
Using Dynamic Voltage Scaling to Reduce the Configuration Energy of Run Time
Reconfigurable Devices

Yang Qu1, Juha-Pekka Soininen1 and Jari Nurmi2
1Technical Research Centre of Finland (VTT), Kaitoväylä 1, FIN-90571 Oulu, Finland

Yang.Qu@vtt.fi
2 Tampere University of Technology, Korkeakoulunkatu 10, Tampere, Finland

Abstract

In this paper, an approach that uses dynamic voltage
scaling (DVS) to reduce the configuration energy of run-
time reconfigurable devices is proposed. The basic idea is
to use configuration prefetching and parallelism to create
excessive system idle time and apply DVS on the
configuration process when such idle time can be utilized.
A genetic algorithm is developed to solve the task
scheduling and voltage assignment problem. With real
applications, the results show that up to 19.3% of
configuration energy can be reduced. When considering
the reduction of the configuration energy, the results show
that using more computation resources is more favorable
when the configuration latency is relatively small, and
using more configuration controllers is more favorable
for relatively large latency.

1. Introduction

 Reconfigurable logic is becoming an important design

alterative in System-on-Chip (SoC) design due to its
capabilities of providing higher performance than SW
implementation and more flexibility than fixed-HW
implementation. High silicon reusability can also be
achieved through run-time reconfiguration (RTR). Such
devices are usually referred as dynamically reconfigurable
hardware (DRHW). The RTR means the circuit or a part
of it can be reconfigured while the rest of the system is
running. However, the RTR results in the configuration
overhead, e.g. latency and power consumption, which can
largely degrade the system performance.

There are extensive research works that focus on
reducing the effect of the configuration latency, such as
configuration prefetching [1] (configure tasks before they
are needed) and configuration caching [2] (load tasks
once and use them multiple times during iterative
operation). Novel devices, such as partially reconfigurable
devices [3] and multi-context devices [4] can also
significantly reduce the configuration latency. However,

none of these approaches takes reducing the configuration
energy as the main objective.

The DVS is the most common and effective approach
in low-power embedded system design [5]. The basic idea
is to apply low supply voltage on tasks to utilize the
system idle time. In this work, we present an approach
that reduces the configuration energy by applying the
DVS on the reconfiguration process. The basic idea is to
use configuration prefetching and parallelism [6] to create
excessive system idle time and apply DVS on the
configuration process when such idle time can be utilized.
In addition, an optimization approach based on the genetic
algorithm (GA) is developed to solve the voltage-
assignment and task-scheduling problem.

The structure of the paper is as follows. The motivation
of the work is presented in section 2. The device model is
presented in section 3. Tasks models and the GA
algorithm are presented in section 4. Case studies and
experimental results are presented in section 5. Finally,
conclusions are given in section 6.

2. Motivation

The dynamic power consumption of a circuit, Pdyn,

satisfies the relation that Pdyn ∝ CV2f, where C is the
capacitance of the circuit, V is the supply voltage and f is
the operation frequency. Because the supply voltage has
quadratic effect on the dynamic power consumption,
reducing the supply voltage is the most effective approach
to lower Pdyn, but low supply voltage will increase the
configuration latency and degrade the performance.

However, by using configuration prefetching and
parallelism, we can create excessive system idle time and
thus benefit from using the DVS. Simple examples are
shown in Figure 1. Figure 1(a) shows the case where the
idle time is created by prefetching. Such idle time can
then be utilized to lower the supply voltage of the
configuration process, as shown in Figure 1(c). Figure
1(b) shows the case that Task 2 needs two configurations.
If they can be performed in parallel, the idle time marked

978-3-9810801-2-4/DATE07 © 2007 EDAA

Tile 3

Tile M

Tile 4

crossbar
connection

configuration
controller 1

m
ultiple read-port

m
em

ory or m
em

ory
banks for

configuration data

Tile 1
Tile 2

configuration
controller 2

configuration
controller N

logic configuration SRAM

com
m

unication
netw

orks

Figure 2. The parallel configuration model

task 1

task 2config
(HSV)

idle time
task 2

config
(HSV) idle time

task 1

config
(HSV)idle time

(a) (b)

task 1

task 2config (LSV)
task 2

config (LSV)

task 1

(c) (d)

config (LSV)

HSV: high supply voltage, LSV: low supply voltage

Figure 1. Using prefetching and configuration

parallelism to create excessive idle time

in Figure 1(b) can then be utilized to apply DVS, as in
Figure 1(d).

3. The Device Model

Our research is based on a parallel reconfiguration

model [6], as shown in Figure 2. The device consists of a
number of continuously connected homogeneous tiles
with FPGA-like structure and a number of independent
configuration controllers. Each tile consists of the circuit
and its own configuration SRAM (C-SRAM) that controls
the circuit. A task that requires m tiles of resources can
use any set of m continuously connected tiles. A crossbar
is used to connect the C-SRAMs of the tiles to a number
of parallel configuration controllers. The crossbar ensures
that any C-SRAM can be accessed by any configuration
controller but only one at a time.

Because each tile has its own C-SRAM, this allows us
to apply DVS on the C-SRAM and the corresponding
configuration controller for each individual configuration
process. However, applying low supply voltage on the C-
SRAM will degrade the circuit performance. Therefore,
buffers are needed at the output of the C-SRAM to boost
the output voltage level to the same level as used in the
circuit. These buffers do not cause delays at runtime,
because the C-SRAM supply DC signals to the circuit. In
this phase of the work, our main objective is to reduce the
configuration energy, therefore we do not consider to
apply DVS on the circuit, as in [7].

4. A Genetic Algorithm for Task Scheduling
and Voltage Assignment

We use dependent task sets to evaluate the approach.

The principle is to schedule the tasks on the device model
with the goal to minimize the effect of the configuration
latency while using DVS to reduce the total configuration
energy. Therefore, the task allocation, scheduling,
configuration prefetching, configuration parallelism and
DVS state assignment need to be considered at the same
time. To cope with this NP-hard problem, we developed a
genetic algorithm that can minimize both the scheduling

length and the configuration energy simultaneously while
considering all the above factors.

4.1. Task Model

Dependent tasks are modeled as a directed acyclic
graph (DAG) G(V,E), where V = {t1,t2,…, tn} U
{C<1,1>,…C<m,n>} (ti represents a task i and C<j,i>
represents the configuration of the jth section of the task i)
and E is a set of edges that represent the dependence of
the tasks and the links from configuration nodes to task
nodes. A task is ready to run when all of its predecessors
have finished. There are two attributes for a task i, the
execution time, RTi, and the number of required tiles, Ri.
The value Ri also shows that there are Ri number of
configuration nodes directly precede the task node ti. An
example DAG is presented in Figure 3.

4.2. Introduction to Genetic Algorithm

The GA is a guided random search technique inspired
by evolutionary biology [8]. The basic idea is to
iteratively improve the results (individuals) through
randomly combining (crossover) and modifying
(mutation) pervious results until some termination criteria
are satisfied. In each generation, only the best individuals
survive, thus each generation tends to be better than
previous ones. It is usually implemented using a loop
structure, as follows.

step 1: Create initial population (a group of solutions).
step 2: Evaluate the fitness of all individuals in the

current population (The fitness is a measurement of the
quality of an individual).

step 3: Select individuals to reproduce, and breed new
offspring through crossover with high probability and
mutation with low probability.

step 4: Stop if termination criteria are satisfied.
Otherwise go back to step 2.

The chromosome (strings that represent solutions) and
the GA operators (crossover, mutation, evaluation and
selection that operate the chromosome to evolve new
offspring) are problem-specific. We use the
implementation in a multiprocessor scheduler [9] to
illustrate these basic ideas. In [9], a solution is represented
by two-dimension strings {S1, S2, …, Sn}. Each string Si
represents the tasks scheduled on the processor Pi and the
order of appearance is the execution order of tasks.

tile 1: (task 1, task 4)
tile 2: (task 1, task 2, task 4)
tile 3: (task 1, task 2)
tile 4: (task 3)

ctrl 1: (C<1,1>,C<1,3>,C<2,1>)
ctrl 2: (C<1,2>,C<3,1>,C<2,2>,C<4,1>,C<4,2>)

t1 t2

t3

t4

schedule step1 2 3 4 5 6
7 8 9 10 11 12

tile 1

tile 2

tile 3

tile 4

>< 1,1C

>< 2,1C

>< 3,1C
>< 1,2C

>< 2,2C

>< 1,4C

>< 2,4C

>< 1,3C

T-strings

C-strings

paired tokens for the configuration voltage state
(C<1,1>,1.5V), (C<1,2>,1.5V), (C<1,3>,1.5V), (C<2,1>,1.5V),
(C<2,2>,1.5V), (C<3,1>,1.2V), (C<4,1>,1.2V), (C<4,2>,1.5V)

1 2 3 4 5 6 7 8 9 10 11 12

ctrl 1

ctrl 2
>< 1,1C >< 3,1C >< 1,2C

>< 2,1C >< 1,3C >< 2,2C >< 1,4C >< 2,4C

schedule
step

Figure 4. Gene representation

task 2 task 3

task 4

task 1

>< 1,1C >< 2,1C >< 3,1C

>< 1,2C >< 2,2C

>< 1,4C >< 2,4C

>< 1,3C

Figure 3. The task model

The crossover allows two parents, par1 and par2, to
mate to generate two new individuals, child1 and child2.
The crossover can be seen as a way to achieve the guided
search, since new solutions are directly derived from the
old ones. In [9], a random task is first selected, and then
the crossover sites (a place to cut a string into half) for
each string Si is generated based on the height value [9] of
the selected task. The height values implicitly determine
the task precedence. Then the string, Si of child1, is
generated by appending the right string (the partial string
after the crossover site) of the Si of par1 to the left string
(the partial string before the crossover site) of the Si of
par2. The offspring, child2, is built in the same way after
swapping the parents.

The mutation generates a new individual by randomly
modifying the chromosome of another individual. It is a
technique to increase the randomness of the search to
avoid solutions being trapped into local optimal points,
which are the ultimate results if only the crossover is
used. In [9], the mutation is done by randomly changing
the positions of two tasks with the same height.

4.3. Coding of Solutions

In our approach, we use a similar chromosome as in the
multiprocessor scheduler [9], but we extend it to cope
with: 1) task allocation, 2) configuration schedules and 3)
configuration DVS states. The chromosome consists of a
pair of two-dimension strings and a string of paired
tokens. An example of the chromosome and the
corresponding scheduling result for the task set in Figure
3 are shown in Figure 4.

The first two-dimension strings {Tile1, Tile2, …, Tilen}
are the task strings (T-strings) represent the scheduling
results of tasks on tiles. The task string Tilei represents the
tasks scheduled on the ith tile. The order of the tasks on
the string Tilei is then the execution order of these tasks
on the ith tile. For a task that requires multiple tiles, its
instance appears on all the tiles assigned to it, e.g. task 1.

The second two-dimension strings {Ctrl1, Ctrl2, …,
Ctrln} are the controller strings (C-strings). They
represent the configuration scheduling results. The C-

string Ctrli represents the configurations scheduled on the
ith controller, and the order of appearance on Ctrli is the
configuration order of using the ith controller.

The string of paired tokens represents the DVS states of
configurations, one pair for one configuration process.
The first token of a pair denotes the configuration, and the
second denotes the DVS state.

Based on the strings of an individual, we derive a new
graph. We refer this graph as the schedule graph (s-
graph). It is needed in our GA operators. The s-graph is
constructed by inserting extra edges of the scheduling
dependence into the graph G, as follows. 1) For each two
adjacent task nodes on a T-string Tilei, an edge from the
first task node to the configuration node, which
configures the second task on the ith tile, is inserted into
G. For example, an edge from task 2 to the configuration
node C<4,2> is needed, because the configuration cannot
start before task 2 is finished. 2) For two adjacent
configuration nodes on each C-string Ctrli, an edge from
the first node to the second node is inserted into G. For
example, a link from C<1,3> to C<2,1> is needed, because
they are not allowed to run in parallel and the
configuration C<1,3> should precede C<2,1>.

In our approach, each individual, plus all offspring
after crossover and mutation, represents a feasible
solution. This is done by ensuring that the gene order in
strings does not violate the precedence constraints.

4.4. Initial Population

The initial population is a group of initial solutions,
from which the GA starts to evolve. In our approach, the
initial population is generated through a resource-
constraint list scheduling approach, but resources are
randomly selected upon scheduling. The basic procedure
to create an initial individual is as follows.

(task 1, task 4)
(task 1, task 2, task 4)
(task 1, task 2)
(task 3)
(C<1,1>,C<1,3>,C<2,1>)
(C<1,2>,C<3,1>,C<2,2>, C<4,1>,C<4,2>)

par 1

(task 1, task 2)
(task 1, task 2)
(task 1, task 4)
(task 3, task 4)

par 2

(C<1,1>,C<1,3>,C<2,1>, C<4,1>,C<4,2>)
(C<1,2>,C<3,1>,C<2,2>)

(crossover sites are marked with)

(task 1)
(task 1, task 2)
(task 1, task 2, task 4)
(task 3, task 4)
(C<1,1>,C<1,3>,C<2,1>,C<4,1>,C<4,2>)
(C<1,2>,C<3,1>,C<2,2>)

child 1

crossover

(task 1, task 2, task 4)
(task 1, task 2, task 4)
(task 1)
(task 3)

child 2

(C<1,1>,C<1,3>,C<2,1>)
(C<1,2>,C<3,1>,C<2,2>,C<4,1>,C<4,2>)

1.5, 1.5, 1.2, 1.2, 1.5, 1.2,1.2, 1.5

1.5, 1.5, 1.2, 1.5, 1.5, 1.2,1.5, 1.2

1.5, 1.5, 1.2, 1.2, 1.5, 1.2,1.5, 1.2

1.5, 1.5, 1.2, 1.5, 1.5, 1.2,1.2, 1.5

Figure 5. Crossover

step 1: Select a ready task node. A task node is ready
if all of its predecessor task nodes are scheduled or it has
no predecessor task node.

step 2: Randomly select controllers for its
configuration nodes, and randomly select tiles for the task
node. If it requires multiple tiles, randomly select
continuously connected tiles. Append the task node and its
configuration nodes to the end of the strings of the
selected resources. Randomly assign DVS states for the
configuration nodes.

step 3: If there are unscheduled task nodes, go to step
1. Otherwise an initial individual is created, and exit.

4.5. Crossover

The crossover allows two parents, par1 and par2, to
mate to generate two new individuals, child1 and child2,
by swapping genes. In our work, we extend the crossover
[9] for our task scheduling problem of DRHW. The
crossover in [9] can guarantee to generate feasible
offspring. This is done as follows. Task nodes in the
strings must be ordered based on their height values in
order to satisfy precedence constraints. During crossover,
a s-graph (in multiprocessor scheduling, the s-graph does
not contain the configuration nodes) is divided into two
acyclic sub-graphs GL and GR in such a way that there
exist edges only from GL to GR, but not vice verse. Then,
the crossover sites (a place to cut a string into half) are
selected in such a way that all the nodes in the left-strings
belong to GL and all the nodes in the right-strings belong
to GR. Therefore, no cycle will be generated after
swapping the right-strings, and thus the offspring are
feasible solutions.

In our approach, we use the s-graph of par1 and par2, to
generate the two sub-graphs, as follows.

step 1: Start with a randomly selected task node. Move
this node and its configuration nodes into GL.

step 2: In the s-graph of par1, search for the task nodes
that precede the selected task node, and move these task
nodes and their configuration nodes into GL.

step 3: In the s-graph of par2, search for the task nodes
that precede the nodes already in GL, and move these task
nodes and their configuration nodes into GL. Put the rest
of the task nodes and their configuration nodes into GR.

The basic idea of crossover is to generate new solutions
by combining the parents’ solutions, which in our
approach means that part of the strings from par1 and part
of the strings from par2 are transformed into the new
individuals, child1 and child2. The crossover is done as
follows, and an example is shown in Figure 5.

step 1: Randomly select a task, and generate the sub-
graphs GL and GR from the s-graphs of both the parents.

step 2: Mark the crossover sites in the parents’ strings.
In each string, all the nodes (task nodes in T-strings, and
configuration nodes in C-strings) that before the crossover
site must belong to GL.

step 3: Copy the left-strings of par1 to child1. Use
par2’s allocation results to perform the ASAP scheduling
for the nodes in GR, and convert the results into the right-
strings of child1. From par1 (par2), copy the DVS states of
the configuration nodes in the GL (GR) to child1. The
similar is done for child2.

4.6. Mutation

We create four different mutations schemes due to the
complexity of our chromosome, and they are used
together in the mutation phase. The first one is to mutate
only the T-strings. This allows a task node to be randomly
selected and moved to a new location. Let’s use the
height(Vi) to represent the height value of the node Vi.
Then the place in the new T-string to insert the task node
must satisfy the condition that height(the node before Vi)
< height(Vi) <= height(the node after Vi). The height of a
task node is calculated based on the s-graph as follows.

 1, if Vi is a root
1 + max(height(predecessor)), else (1)height(Vi)=

The second one is to mutate only the C-strings. We

randomly select a configuration node and inserted it to a
new controller’s equivalent C-string. The insertion place
is selected in a similar way to the previous task mutation
technique, but the height value of a configuration node is
calculated differently. It is equal to the height value of the
task node that it configures.

The third mutation is to modify the DVS state string.
This is done by randomly selecting a new DVS state of a
randomly selected configuration node. The last mutation
is to rotate the controller assignment for the configuration
nodes of a task. This is done as follows. A task node Ti is
randomly selected. If it has N configuration nodes (N tiles
are needed for the task), then in the C-strings the node
C<i,1> is replaced by C<i,2>, C<i,2> is replaced by C<i,3>, and
finally C<i,N> is replaced by C<i,1>. This mutation is
applied only for the task that requires multiple tiles. After

Table 1. Power-delay profile of the configuration

 delay power
1.2V 374 us 192 mw
1.3V 346 us 225 mw
1.4V 323 us 261 mw
1.5V 304 us 300 mw

conf iguration energy comparison
 (DVS V s. no DVS)

0
2
4
6
8

10
12
14
16
18
20

(4 ,1) (4 ,2) (4 ,3) (5,1) (5,2) (5,3) (6 ,1) (6 ,2) (6 ,3) (7,1) (7,2) (7,3)
dev ices

en
er

gy
 r

ed
uc

tio
n

(%

0.2
0.5
1

Figure 6. Comparison of the energy reduction of
using DVS and without using DVS

the mutation phase, C-strings must be sorted based on
their new height values to avoid generating cycles.

4.7. Selection

The selection picks up some individuals to reproduce
offspring. The natural rule is that better ancestors tend to
generate better offspring, because the “good” genes are
passed. The GA selection is implemented using the
roulette wheel style. The basic procedure is to assign each
individual a slot size in the roulette wheel that is
proportional to its fitness value. Then a random number is
generated as an index to the roulette wheel, and the
individual that covers the index is selected to reproduce.
Because an individual with a larger fitness value covers a
larger slot, it then has higher chance to be selected to
reproduce. The fitness of an individual i is calculated as:

fitness =
max_length

current_lengthi
+ *

max_energy
current_energyi

(2)a

The max_length is the longest scheduling length in the
current generation, and the current_lengthi is the
scheduling length of the individual i. In our case, because
an s-graph deterministically defines the scheduling order
and allocation results, the scheduling length then is equal
to the length of the critical path of the s-graph. The
max_energy is the maximal consumed configuration
energy in the current generation, and the current_energyi
is the consumed configuration energy of the individual i.
The α is a design parameter that can be used to adjust the
importance of the length factor and the energy factor.

5. Experimental Results

5.1. Evaluation with Pseudo Tasks

The GA-based scheduler is implemented in C++ and
added as an extension to our design space exploration
toolset for DRHW [6]. The computer environment is a
Celsius R640 workstation. We used 10 randomly
generated task graphs with each graph containing 10
tasks. These graphs had different levels of depth and
different tree structures, so they could be seen as
representations of widely different applications. The
number of required tiles of an individual task was
randomly generated with uniform distribution in the range
of [1, 3]. Different device models were used by setting the
number of tiles, NT, to iterate from 4 to 7 and the number
of controllers, NC, to iterate from 1 to 3. In the following

context, we use (NT, NC) to refer to the device with NT
tiles and NC controllers. The ratio of the average
configuration time to the average computation time, g,
was set to be 0.2, 0.5, and 1.0 separately. Four supply
voltages were used. The power-delay profile of the
configuration process is shown in Table 1. The 1.5V
profile was estimated based on the XC2V80 FPGA
datasheet [3], and others were derived from the power-
voltage relation (Pdyn ∝ CV2f). The following GA
parameters were used.

• mutation probability: 0.15
• crossover probability: 0.95
• replacement percentage in one generation: 80%
• number of individuals in one generation: 60
In order to use DVS to minimize the configuration

energy but without increasing the scheduling length when
compare to no-DVS scheduling, we set that the GA
termination criteria should satisfy the following two
conditions. 1) The average scheduling length in the
current generation is equal to the no-DVS scheduling
length, which can be derived by using only the highest
supply voltage state in the scheduling process. 2) The
difference between the average configuration energy and
the lowest configuration energy in the current generation
is within 0.1% for 5 continuous generations. We stopped
the no-DVS scheduling after 1000 generations. The
average runtime was 6.5 seconds. For the scheduling
including DVS, the average runtime was 25 seconds
under the above termination criteria. The best result out of
10 runs is used in the following analysis.

The reduced configuration energy is extracted and
averaged over the 10 DAGs. The results are presented in
Figure 6. When considering individual cases, the maximal
reduction of the configuration energy is 20.2%. When we
average the results for each setting of g, the average
reduction of the configuration energy are 15.7%, 12.5%,
and 6.9% separately for g=0.2, 0.5, and 1.0. It can be seen
that for smaller configuration latency (g=0.2) using single
configuration controller, (NT,1), can already significantly
reduce the configuration energy. This is because for

0 %
1 0 %
2 0 %
3 0 %
4 0 %
5 0 %
6 0 %
7 0 %
8 0 %
9 0 %

1 0 0 %

(7 ,1) (7 , 2) (7 , 3) (7 , 1) (7 , 2) (7 ,3) (7 ,1) (7 ,2) (7 ,3)

vo
lta

ge
 d

is
tr

ib
ut

io
n

1 . 5 V 1 .4 V 1 . 3 V 1 . 2 V
0 .2 0 .5 1 .0

Figure 7. Voltage assignment distribution

smaller g using only prefetching has already created
enough idle time that can be utilized to apply DVS on the
configuration process, as shown in Figure 1(a, c). For
larger configuration latency, it can be seen that excessive
idle time is created only when multiple controllers are
applied, as shown in Figure 1(b, d). The results of g=0.5
on (5,NC) show that using 3 controllers tends to be less
effective than using 2 controllers. This is because the
additional controller is busy at configuring tasks (reducing
the total scheduling length is also one of our objectives).
Therefore, less excessive idle time is available.

In Figure 7, we depict the voltage distribution on
(7,NC) to present more details of the results. For small
configuration latency, it can be seen that majority of the
configuration processes are assigned to the lowest supply
voltage for single controller case. In addition, using
configuration parallelism barely changes the voltage
distribution. In contrast, for large configuration latency,
using additional controllers allows more of high voltage
states to be replaced with low voltage states.

5.2. Evaluation with Real Applications

We also tested the approach with 7 real applications,
sobel (image sharpening using sobel masking), unsharp
(image sharpening with blur), laplacian (image sharpening
using laplacian filter), sobel & noise (image sharpening
with noise reduction), JPEG decoder, MPEG decoder and
WCDMA detector (4 core functions for channel
equalization). Each application was divided into a
number of tasks, and each task was manually coded in
VHDL. The resources and the execution time were
derived from synthesis results and simulation results. We
evaluated on devices that contained from 4 tiles to 7 tiles
with one configuration controller. We assumed that each
tile consisted of the same amount of resources and had the
same configuration overhead as in the XC2V80 FPGA.
This gave us that the ratio g was in the range of [0.18,
0.27] for these applications. The same GA settings as in
the previous case were used. In average, each GA run
took 8.7s. The results showed that without increasing the
scheduling length the configuration energy could be
reduced by 15.4% in average. In the best case, sobel &
noise on device (7,1), 19.3% was theoretically achievable.

6. Conclusions

To efficiently benefit from the RTR, the configuration
energy should be minimized for DRHW. In this work, we
present an approach that uses DVS to reduce the
configuration energy. The idea is to use configuration
prefetching and parallelism to create idle time and then
apply DVS on tasks when such idle time can be utilized.
A genetic algorithm is developed to optimize the multi-
objective problem, e.g. task allocation, scheduling,
configuration prefetching, and DVS state assignment. A
set of randomly generated tasks is used in evaluation.
Considering the reduction of configuration energy, the
results show that using more tiles is more beneficial when
the configuration latency is relatively small and using
more controllers is more beneficial when the latency is
relatively large. Evaluation with real applications shows
that up to 19.3% reduction of configuration energy is
achievable. In the future, static power consumption will
be included and system-level power reduction techniques
with applying DVS on the circuit itself will be studied.

7. Acknowledgements

This work is supported by Tekes (National Technology

Agency of Finland) and VTT under EUREKA/ITEA
contract 04006 MARTES. We would like to thank the
Jenny & Antti Wihurin Foundation and the Nokia
Foundation for sponsoring the work. We would also like
to thank Juanjo Noguera for providing the implementation
results of the image sharpening applications.

8. References

[1] S. Hauck, “Configuration prefetch for single context

reconfigurable coprocessors”, ACM/SIGDA International
Symposium on FPGA, pp. 65-74, 1998.

[2] Z. Li, K. Compton, S. Hauck, “Configuration caching
management for reconfigurable computing”, IEEE Symp. on
FCCM, pp. 22-38, 2000.

[3] Xilinx, datasheet and application notes, www.xilinx.com.
[4] H. Singh, et al, “MorphoSys: an integrated reconfigurable

system for data-parallel and computation-intensive
applications”, IEEE Trans. vol.49, no.5, pp.465-481, 2000.

[5] T. D. Burd, et al, “A dynamic voltage scaled microprocessor
system”, IEEE JSSC, vol. 35, no. 11. pp. 1571-1580, 2000.

[6] Y. Qu, J-P. Soininen, and J. Nurmi, “A parallel
configuration model for reducing the run-time
reconfiguration overhead”, DATE’06, pp. 965-970, 2006.

[7] Y. Lin, F. Li, and L. He, “Circuits and architectures for
FPGA with configurable supply voltage”, IEEE Trans. on
VLSI, vol. 13, no. 9, pp. 1037-1047, 2005.

[8] J. Holland, Adaptation in natural and artificial systems,
University of Michigan Press, 1975.

[9] R. Correa, A. Ferreira, and P. Rebreyend, “Scheduling
multiprocessor tasks with genetic algorithms”, IEEE Trans.
Parallel&Distributed Sys, vol. 10, no. 8, pp. 825-837, 1999.

	Main
	DATE07
	Front Matter
	Table of Contents
	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

