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Abstract 

 
Several approaches have been proposed to accelerate 

the NP-complete Boolean Satisfiability problem (SAT) us-
ing reconfigurable computing. We present an FPGA based 
clause evaluator, where each clause is modeled as a shift 
register that is either right shifted, left shifted, or standstill 
according to whether the current assigned variable value 
satisfy, unsatisfy, or does not effect the clause, respectively. 
For a given problem instance, the effect of the value of 
each of its variables on its SAT formula is loaded in the 
FPGA on-chip memory. This results in less configuration 
effort and fewer hardware resources than other available 
SAT solvers. Also, we present a new approach for imple-
menting conflict analysis based on a conflicting variables 
accumulator and priority encoder to determine backtrack 
level. Using these two new ideas, we implement an FPGA 
based SAT solver performing depth-first search with non-
chronological conflict directed backtracking. We compare 
our SAT solver with other solvers through instances from 
DIMACS benchmarks suite. 

 
1. Introduction 
 

The Boolean Satisfiability problem (SAT) is a central 
problem in AI, mathematical logic, and computing theory 
with wide range of CAD applications. SAT tests whether a 
given Boolean formula, usually represented in Conjunctive 
Normal Form (CNF), is satisfiable by searching for an as-
signment of truth values to variables that makes the for-
mula evaluates to ‘1’. SAT solving algorithms involve 
compute-intensive, logic bit-level, highly parallelizable 
operations, which makes reconfigurable computing appeal-
ing [1]. Various approaches have been proposed to acceler-
ate SAT solving using reconfigurable computing by either 
migrating the whole problem to hardware or partitioning 
the problem into hardware and software parts [2]. 

We present a reconfigurable SAT solver architecture 
that exploits the fine granularity and massive parallelism of 
FPGAs to evaluate the SAT formula.  The solver performs 
a depth-first search with non-chronological conflict di-
rected backtracking. The primary contribution of our work 

is proposing a novel way for evaluating clauses in hard-
ware. Each clause is modeled as a shift register that is ei-
ther right shifted, left shifted, or standstill according to 
whether current assigned variable value satisfy, unsatisfy, 
or does not effect the clause, respectively. The presence of 
‘1’ at the leftmost bit of a shift register indicates a conflict. 
Mapping different SAT problem instances onto our recon-
figurable SAT solver is achieved by loading the effect of 
the value of each of the given problem instance variables 
on the evaluation of its CNF clauses in the FPGA on-chip 
memory. This results in lower hardware cost and less con-
figuration effort compared to existing SAT solvers where 
functional units need to be configured with the given prob-
lem data, mainly literals associated with each clause, on 
which they operate. The second contribution is presenting a 
new approach for implementing conflict analysis without 
reverse traversal of implication graph as implemented by 
other hardware SAT solvers. Conflicting variables are ac-
cumulated and fed to a priority encoder that determines the 
backtrack level. 

The rest of the paper is organized as follows. Section 2 
reviews the problem in brief and discusses instance-specific 
and application-specific approaches for mapping a SAT 
formula to hardware. Section 3 reviews the previous work. 
Section 4 presents a shift register based clause evaluator 
and a proposed idea for implementing conflict analysis. 
Section 5 presents our hardware SAT solver architecture. 
Section 6 shows the experimental results in comparison 
with three other hardware SAT solvers. Finally, Section 7 
presents concluding remarks. 

 
2. Boolean Satisfiability 
 

The SAT problem is a Constraint Satisfaction Problem 
(CSP) in which constraints are represented in a Boolean 
formula usually expressed in CNF. A K-SAT problem is 
one where clauses have at most K literals. If an assignment 
of variables that satisfies the formula exists, the formula is 
said to be satisfiable, otherwise it is unsatisfiable. A clause 
is satisfied if one of its literals is bound to ‘1’, unsatisfied if 
all its literals are bound to ‘0’, unit if one of its literals is 
not bound to a logic value whereas all others are bound to 
‘0’, and unresolved otherwise [3]. 
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Solving SAT is an intensive search operation with back-
tracking. State-of-art SAT solvers employ the Davis-
Putnam (DP) method with improved strategies for decision, 
deduction, conflict analysis, and conflict driven learning 
[4]. Decision selects the next free variable and a logic value 
to assign to it. This selection can be static, where a fixed 
preorder is defined, or dynamic. There are varieties of heu-
ristics acting as a base for the decision. Deduction infers 
the direct and transitive implications of an assignment 
through a process known as Boolean Constraint propaga-
tion (BCP). BCP sequentially applies the unit clause rule, 
which implies a free variable to be bound to ‘1’ (‘0’) if its 
positive literal (negative literal) appears in a unit clause. 
The sequence of implications generated is captured by a 
directed implication graph [5]. If a variable is implied to 
both ‘1’ and ‘0’ by two or more clauses, a conflict arises. 
Instead of backtracking chronologically to the last decided 
variable, conflict analysis identifies the set of predecessor 
variables of this conflict by traversing the implication graph 
in reverse direction. It allows backtracking nonchronologi-
cally to the most recently assigned variable from this set. 
This effectively prunes the search space. Conflict-driven 
learning records a new clause constructed from the conflict 
set to prevent re-exploring same space. 

Existing SAT solvers using reconfigurable hardware 
implement some or all of the above strategies. They not 
only differ in which strategies they implement and the way 
they are implemented, but also, in the approach used for 
mapping different problem instances to the implemented 
reconfigurable hardware. There are two basic approaches: 
instance-specific and application-specific [2]. In the in-
stance-specific approach, a specialized hardware circuit is 
generated for each problem instance. The advantage of the 
instance-specific approach is that the hardware is tailored to 
the instance to be solved achieving higher performance and 
better utilization of hardware resources. On the other hand, 
the total problem solving time is greatly affected by the 
time overhead for hardware circuit compilation. In the ap-
plication-specific approach, the hardware circuit is de-
signed and compiled into hardware just once, then for each 
specific instance the hardware configuration is directly cus-
tomized with problem instance data avoiding the hardware 
compilation step. Implementing application-specific hard-
ware SAT solvers requires a modular design, where the 
functional elements are not built out from the instance data. 
Instead, they are designed to perform some processing on 
it. The design must address the problem of how to reflect 
the specific SAT instance parameters: number of variables 
(N), number of clauses (M), and for each clause, the num-
ber of literals in it (K). Another important issue is the de-
sign of a modular communication network that sends the 
variables' updated values to the respective clauses and, for 
architecture employing implications, feedbacks implied 
variables’ values to the respective variables. 

 
3. Previous Work 
 

Platzner et al. [6][7] implemented an instance-specific 
reconfigurable accelerator for SAT. Their implemented 
architecture performs simple depth-first search with 
chronological backtracking based on evaluating the output 
of a combinational circuit to which the Boolean formula is 
mapped. To reduce the compilation time, a domain specific 
compiler is built instead of using conventional configurable 
hardware design tools [7]. 

Skliarova and Ferrari [8] formulated the SAT problem 
over a matrix, where rows and columns correspond to 
clauses and variables, respectively. Searching for a satisfy-
ing assignment of variables is formulated as searching for a 
vector that is orthogonal to each row of the matrix by the 
sequential application of various reduction and splitting 
methods on matrices that correspond to the decision, impli-
cation, and chronological backtracking operations in a tra-
ditional SAT search. The underlying FPGA is configured to 
support the maximum number of variables (Nmax) and 
clauses (Mmax) that can fit into it. Two special registers are 
used to store specific instance parameters N and M. Two 
Mmax x Nmax and two Nmax x Mmax block RAMs from the 
FPGA store matrices corresponding to the SAT instance. 

Zhong et al. [9] introduced a modular architecture based 
on a regular ring structure. Clauses are mapped into similar 
clause modules grouped in a series of Processing Elements 
(PEs) on the ring. For modularity, the number of literals in 
a clause K is limited to 3. A time multiplexed pipelined bus 
circulates the variables' values in a fixed sequence with a 
synchronizing signal at the beginning. The clause module 
identifies the variable by a counter that is incremented in 
each clock cycle and a comparator that compares the 
counter value with a pre-stored value. The clause cell moni-
tors values of the variables relevant to it. If the clause be-
comes unit, the clause cell forces a satisfying value for the 
free literal on the bus. Conflict analysis is carried out in a 
number of cycles. It ends when all the true values on the 
bus are determined by branch decisions. The main control-
ler generates the conflict set and decides the backtrack 
level. The modified architecture supports dynamic clause 
addition to support conflict-driven learning. The connec-
tions of clause modules to the propagating global signals as 
well as the comparators are configured for each problem 
instance. 

Dandalis et al. [10] proposed a reconfigurable architec-
ture that evaluates clauses in parallel during the implication 
deduction phase. Variables associated with a given clause 
are stored in the local memory of the respective module. 
They proposed to use partial reconfiguration to update the 
contents of local memories for a specific problem instance. 

Sousa et al. [11] presented a Configware/Software SAT 
solver where conflict diagnosis, backtrack control, and 
clause database management operations are left to a cou-
pled software running on the host computer. A 3-clause cell 
has a configuration register for each literal. Configuration 



data is organized in pages that are successively loaded in 
the board memory, where data corresponding to the vari-
ables also reside. Each memory word contains a slice of 
variables. Instead of the ring structure, variable slices are 
accessed sequentially from one memory block, processed in 
the clause pipeline and stored in another memory block. 
 
4. Shift Register based Clause Evaluator and 
Conflict Analyzer 
 

Compared with software implementations, the main ad-
vantage of implementing a SAT solver in FPGAs is the use 
of the massive parallelism in evaluating the SAT CNF for-
mula [2]. Our proposed clause evaluator consists of M shift 
registers, one for each clause. For modularity, the number 
of literals in each clause K is limited to 3. Each register is 
first initialized to “0001000”. It is either shifted left or right 
according to the effect of current assigned variable. An 
Nmax x 2*Mmax RAM (Mem_VEOC) stores the effect of 
variables on clauses. Each word represents how the as-
signment of a ‘0’ value to the associative variable changes 
the evaluation of each clause as follows: 

 If Mem_VEOC[i][j:j+1] =  “00” then variable i 
does not occur in clause j/2.  

 If Mem_VEOC[i][j:j+1] =  “01” then assigning ‘0’ 
to variable i satisfy clause j/2.  

 If Mem_VEOC[i][j:j+1] =  “10” then assigning ‘0’ 
to variable i tends to unsatisfy clause j/2, the 
clause is unsatisfied if this is the same for the 
other 2 variables in the clause.  

There is no need to store the effect of assigning ‘1’ to 
variables as it is just the opposite. Variables are stored in an 
array where the value of each variable is encoded in two 
bits. One bit, F, denotes whether the variable is free or not. 
In the latter case, the second bit, V, represents the value of 
the variable. Each register has 3 controlling signals: Mode, 
SL, and SR. Mode is the current assigned variable’s encod-
ing value bit V. SL and SR are the 2 bits stored in the 
memory word associated with the current variable repre-
senting the effect of its ‘0’ value on the clause. Table 1 
illustrates how these signals control the operation of each 
shift register. For binary clauses, corresponding shift regis-
ters are initially shifted left. This is achieved through the 
first memory word in Mem_VEOC representing a dummy 
‘0’ valued variable which contains “10” for each binary 
clause. Since unary clauses imply a unique satisfying value 
for their associated variable, they are easily handled in soft-
ware on parsing the CNF formula of the given SAT in-
stance. Fig.1 sketches a trace for a clause evaluation on 
exploring a simple search space. A clause is unsatisfied, 
and hence a conflict is detected, when the leftmost bit of a 
shift register is ‘1’, otherwise, it is either unresolved or 
satisfied. A clause is unit when the bit second to the left-
most bit is ‘1’. Identifying unit clauses allows performing 
BCP. 

Leftmost bits of all clauses, where a ‘1’ indicates a con-
flict, are fed to an M-input priority encoder. In case of a 
conflict, it determines the index of the first unsatisfied 
clause. This represents the first stage in conflict analysis 
[12]. Aided by this index, the indices of variables in the 
unsatisfied clause, conflict predecessors, can be read from a 
clause database. A Mmax x 3*log2 Nmax RAM 
(Mem_ClauseDB) acts as a clause database, each word 
represents a clause with its associated variables. Corre-
sponding bits of the conflict predecessors' variables are set 
in an accumulator of conflicting variables which is fed to 
an N-input priority encoder. This priority encoder outputs 
the highest index of the activated conflicting variables; 
backtracking level, hence allowing non-chronological con-
flict directed backtracking. It also outputs a NoBck signal 
that is active in case there is no conflicting variable to 
backtrack to. 
 

Table 1. Clause evaluation shift operations 

Mode 
(V(i)) 

Mem_VEOC[i][j:j+1] (SL & 
SR) 

Operation 

0 01 Shift right 

0 10 Shift left 

1 01 Shift left twice 

1 10 Shift right twice 
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Fig. 1. Example on clause evaluation: (a) Part of 
Mem_VEOC showing effect of variables on clause 
(V1 + V2 +V3’). (b) Explored search space. (c) 
Clause (V1 + V2 +V3’) corresponding shift register 
evaluation. 
 
For different SAT instances, the two memories, 

Mem_VEOC and Mem_ClauseDB only need to be initial-
ized. Compared to Zhong et al. [9], Dandalis et al. [10], and 
Sousa et al. [11], where each clause is modeled as a com-
plex unit that performs one or more computation tasks of: 
parallel BCP, dynamic decision variable selection heuris-
tics, and Conflict-driven learning, the simplicity of model-
ing each clause as a shift register obstructs handling these 
tasks but on the account of much lower hardware cost and 



higher clock rates. Moreover, we avoid the need for con-
figuring data in each clause to identify its associated vari-
ables and time spent to adapt it for a particular instance 
either using JBits, partial reconfiguration, or wasting hard-
ware clock cycles to load this data from configuration data 
stored in memory. During solving a problem, we avoid 
spending cycles until the clause picks up values of its rele-
vant variables from the circulating bus. 

 
5. SAT Solver Architecture 
 

We implemented an FPGA based SAT solver utilizing 
the clause evaluator and conflict analyzer described in the 
previous section. It performs depth first search with non-
chronological conflict directed backtracking. The overall 
architecture is presented in Fig. 2. 

Controller

Mem_Clause
DBMem_VEOC

A
rr

ay
  o

f  
va

ri
ab

le
s

Conflict

Conflict clause
 index

2*Mmax

SAT/UnSAT Done

log2Mmax

log2Nmax

3*log2Nm ax

log2Nmax

Conflict
analyzer

log2Nmax

Backtrack level

Nmax

F

Nmax

V

Next
free variable

Conflict
 predecessors

 indexes

Current variable
 index NoBck

Current
 variable (V)

SL & SR

0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0.........

SL SR

M

SL SR

M

SL SR

M

Priority encoder

Clause evaluator

2 2 2

 
Fig. 2. Our FPGA based SAT solver architecture. 

 
The control over computation is centralized. The con-

troller has three states: branch, evaluate/analyze, and back-
track. In the branch state, the controller picks a free vari-
able and assigns ‘0’ to it. A static order for variables deci-
sion is applied by utilizing an N-input priority encoder, 
whose inputs are the variables’ encoding value free bits. 
When there are no more free variables, the SAT problem is 
satisfiable. When a conflict signal is raised, the controller 
initiates backtracking. In the backtrack state, the controller 
backtracks nonchronologically to the variable whose index 
is determined by the backtracking level. It tries its comple-
mentary variable, assigning ‘1’ to it. If it has been already 
tried then it frees the variable. Fig. 3 sketches an example 
on a simple SAT CNF formula. The way we accumulate 
conflicting variables using a simple register may result in 
backtracking to a variable that is not related to the latest 
conflict leading to re-exploring some search space. A more 
complex structure can be used but on the account of more 
hardware resources and lower clock frequency. The for-

mula is unsatisfiable when both the controller tries to back-
track and the NoBck signal is active. 
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Fig. 3. Example on conflict analysis: (a) SAT CNF 
formula. (b) Part of Mem_ClauseDB. (c) Explored 
search space. (d) Trace of conflicting variables 
accumulator and backtrack level determined by N-
input priority encoder. 
 
The only compiled hardware circuit for our proposed 

SAT solver utilizes the resources of the used FPGA to sup-
port the maximum number of variables and clauses allowed 
by the FPGA capacity. One extra memory word in 
Mem_ClauseDB is used to carry problem instance number 
of variables N. There is no need to specify problem in-
stance number of clauses M, since all clauses are evaluated 
simultaneously and extra clauses keep their values intact. 

We developed a configuration generator in C++ to map 
different problem SAT instances to our solver. For different 
instances, only the data to be stored in FPGA block RAMs 
(BRAMs), constituting Mem_ClauseDB and Mem_VEOC, 
need to be changed. For this purpose, we use Data2MEM 
[13], a Xilinx utility that can be executed to update the 
FPGA configuration bitstream file with the BRAM initiali-
zation data. Besides a .bit bitstream file, Data2MEM re-
quires a .bmm BRAM definition file detailing the place-
ment information of used BRAMs and a .mem memory file 
(simple text file) containing BRAM initialization data. The 
total time required to solve a problem instance is:  

Ttotal = thw + tconfig, 
where the hardware time thw is the time for solving the 
problem. The configuration time tconfig is equal to: 

tconfig = tparsing + tData2Mem + tdownload, 
where tparsing  is the time of reading the SAT CNF file, con-
verting it to 3-SAT by introducing new variables and 
clauses, and generating memory initialization data file, 
tData2Mem is the time for updating the bitstream file with 
memory initialization data using Data2MEM, and tdownload is 
the time to download modified bitstream to hardware. The 
configuration process takes few seconds. During the gen-



eration of the BRAM initialization file, we use a greedy 
algorithm as a static preordered branching heuristic. Aim-
ing at satisfying the largest number of clauses, variables are 
ordered according to their number of occurrences in clauses 
in a descending order. A variable whose positive literal 
appears more than its negative literal is substituted by its 
negation since our solver tries the ‘0’ value first. Problem 
instances larger than the available FPGA capability can be 
decomposed into independent sub-formulas and then solved 
one sub-formula at a time [14]. Sub-formulas are solved in 
any order. If one turns out to be unsatisfiable then the 
whole problem is unsatisfiable, stopping any further proc-
essing. 
 

6. Experimental Results 
 

For the implementation of our SAT Solver, we used 
Memec Design Virtex-II ProTM development board con-
nected to host PC via parallel cable running at 5 MHz. The 
implemented hardware circuit supports up to 100 variables 
and 200 clauses, runs at 65 MHz, and occupies 2574 slices 
of XC2VP4, i.e., 85% of available slices. The SAT solver 
configuration generator is executed on Intel Pentium 
M/1.86 GHz/1 GB running Windows XP. 

Fig. 4 shows the total solving time for hole6 (42 vari-
ables – 133 clauses) problem from DIMACS benchmarks 
suite [15] in a comparison between Platzner et al. [6][7], 
Skliarova and Ferrari software/hardware solver soft/c256 
[8], and our SAT Solver. Unlike other SAT solvers, ours 
accepts only 3-SAT formula. The configuration generator 
transforms hole6 original CNF formula into 3-CNF of 63 
variables and 154 clauses.  Table 2 presents hardware cost 
in terms of occupied 4 input LUTs, execution clock fre-
quency, and raw hardware execution time. As a reconfigur-
able resource, [6][7] used Digital PCI Pamette board 
equipped with 4 Xilinx XC4020 FPGAs. The design envi-
ronment, based on PAM-Blox, used for generating in-
stance-specific circuit was executed on Pentium-
II/300MHz/128MB running Windows NT 4.0. The hard-
ware of [8] was implemented on an ADM-XRC board 
equipped with one XCV812E FPGA connected to the host 
computer via PCI bus. The software part was executed on 
an AMD Athlon/1 GHz/256 MB running Windows 2000. 

The hardware compilation time dominates the total 
problem solving time in [6][7] instance-specific architec-
ture, on the other hand being tailored to this specific prob-
lem, low hardware cost and high frequency were achieved. 
As reported in [7], hole6 utilizes 230 CLBs (a CLB is a 
slice containing 2 4-LUT and 1 3-LUT). Our 100 variables 
- 200 clauses SAT solver runs on a comparable frequency. 
The 1.4x speedup in raw hardware execution time is due to 
conflict directed backtracking implemented by our solver. 
For Skliarova and Ferrari architecture, the FPGA configu-
ration time takes about 0.37 s achieving the least total exe-
cution time. However, the comparison of configuration 
time is not exact. The same problem exists in the compari-
son presented in [8] when comparing their soft/c256 with 

Platzner et al. The main hurdle is that the configuration 
time reported is for different software platforms. Moreover, 
the interface used for sending configuration data to FPGA 
differs. The hardware cost and running clock frequency are 
constant for all different instances mapped to either 
Skliarova and Ferrari solver or ours. Skliarova and Ferrari 
c256 supports 128 variables and 256 clauses and occupies 
5158 slices of XCV812E, as reported in [8], where a slice 
contains 2 LUT4. A smaller implemented circuit c128 sup-
ports 64 variables and 128 clauses and occupies 2848 slice 
that is 5696 CLBs and can run at 32.858 MHz. Compared 
to [8], we can support more variables and clauses at a lower 
hardware cost and higher frequency. We acknowledge that 
this comparison is intended to reflect hardware resources 
utilization rather than providing an exact comparison due to 
differences in used FPGAs internal structures. 
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Fig. 4. Comparing total execution time of the 
hole6 problem. 
 
Table 2. Comparing SAT solvers implemented cir-
cuits’ parameters and the raw hardware execution 
time for the hole6 problem. Shaded cells repre-
sent constant hardware circuit parameters 

Architecture Hardware cost 
[LUTs] 

Clock fre-
quency [Mhz] 

Raw HW 
execution 
time [S] 

Platzner et al. 
[7] 460 64.935 0.005 

Skliarova and 
Ferrari 
soft/c256 [8] 

10,316 30.516 0.0131 

Our SAT 
solver  

5,152 65.617 0.00346 

 
Table 3 shows a comparison between our SAT solver 

and that of Zhong et al. [9] over instances from DIMACS 
benchmarks suite in terms of number of clock cycles 
needed to solve the problem. For [9], we consider both 
cases with and without dynamic clause recording, hardware 
time, compile time, and total time for solving the problem 
instance. Their implementation used an array of Xilinx 
XC4036EX FPGAs. The host computer is an Intel Pentium 
Pro/200 MHz/128 MB running Windows 2000. Zhong et 
al. [9] proposed architecture supports clock rates in the 
range of 30 MHz. Though problem-solving number of cy-



cles of our solver exceeds that of [9], we obtained a 
speedup since our architecture works at a 2.17X higher 
clock frequency. On the other hand, our compilation time is 
smaller, as we just update the FPGA bitstream with mem-
ory initialization data directly extracted from SAT formula. 
As reported in [9], the implemented clause cell occupies 4 
X 16 CLBs (a CLB is 1 slice, containing 2 4-LUT and 1 3-
LUT). Considering only clauses hardware utilization and 
neglecting hardware resources occupied by controller and 
global signals, an implemented circuit handling 200 clauses 
occupies 25,600 4-LUTs requiring 10 FPGAs of the used 
Xilinx XC4036EX FPGA. Whereas, the whole circuit of 
our architecture occupies only 5,152 4-LUTs of the used 
Xilinx XC2VP4 FPGA. Fig. 5 reflects the difference in 
hardware cost in terms of 4-input LUTs usage. 
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Fig. 5. Comparing hardware cost in 4-LUTs for 200 
clauses SAT solver circuits. 
 

7. Conclusions 
 

We presented an FPGA based clause evaluator, where 
each SAT CNF clause is modeled as a shift register whose 
operation is determined by the current assigned variable's 
value. For different problem instances, effect of its vari-
ables' values on the evaluation of its Boolean formula is 
loaded in the FPGA on-chip memory eliminating configu-
ration overhead. Instead of designing complex functional 
units to operate on a given problem data mainly represented 
as literals associated with each clause, stored data controls 
the operation of simple functional units, resulting in lower 
hardware cost and higher clock rates. We used a new ap-
proach for realizing conflict analysis based on a conflicting 
variables accumulator and a priority encoder that deter-
mines the backtrack level. We compared our SAT solver 
with other solvers through instances from DIMACS bench-
marks suite. The simplicity of our architecture enables 
achieving higher clock rates and less resources utilization. 
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Table 3. Comparison with Zhong et al. [9] SAT solver             

Zhong et. al SAT solver [9] Our SAT Solver 

Instance Run time in 
cycles: No 

added clauses 

Run time in 
cycles: Added 

clauses 

HW run 
time [S] 

Compile 
time [S] 

Total 
time [S] 

Run time in 
cycles 

HW run 
time [S] 

Compile 
time [S] 

Total 
time [S] 

aim-50-2_0-
yes1-2 7151 3583 0.0004 1.9 1.9004 1351807 0.0208 1.18 2.4008 

pret60-40 181611844 341338 9 2.3 11.3 484305862 0.8 1.18 3.18 
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