
Mentor Graphics Egypt

Cairo, Egypt

Abstract

Several approaches have been proposed to accelerate

the NP-complete Boolean Satisfiability problem (SAT) us-
ing reconfigurable computing. We present an FPGA based
clause evaluator, where each clause is modeled as a shift
register that is either right shifted, left shifted, or standstill
according to whether the current assigned variable value
satisfy, unsatisfy, or does not effect the clause, respectively.
For a given problem instance, the effect of the value of
each of its variables on its SAT formula is loaded in the
FPGA on-chip memory. This results in less configuration
effort and fewer hardware resources than other available
SAT solvers. Also, we present a new approach for imple-
menting conflict analysis based on a conflicting variables
accumulator and priority encoder to determine backtrack
level. Using these two new ideas, we implement an FPGA
based SAT solver performing depth-first search with non-
chronological conflict directed backtracking. We compare
our SAT solver with other solvers through instances from
DIMACS benchmarks suite.

1. Introduction

The Boolean Satisfiability problem (SAT) is a central
problem in AI, mathematical logic, and computing theory
with wide range of CAD applications. SAT tests whether a
given Boolean formula, usually represented in Conjunctive
Normal Form (CNF), is satisfiable by searching for an as-
signment of truth values to variables that makes the for-
mula evaluates to ‘1’. SAT solving algorithms involve
compute-intensive, logic bit-level, highly parallelizable
operations, which makes reconfigurable computing appeal-
ing [1]. Various approaches have been proposed to acceler-
ate SAT solving using reconfigurable computing by either
migrating the whole problem to hardware or partitioning
the problem into hardware and software parts [2].

We present a reconfigurable SAT solver architecture
that exploits the fine granularity and massive parallelism of
FPGAs to evaluate the SAT formula. The solver performs
a depth-first search with non-chronological conflict di-
rected backtracking. The primary contribution of our work

is proposing a novel way for evaluating clauses in hard-
ware. Each clause is modeled as a shift register that is ei-
ther right shifted, left shifted, or standstill according to
whether current assigned variable value satisfy, unsatisfy,
or does not effect the clause, respectively. The presence of
‘1’ at the leftmost bit of a shift register indicates a conflict.
Mapping different SAT problem instances onto our recon-
figurable SAT solver is achieved by loading the effect of
the value of each of the given problem instance variables
on the evaluation of its CNF clauses in the FPGA on-chip
memory. This results in lower hardware cost and less con-
figuration effort compared to existing SAT solvers where
functional units need to be configured with the given prob-
lem data, mainly literals associated with each clause, on
which they operate. The second contribution is presenting a
new approach for implementing conflict analysis without
reverse traversal of implication graph as implemented by
other hardware SAT solvers. Conflicting variables are ac-
cumulated and fed to a priority encoder that determines the
backtrack level.

The rest of the paper is organized as follows. Section 2
reviews the problem in brief and discusses instance-specific
and application-specific approaches for mapping a SAT
formula to hardware. Section 3 reviews the previous work.
Section 4 presents a shift register based clause evaluator
and a proposed idea for implementing conflict analysis.
Section 5 presents our hardware SAT solver architecture.
Section 6 shows the experimental results in comparison
with three other hardware SAT solvers. Finally, Section 7
presents concluding remarks.

2. Boolean Satisfiability

The SAT problem is a Constraint Satisfaction Problem
(CSP) in which constraints are represented in a Boolean
formula usually expressed in CNF. A K-SAT problem is
one where clauses have at most K literals. If an assignment
of variables that satisfies the formula exists, the formula is
said to be satisfiable, otherwise it is unsatisfiable. A clause
is satisfied if one of its literals is bound to ‘1’, unsatisfied if
all its literals are bound to ‘0’, unit if one of its literals is
not bound to a logic value whereas all others are bound to
‘0’, and unresolved otherwise [3].

978-3-9810801-2-4/DATE07 © 2007 EDAA

Solving SAT is an intensive search operation with back-
tracking. State-of-art SAT solvers employ the Davis-
Putnam (DP) method with improved strategies for decision,
deduction, conflict analysis, and conflict driven learning
[4]. Decision selects the next free variable and a logic value
to assign to it. This selection can be static, where a fixed
preorder is defined, or dynamic. There are varieties of heu-
ristics acting as a base for the decision. Deduction infers
the direct and transitive implications of an assignment
through a process known as Boolean Constraint propaga-
tion (BCP). BCP sequentially applies the unit clause rule,
which implies a free variable to be bound to ‘1’ (‘0’) if its
positive literal (negative literal) appears in a unit clause.
The sequence of implications generated is captured by a
directed implication graph [5]. If a variable is implied to
both ‘1’ and ‘0’ by two or more clauses, a conflict arises.
Instead of backtracking chronologically to the last decided
variable, conflict analysis identifies the set of predecessor
variables of this conflict by traversing the implication graph
in reverse direction. It allows backtracking nonchronologi-
cally to the most recently assigned variable from this set.
This effectively prunes the search space. Conflict-driven
learning records a new clause constructed from the conflict
set to prevent re-exploring same space.

Existing SAT solvers using reconfigurable hardware
implement some or all of the above strategies. They not
only differ in which strategies they implement and the way
they are implemented, but also, in the approach used for
mapping different problem instances to the implemented
reconfigurable hardware. There are two basic approaches:
instance-specific and application-specific [2]. In the in-
stance-specific approach, a specialized hardware circuit is
generated for each problem instance. The advantage of the
instance-specific approach is that the hardware is tailored to
the instance to be solved achieving higher performance and
better utilization of hardware resources. On the other hand,
the total problem solving time is greatly affected by the
time overhead for hardware circuit compilation. In the ap-
plication-specific approach, the hardware circuit is de-
signed and compiled into hardware just once, then for each
specific instance the hardware configuration is directly cus-
tomized with problem instance data avoiding the hardware
compilation step. Implementing application-specific hard-
ware SAT solvers requires a modular design, where the
functional elements are not built out from the instance data.
Instead, they are designed to perform some processing on
it. The design must address the problem of how to reflect
the specific SAT instance parameters: number of variables
(N), number of clauses (M), and for each clause, the num-
ber of literals in it (K). Another important issue is the de-
sign of a modular communication network that sends the
variables' updated values to the respective clauses and, for
architecture employing implications, feedbacks implied
variables’ values to the respective variables.

3. Previous Work

Platzner et al. [6][7] implemented an instance-specific
reconfigurable accelerator for SAT. Their implemented
architecture performs simple depth-first search with
chronological backtracking based on evaluating the output
of a combinational circuit to which the Boolean formula is
mapped. To reduce the compilation time, a domain specific
compiler is built instead of using conventional configurable
hardware design tools [7].

Skliarova and Ferrari [8] formulated the SAT problem
over a matrix, where rows and columns correspond to
clauses and variables, respectively. Searching for a satisfy-
ing assignment of variables is formulated as searching for a
vector that is orthogonal to each row of the matrix by the
sequential application of various reduction and splitting
methods on matrices that correspond to the decision, impli-
cation, and chronological backtracking operations in a tra-
ditional SAT search. The underlying FPGA is configured to
support the maximum number of variables (Nmax) and
clauses (Mmax) that can fit into it. Two special registers are
used to store specific instance parameters N and M. Two
Mmax x Nmax and two Nmax x Mmax block RAMs from the
FPGA store matrices corresponding to the SAT instance.

Zhong et al. [9] introduced a modular architecture based
on a regular ring structure. Clauses are mapped into similar
clause modules grouped in a series of Processing Elements
(PEs) on the ring. For modularity, the number of literals in
a clause K is limited to 3. A time multiplexed pipelined bus
circulates the variables' values in a fixed sequence with a
synchronizing signal at the beginning. The clause module
identifies the variable by a counter that is incremented in
each clock cycle and a comparator that compares the
counter value with a pre-stored value. The clause cell moni-
tors values of the variables relevant to it. If the clause be-
comes unit, the clause cell forces a satisfying value for the
free literal on the bus. Conflict analysis is carried out in a
number of cycles. It ends when all the true values on the
bus are determined by branch decisions. The main control-
ler generates the conflict set and decides the backtrack
level. The modified architecture supports dynamic clause
addition to support conflict-driven learning. The connec-
tions of clause modules to the propagating global signals as
well as the comparators are configured for each problem
instance.

Dandalis et al. [10] proposed a reconfigurable architec-
ture that evaluates clauses in parallel during the implication
deduction phase. Variables associated with a given clause
are stored in the local memory of the respective module.
They proposed to use partial reconfiguration to update the
contents of local memories for a specific problem instance.

Sousa et al. [11] presented a Configware/Software SAT
solver where conflict diagnosis, backtrack control, and
clause database management operations are left to a cou-
pled software running on the host computer. A 3-clause cell
has a configuration register for each literal. Configuration

data is organized in pages that are successively loaded in
the board memory, where data corresponding to the vari-
ables also reside. Each memory word contains a slice of
variables. Instead of the ring structure, variable slices are
accessed sequentially from one memory block, processed in
the clause pipeline and stored in another memory block.

4. Shift Register based Clause Evaluator and
Conflict Analyzer

Compared with software implementations, the main ad-
vantage of implementing a SAT solver in FPGAs is the use
of the massive parallelism in evaluating the SAT CNF for-
mula [2]. Our proposed clause evaluator consists of M shift
registers, one for each clause. For modularity, the number
of literals in each clause K is limited to 3. Each register is
first initialized to “0001000”. It is either shifted left or right
according to the effect of current assigned variable. An
Nmax x 2*Mmax RAM (Mem_VEOC) stores the effect of
variables on clauses. Each word represents how the as-
signment of a ‘0’ value to the associative variable changes
the evaluation of each clause as follows:

 If Mem_VEOC[i][j:j+1] = “00” then variable i
does not occur in clause j/2.

 If Mem_VEOC[i][j:j+1] = “01” then assigning ‘0’
to variable i satisfy clause j/2.

 If Mem_VEOC[i][j:j+1] = “10” then assigning ‘0’
to variable i tends to unsatisfy clause j/2, the
clause is unsatisfied if this is the same for the
other 2 variables in the clause.

There is no need to store the effect of assigning ‘1’ to
variables as it is just the opposite. Variables are stored in an
array where the value of each variable is encoded in two
bits. One bit, F, denotes whether the variable is free or not.
In the latter case, the second bit, V, represents the value of
the variable. Each register has 3 controlling signals: Mode,
SL, and SR. Mode is the current assigned variable’s encod-
ing value bit V. SL and SR are the 2 bits stored in the
memory word associated with the current variable repre-
senting the effect of its ‘0’ value on the clause. Table 1
illustrates how these signals control the operation of each
shift register. For binary clauses, corresponding shift regis-
ters are initially shifted left. This is achieved through the
first memory word in Mem_VEOC representing a dummy
‘0’ valued variable which contains “10” for each binary
clause. Since unary clauses imply a unique satisfying value
for their associated variable, they are easily handled in soft-
ware on parsing the CNF formula of the given SAT in-
stance. Fig.1 sketches a trace for a clause evaluation on
exploring a simple search space. A clause is unsatisfied,
and hence a conflict is detected, when the leftmost bit of a
shift register is ‘1’, otherwise, it is either unresolved or
satisfied. A clause is unit when the bit second to the left-
most bit is ‘1’. Identifying unit clauses allows performing
BCP.

Leftmost bits of all clauses, where a ‘1’ indicates a con-
flict, are fed to an M-input priority encoder. In case of a
conflict, it determines the index of the first unsatisfied
clause. This represents the first stage in conflict analysis
[12]. Aided by this index, the indices of variables in the
unsatisfied clause, conflict predecessors, can be read from a
clause database. A Mmax x 3*log2 Nmax RAM
(Mem_ClauseDB) acts as a clause database, each word
represents a clause with its associated variables. Corre-
sponding bits of the conflict predecessors' variables are set
in an accumulator of conflicting variables which is fed to
an N-input priority encoder. This priority encoder outputs
the highest index of the activated conflicting variables;
backtracking level, hence allowing non-chronological con-
flict directed backtracking. It also outputs a NoBck signal
that is active in case there is no conflicting variable to
backtrack to.

Table 1. Clause evaluation shift operations

Mode
(V(i))

Mem_VEOC[i][j:j+1] (SL &
SR)

Operation

0 01 Shift right

0 10 Shift left

1 01 Shift left twice

1 10 Shift right twice

V1 + V2 + V3'

.

.

.

......

......

......
.........
.........

10
10
01

.

.

.

00
00.
.

0 0 0 1 0 0 0

0 0 1 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0 1 0 0 0

V1

V2

V3

0

0

0

1

1

step1

step2

step3 step4

step6

step5

initial

step1

step2

step3

step4

step5

step6

V1
V2
V3

effect on

(a)

(b) (c)

00

Fig. 1. Example on clause evaluation: (a) Part of
Mem_VEOC showing effect of variables on clause
(V1 + V2 +V3’). (b) Explored search space. (c)
Clause (V1 + V2 +V3’) corresponding shift register
evaluation.

For different SAT instances, the two memories,

Mem_VEOC and Mem_ClauseDB only need to be initial-
ized. Compared to Zhong et al. [9], Dandalis et al. [10], and
Sousa et al. [11], where each clause is modeled as a com-
plex unit that performs one or more computation tasks of:
parallel BCP, dynamic decision variable selection heuris-
tics, and Conflict-driven learning, the simplicity of model-
ing each clause as a shift register obstructs handling these
tasks but on the account of much lower hardware cost and

higher clock rates. Moreover, we avoid the need for con-
figuring data in each clause to identify its associated vari-
ables and time spent to adapt it for a particular instance
either using JBits, partial reconfiguration, or wasting hard-
ware clock cycles to load this data from configuration data
stored in memory. During solving a problem, we avoid
spending cycles until the clause picks up values of its rele-
vant variables from the circulating bus.

5. SAT Solver Architecture

We implemented an FPGA based SAT solver utilizing
the clause evaluator and conflict analyzer described in the
previous section. It performs depth first search with non-
chronological conflict directed backtracking. The overall
architecture is presented in Fig. 2.

Controller

Mem_Clause
DBMem_VEOC

A
rr

ay
 o

f
va

ri
ab

le
s

Conflict

Conflict clause
 index

2*Mmax

SAT/UnSAT Done

log2Mmax

log2Nmax

3*log2Nm ax

log2Nmax

Conflict
analyzer

log2Nmax

Backtrack level

Nmax

F

Nmax

V

Next
free variable

Conflict
 predecessors

 indexes

Current variable
 index NoBck

Current
 variable (V)

SL & SR

0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0.........

SL SR

M

SL SR

M

SL SR

M

Priority encoder

Clause evaluator

2 2 2

Fig. 2. Our FPGA based SAT solver architecture.

The control over computation is centralized. The con-

troller has three states: branch, evaluate/analyze, and back-
track. In the branch state, the controller picks a free vari-
able and assigns ‘0’ to it. A static order for variables deci-
sion is applied by utilizing an N-input priority encoder,
whose inputs are the variables’ encoding value free bits.
When there are no more free variables, the SAT problem is
satisfiable. When a conflict signal is raised, the controller
initiates backtracking. In the backtrack state, the controller
backtracks nonchronologically to the variable whose index
is determined by the backtracking level. It tries its comple-
mentary variable, assigning ‘1’ to it. If it has been already
tried then it frees the variable. Fig. 3 sketches an example
on a simple SAT CNF formula. The way we accumulate
conflicting variables using a simple register may result in
backtracking to a variable that is not related to the latest
conflict leading to re-exploring some search space. A more
complex structure can be used but on the account of more
hardware resources and lower clock frequency. The for-

mula is unsatisfiable when both the controller tries to back-
track and the NoBck signal is active.

SAT CNF formula Ø =
(V2' + V4' + V5) . (V1 + V2 + V6')

. (V1 + V3 + V6) .
.

4
2
3

.

.

0 0 0 0 0 0 0 0

initial & step1 to step5

step6

step7

step8 to step10

C1
C2
C3

(b)

(d)

2

.

.

1
1

5
6
6

V1

V2
0

V3

V4
0

0

V5

V6
0

0

0 1

V4

V5
0

V6

1

0

step6 step7
0

step8

step9

step10

(c)

1 N

1 0 1 0 0 1 0 0

1 1 1 0 0 1 0 0

1 1 1 0 0 0 0 0

Backtrack level: None

Conflict
 in C3

Conflict
 in C2

Backtrack level: 6

Backtrack level: 6

Backtrack level: 3

(a)

Fig. 3. Example on conflict analysis: (a) SAT CNF
formula. (b) Part of Mem_ClauseDB. (c) Explored
search space. (d) Trace of conflicting variables
accumulator and backtrack level determined by N-
input priority encoder.

The only compiled hardware circuit for our proposed

SAT solver utilizes the resources of the used FPGA to sup-
port the maximum number of variables and clauses allowed
by the FPGA capacity. One extra memory word in
Mem_ClauseDB is used to carry problem instance number
of variables N. There is no need to specify problem in-
stance number of clauses M, since all clauses are evaluated
simultaneously and extra clauses keep their values intact.

We developed a configuration generator in C++ to map
different problem SAT instances to our solver. For different
instances, only the data to be stored in FPGA block RAMs
(BRAMs), constituting Mem_ClauseDB and Mem_VEOC,
need to be changed. For this purpose, we use Data2MEM
[13], a Xilinx utility that can be executed to update the
FPGA configuration bitstream file with the BRAM initiali-
zation data. Besides a .bit bitstream file, Data2MEM re-
quires a .bmm BRAM definition file detailing the place-
ment information of used BRAMs and a .mem memory file
(simple text file) containing BRAM initialization data. The
total time required to solve a problem instance is:

Ttotal = thw + tconfig,
where the hardware time thw is the time for solving the
problem. The configuration time tconfig is equal to:

tconfig = tparsing + tData2Mem + tdownload,
where tparsing is the time of reading the SAT CNF file, con-
verting it to 3-SAT by introducing new variables and
clauses, and generating memory initialization data file,
tData2Mem is the time for updating the bitstream file with
memory initialization data using Data2MEM, and tdownload is
the time to download modified bitstream to hardware. The
configuration process takes few seconds. During the gen-

eration of the BRAM initialization file, we use a greedy
algorithm as a static preordered branching heuristic. Aim-
ing at satisfying the largest number of clauses, variables are
ordered according to their number of occurrences in clauses
in a descending order. A variable whose positive literal
appears more than its negative literal is substituted by its
negation since our solver tries the ‘0’ value first. Problem
instances larger than the available FPGA capability can be
decomposed into independent sub-formulas and then solved
one sub-formula at a time [14]. Sub-formulas are solved in
any order. If one turns out to be unsatisfiable then the
whole problem is unsatisfiable, stopping any further proc-
essing.

6. Experimental Results

For the implementation of our SAT Solver, we used
Memec Design Virtex-II ProTM development board con-
nected to host PC via parallel cable running at 5 MHz. The
implemented hardware circuit supports up to 100 variables
and 200 clauses, runs at 65 MHz, and occupies 2574 slices
of XC2VP4, i.e., 85% of available slices. The SAT solver
configuration generator is executed on Intel Pentium
M/1.86 GHz/1 GB running Windows XP.

Fig. 4 shows the total solving time for hole6 (42 vari-
ables – 133 clauses) problem from DIMACS benchmarks
suite [15] in a comparison between Platzner et al. [6][7],
Skliarova and Ferrari software/hardware solver soft/c256
[8], and our SAT Solver. Unlike other SAT solvers, ours
accepts only 3-SAT formula. The configuration generator
transforms hole6 original CNF formula into 3-CNF of 63
variables and 154 clauses. Table 2 presents hardware cost
in terms of occupied 4 input LUTs, execution clock fre-
quency, and raw hardware execution time. As a reconfigur-
able resource, [6][7] used Digital PCI Pamette board
equipped with 4 Xilinx XC4020 FPGAs. The design envi-
ronment, based on PAM-Blox, used for generating in-
stance-specific circuit was executed on Pentium-
II/300MHz/128MB running Windows NT 4.0. The hard-
ware of [8] was implemented on an ADM-XRC board
equipped with one XCV812E FPGA connected to the host
computer via PCI bus. The software part was executed on
an AMD Athlon/1 GHz/256 MB running Windows 2000.

The hardware compilation time dominates the total
problem solving time in [6][7] instance-specific architec-
ture, on the other hand being tailored to this specific prob-
lem, low hardware cost and high frequency were achieved.
As reported in [7], hole6 utilizes 230 CLBs (a CLB is a
slice containing 2 4-LUT and 1 3-LUT). Our 100 variables
- 200 clauses SAT solver runs on a comparable frequency.
The 1.4x speedup in raw hardware execution time is due to
conflict directed backtracking implemented by our solver.
For Skliarova and Ferrari architecture, the FPGA configu-
ration time takes about 0.37 s achieving the least total exe-
cution time. However, the comparison of configuration
time is not exact. The same problem exists in the compari-
son presented in [8] when comparing their soft/c256 with

Platzner et al. The main hurdle is that the configuration
time reported is for different software platforms. Moreover,
the interface used for sending configuration data to FPGA
differs. The hardware cost and running clock frequency are
constant for all different instances mapped to either
Skliarova and Ferrari solver or ours. Skliarova and Ferrari
c256 supports 128 variables and 256 clauses and occupies
5158 slices of XCV812E, as reported in [8], where a slice
contains 2 LUT4. A smaller implemented circuit c128 sup-
ports 64 variables and 128 clauses and occupies 2848 slice
that is 5696 CLBs and can run at 32.858 MHz. Compared
to [8], we can support more variables and clauses at a lower
hardware cost and higher frequency. We acknowledge that
this comparison is intended to reflect hardware resources
utilization rather than providing an exact comparison due to
differences in used FPGAs internal structures.

0

20

40

60

80

100

120

hole6

R
un

tim
e

(S
)

P latzner

Skliarova
soft /c256

Our SAT
solver

Fig. 4. Comparing total execution time of the
hole6 problem.

Table 2. Comparing SAT solvers implemented cir-
cuits’ parameters and the raw hardware execution
time for the hole6 problem. Shaded cells repre-
sent constant hardware circuit parameters

Architecture Hardware cost
[LUTs]

Clock fre-
quency [Mhz]

Raw HW
execution
time [S]

Platzner et al.
[7] 460 64.935 0.005

Skliarova and
Ferrari
soft/c256 [8]

10,316 30.516 0.0131

Our SAT
solver

5,152 65.617 0.00346

Table 3 shows a comparison between our SAT solver

and that of Zhong et al. [9] over instances from DIMACS
benchmarks suite in terms of number of clock cycles
needed to solve the problem. For [9], we consider both
cases with and without dynamic clause recording, hardware
time, compile time, and total time for solving the problem
instance. Their implementation used an array of Xilinx
XC4036EX FPGAs. The host computer is an Intel Pentium
Pro/200 MHz/128 MB running Windows 2000. Zhong et
al. [9] proposed architecture supports clock rates in the
range of 30 MHz. Though problem-solving number of cy-

cles of our solver exceeds that of [9], we obtained a
speedup since our architecture works at a 2.17X higher
clock frequency. On the other hand, our compilation time is
smaller, as we just update the FPGA bitstream with mem-
ory initialization data directly extracted from SAT formula.
As reported in [9], the implemented clause cell occupies 4
X 16 CLBs (a CLB is 1 slice, containing 2 4-LUT and 1 3-
LUT). Considering only clauses hardware utilization and
neglecting hardware resources occupied by controller and
global signals, an implemented circuit handling 200 clauses
occupies 25,600 4-LUTs requiring 10 FPGAs of the used
Xilinx XC4036EX FPGA. Whereas, the whole circuit of
our architecture occupies only 5,152 4-LUTs of the used
Xilinx XC2VP4 FPGA. Fig. 5 reflects the difference in
hardware cost in terms of 4-input LUTs usage.

Hardware cost in LUTs

0 10000 20000 30000

Zhong et al.

Our SAT Solver

Fig. 5. Comparing hardware cost in 4-LUTs for 200
clauses SAT solver circuits.

7. Conclusions

We presented an FPGA based clause evaluator, where
each SAT CNF clause is modeled as a shift register whose
operation is determined by the current assigned variable's
value. For different problem instances, effect of its vari-
ables' values on the evaluation of its Boolean formula is
loaded in the FPGA on-chip memory eliminating configu-
ration overhead. Instead of designing complex functional
units to operate on a given problem data mainly represented
as literals associated with each clause, stored data controls
the operation of simple functional units, resulting in lower
hardware cost and higher clock rates. We used a new ap-
proach for realizing conflict analysis based on a conflicting
variables accumulator and a priority encoder that deter-
mines the backtrack level. We compared our SAT solver
with other solvers through instances from DIMACS bench-
marks suite. The simplicity of our architecture enables
achieving higher clock rates and less resources utilization.

8. References

[1] K. Compton and S. Hauck, “Reconfigurable Computing: A
Survey of Systems and Software,” ACM computing Surveys,
vol. 34, no. 2, pp. 171-210, June 2002.

[2] I. Skliarova and A. B. Ferrari, “Reconfigurable Hardware
SAT Solvers: A Survey of Systems,” IEEE Trans. on Com-
puters, vol. 53, no. 11, pp. 1449-1461, November 2004.

[3] J. P. Marques-Silva and L. Guerra e Silva, “Solving Satisfi-
ability in Combinational Circuits,” IEEE Design and Test of
Computers, pp. 16-21, July-August 2003.

[4] L. Zhang and S. Malik, “The Quest for Efficient Boolean
Satisfiability Solvers,” 14th Int. Conf. of Computer Aided
Verification, pp. 17-36, July 2002.

[5] J. P. Marques-Silva and K. A. Sakallah, “GRASP: A Search
Algorithm for Propositional Satisfiability,” IEEE Trans. on
Computers, vol. 48, no. 5, pp. 506-521, May 1999.

[6] M. Platzner and G. De Micheli, “Acceleration of Satisfiabil-
ity Algorithms by Reconfigurable Hardware,” Proc. of the
Int. Workshop on Field-Programmable Logic and Applica-
tions, Springer-Verlag, Berlin, pp. 69- 78, 1998.

[7] O. Mencer and M. Platzner, “Dynamic Circuit Generation for
Boolean Satisfiability in an Object-Oriented Design Envi-
ronment,” Proc. of the 32th Hawaiian Int. Conf. on System
Sciences, Los Alamitos, CA, 1999.

[8] I. Skliarova and A. B. Ferrari, “A Software/Reconfigurable
Hardware SAT Solver,” IEEE Trans. on Very Large Scale
Integration Systems, vol. 12, no. 4, pp. 408-419, April 2004.

[9] P. Zhong, M. Martonosi, and P. Ashar. “FPGA-based SAT
Solver Architecture with Near-zero Synthesis and Layout
Overhead,” IEE Proc. Computer and Digital Techniques,
vol. 147, no. 3, pp. 135-141, May 2000.

[10] A. Dandalis and V.K. Prasanna, “Run-Time Performance
Optimization of an FPGA-Based Deduction Engine for SAT
Solvers,” ACM Trans. Design Automation of Electronic Sys-
tems, vol. 7, no. 4, pp. 547-562, October 2002.

[11] N.A. Reis and J.T. de Sousa, “On Implementing a Config-
ware/Software SAT Solver,” 10th IEEE Symp. on Field-
Programmable Custom Computing Machines, pp. 282-283,
2002.

[12] M. Safar, M. W. El-Kharashi, A. Salem, “FPGA based Ac-
celerator for 3-SAT Clauses Conflict Analysis in SAT
Solvers,” 13th Advanced Research Working Conf., Charme
2005, pp. 384-387, Saarbrucken – Germany, October 2005.

[13] Data2Mem Xilinx memory tool, http://www.xilinx.com.
[14] M. Abramovici and J.T. de Sousa, “A SAT Solver Using

Reconfigurable Hardware and Virtual Logic,” J. of Auto-
mated Reasoning, vol. 24, no. 1-2, pp. 5-36, 2000.

[15] DIMACS challenge benchmarks, ftp://dimacs.rutgers.edu/
pub/challenge/satisfiability/benchmarks/cnf [online].

Table 3. Comparison with Zhong et al. [9] SAT solver

Zhong et. al SAT solver [9] Our SAT Solver

Instance Run time in
cycles: No

added clauses

Run time in
cycles: Added

clauses

HW run
time [S]

Compile
time [S]

Total
time [S]

Run time in
cycles

HW run
time [S]

Compile
time [S]

Total
time [S]

aim-50-2_0-
yes1-2 7151 3583 0.0004 1.9 1.9004 1351807 0.0208 1.18 2.4008

pret60-40 181611844 341338 9 2.3 11.3 484305862 0.8 1.18 3.18

	Main
	DATE07
	Front Matter
	Table of Contents
	Author Index

