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Abstract 
 Partial reconfiguration allows parts of the 

reconfigurable chip area to be configured without affecting 

the rest of the chip. This allows placement of tasks at run 

time on the reconfigurable chip. Area management is a very 

important issue which highly affect the utilization of the 

chip and hence the performance. 

This paper focuses on a major aspect of moving running 

tasks to free space for new incoming tasks (compaction). 

We study the effect of compacting running tasks to free 

more contiguous space on the system performance. First, 

we introduce a straightforward compaction strategy called 

Blind compaction. We use its performance as a reference to 

measure the performance of other compaction algorithms. 

Then we propose a two-dimensional compaction algorithm 

called one-corner compaction. This algorithm runs with 

respect to one chip corner. We further extend this algorithm 

to the four corners of the chip and introduce the 4-corner 

compaction algorithm. Finally, we compare the 

performance of these algorithms with some existing 

compaction strategies [3]. The simulation results show 

improvement in average task allocation time when using 

the 4-corner compaction algorithm by 15% and in chip 

utilization by 16% over the Blind compaction. These results 

outperform the existing strategies. 

 

1. INTRODUCTION 

 

Today’s Field-Programmable Gate Array (FPGA) 

devices provide several millions of gates and allow partial 

reconfiguration. Partial reconfiguration allows part of the 

chip to be configured with a new task without affecting 

other currently running tasks. While this technique can 

increase the device utilization, it also leads to complex 

allocation situations for dynamic task sets. Even if good 

placement method is used, the reconfigured area will be 

fragmented. A high fragmentation can lead to undesirable 

situation where a new task cannot be placed although there 

would be sufficient number of scattered cells [1]. So, there 

exist a serious need for well-defined system service that 

helps to efficiently manage the area resource. The benefit of 

using the area management strategy is to increase the area 

utilization and so increase the system performance [2]. On 

the other hand, these benefits are paid for by overheads in 

the required computation time of the area management 

system and task relocation. Here we adopt task compaction 

as our strategy to task relocation. 

The area management contains two aspects: task 

placement and task compaction. A task placement is 

responsible for the decision where a task is mapped in the 

reconfigurable area. If placement has failed, the compaction 

unit tries to rearrange the running tasks to reduce chip 

fragmentation and then find a place for the incoming task. 

Compaction is collecting used area near to each other 

and so collecting scattered free cells to generate larger free 

areas. Hopefully, the new free areas can accommodate the 

new incoming task. Compaction requires preemption, where 

running tasks are stopped and continued at a different 

location [2]. If all the running tasks are involved in the 

compaction process, then the compaction is total other wise 

it is partial. 

Total compaction is moving all tasks, if possible, to free 

more contiguous area. This can be done in two ways. The 

first way is to stop all tasks, compact the tasks and then 

resume all tasks again. The second way is to stop one task 

and resume it in a new location. This process is repeated for 

all tasks. The former method gives better arrangement but 

consumes much more time. The later method consumes 

minimum stopping time per task, while the stopping time of 

a task is only the time to move its configuration to the new 

place. But this method needs more effort in the choice of the 

selected task and its new place. In this paper we concentrate 

on the second method. 

Partial compaction is moving some of the tasks (one or 

more) on the chip to generate a free location area that just 

fits the new task. This method preempts tasks that only help 

in the solution. The method does not disturb other tasks, but 

it consumes more time to test all possible task movements to 

find the solution [3]. Also, this method presents a short-term 

solution for the current new task, and does not help any 

other incoming task or improve the fragmentation of the 

reconfigurable area. 

In this paper, we discuss a preemptive partially 

reconfigurable system that executes a set of independent 

tasks. We study different compaction strategies and show 

their effects on FPGA area utilization and performance. We 

compare the quality and complexity of these strategies. 

First, a base line compaction algorithm, Blind Compaction, 

is presented. The algorithm is a straightforward algorithm 

that we introduce to be able to evaluate other compaction 

978-3-9810801-2-4/DATE07 © 2007 EDAA 

 



algorithm. The algorithm is one- dimensional (compaction 

of tasks is done in one direction) and the order of tasks is 

preserved after compaction. Second, we compare the 

existing one-dimensional partial compaction algorithms [3] 

with the new base line. Then, we introduce a two-

dimensional compaction algorithm, one-corner compaction, 

in which we compact the tasks in two dimensions toward 

one corner of the chip. Finally, we extended the corner 

compaction algorithm to work with respect to the four 

corners of the chip, 4-corner compaction. In this algorithm, 

tasks that are closer to a certain chip corner are compacted 

toward that corner using the corner compaction algorithm. 

Our results show an improvement of about 16% in area 

utilization and 15% in allocation time over the blind 

compaction. 

The next section presents the previous work. Section 3 

describes the system model. In Section 4, we describe the 

Blind compaction algorithm. Section 5 describes the corner 

and 4-corner compaction algorithms. Section 6 presents the 

simulation results. In Section 7, we summarize our results 

and make some concluding remarks.  

 

2. RELATED WORK 

 

A lot of work has been done in offline arrangement of 

tasks, where task sizes and service times are known in 

advance. In an offline scenario, one can afford to spend the 

time to derive optimal or near-optimal solutions. In this case 

the problem is much similar to the traditional packing 

problem [4].  

A substantial work has been done in finding empty place 

on the reconfigurable  area [5] and the online task 

placement methodology [6][7] to improve their efficiency. 

They all deal with non-preemptive tasks, and so they do not 

offer task re-arrangement. Compton et al. [8] discuss a 

hardware modification to the FPGA that provides task 

relocation and transforms to reduce fragmentation. Task 

transforms consist of a series of rotation and flip operations. 

Diessel et al. [3] tackle the fragmentation problem in 

partially reconfigurable FPGAs. They perform a task 

rearrangement by techniques denoted as local repacking and 

ordered compaction. Local repacking method attempts to 

repack the tasks within a part of the chip so as to 

accommodate the waiting task as well. A quad tree 

decomposition of the free space in the chip is used and a 

depth-first search of the tree allows promising parts to be 

identified and evaluated. This operation requires O(n
3
log n) 

where n is the number of currently running tasks on the 

chip. Diessel et al. [3] also presented an ordered 

compaction heuristic that moves some tasks to one side of 

the chip and places the waiting task at the freed location. 

Ordered compaction therefore has the effect of moving the 

running tasks that are to be compacted closer together while 

preserving their relative order. To select the moved tasks a 

direct dependency graph is built and depth-first traversal is 

applied with some candidate cells to check the minimum 

cost movement place. This operation requires O(n
3
) where n 

is the number of currently running tasks on the chip. We 

compare our work with the results of their ordered 

compaction method. 

Koester [9] assumes one dimensional compaction on the 

FPGA area; this is due to the block distribution of the used 

reconfigurable device. 

In contrast to the previous work, this paper focuses on 

pre-emptive task re-arrangement when placement unit could 

not find free contiguous space for the new incoming task. 

We assume that tasks need a rectangular area. We further 

discuss the compaction algorithms and compare their 

performances. This paper presents a novel two-dimensional 

compaction algorithm and its extension that improve the 

reconfigurable chip utilization and the system performance. 

 

3. SYSTEM MODEL 

 

This section presents the tasks characteristics for a partial 

reconfigurable system. Then, we define the preemptive 

system model we use in this paper. 

 

3.1 Task Characteristics 

 

An H×W partially reconfigurable FPGA chip consists of 

H rows and W columns is used. The lower left corner is the 

chip origin. Part of the chip can be configured without 

affecting the rest of the chip. Our system assumes that tasks 

arrive online, queued and placed in arrival order. Task 

parameters (size, arrival time, service time) are not known 

in advance. These task parameters are defined as follows. 

For a task ti, ti = ( hi, wi, xi, yi ), where hi (resp. wi) 

represents its height (resp. width) and measured in number 

of rows (resp. columns). The parameters hi and wi are 

uniformly distributed in a predefined region. The size of the 

task is hi×wi. The rectangular area assigned to the task is 

presented by its lower left corner (xi,yi) where xi: row 

number, and yi: column number.  

Tasks are re-locatable; i.e. the task can be placed at any 

free area in the reconfigurable chip area, and at any time it 

can be suspended and resumed in another free place. Re-

locatable tasks can be placed at arbitrary positions with 

different row and column offsets. In fact, task relocation 

involves some difficulties, while intra-task wires are 

translated, wires running between different tasks or between 

tasks and I/Os need to be re-routed dynamically. Here, we 

assume that tasks are independent, so we do not have 

onboard task communications.  

The asynchronous tasks arrival times as well as the tasks 

service times are uniformly distributed in a predefined 

interval and are a-priori unknown. These characteristics 

reflect a general-purpose computing system. 

Formally, a task ti arrives at time ai , starts to execute at 

time si , and finishes at fi . Thus, the task’s response time is 



given by resp (ti) = fi - ai . The allocation time, alloc (ti) is 

the time the task is waiting at the top of the waiting queue 

till it finds a place on the reconfigurable area.  

All arriving tasks are queued in arrival order.  Tasks are 

taken one by one from this list to be located in the 

reconfigurable chip.  

 

3.2 System Characteristics 

 

In this paper we consider homogeneous devices. 

Although many new reconfigurable devices are 

heterogeneous, the homogeneous systems are still wide 

spread in many applications. Also, the work presented here 

could be applied to the homogeneous portions of the 

heterogeneous devices.     

The resource management system consists of two main 

units: Placement unit and Compaction unit. The placement 

unit is responsible of finding empty place on the FPGA to 

place the task, while the compaction unit is responsible of 

performing the compaction algorithm to free contiguous 

place for the new task. 

When a task executed and there exist some waiting tasks 

in the waiting list, the above process is repeated. This 

process continues till all the required tasks end execution. 

 

3.3 Performance Measures 

 

The main objective is to improve chip utilization and 

system performance. For a task set T with N tasks used in 

the evaluation process, we test the reconfigurable chip 

utilization, U(T), that quantifies how well we use the 

resource. With respect to time analysis of the system, we 

measure the average allocation time, A(T), and the average 

response time, R(T). The allocation time quantifies the 

average waiting time for each task while testing the FPGA 

area till an empty place exists. The response time quantifies 

the average time duration for each task from entering to 

leaving the system. We also calculate the average number of 

parallel running tasks on the chip, n, and the number of 

compaction trials done to allocate all tasks. The overall 

execution time, E(T), of all tasks is the time elapsed from 

the arrival of the first task till the departure of the last task. 

Assuming that first task arrives at time 0, we can calculate 

the above measures as follows: 
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4. BLIND COMPACTION ALGORITHM 

 

In this section, we introduce a baseline for all 

compaction algorithms and call it Blind compaction. The 

baseline algorithm is a straightforward methodology to 

compact tasks and its performance can be used as a 

reference for other compaction algorithms. The algorithm is 

blind in that it performs the compaction if a place is not 

found even if the compaction will not result in an enough 

area for the incoming task. The algorithm is one-

dimensional, in which, compaction of tasks are done in one 

direction. There is no loss of generality to choose the chip 

right side. 

 

Definition 1 For H×W reconfigurable area with n active 

tasks, a task tj = (hj, wj, xj, yj), 1≤ j ≤ n, is in the direct east 

of a task ti = (hi, wi, xi, yi), 1≤ i ≤ n, if yj ≥ yi + wi and there 

exists a row k, such that xi ≤ k < xi + wi and xj ≤ k < xj + wj 

where 1≤ k ≤ H.                                                                   ■                           

The above definition means that task tj is in direct east of 

task ti if tj is on the right of ti and they have a common row. 

For example in Figure 1, row 6 is common between t3 and 

t4, also t4 is on the right of t3. Thus t4 is in direct east of t3. 

While t2 is not in direct east of t3, and t3 is not in direct east 

of t1. 

The Blind compaction algorithm simply moves all tasks 

to the nearest place to the right side of the chip. Tasks are 

sorted in ascending order with respect to the distance 

between task’s right edge and the chip right side. The first 

task is selected and moved to the right such that its right 

edge is directly touching the chip right side. The next task is 

selected and moved to the most possible right free place till 

it touched either the chip right side or any other task’s left 

edge. The process is repeated till all tasks have been visited. 

In doing this, each task moves once to its final place. Also, 

each task is stopped the minimum possible time (the time to 

transfer the task data from the current location to the new 

location). Finally tasks are compacted while preserving their 

relative ordered. 

Figure 2 shows the Blind compaction algorithm. The first 

step calculates the distance mi between the right side of each 

task and the chip right edges. Step 2 sorts the tasks with 

respect to the distances computed in Step 1. Any sorting 

algorithm can be used, for example a linear sort with 

complexity O(n
2
). The second step selects a task in order 

and computes the free distance between this task and the 

nearest task to its right. The second step takes O(n
2
). The 

overall complexity of this method is O(n
2
).                            

Since the tasks are sorted, no task will need further 

movement after it reaches its destination. As intended, this 

Blind compaction algorithm will be used as a reference for 

other compaction algorithms.                                              ■      



 
Figure 1: Relative distance. 

 

 
Algorithm 1: Blind Compaction (L, L′) 

Input: A list L with n active tasks, 

{ }niyxwhttL iiiiii ≤≤== 1),,,,(;  

Output:  A compacted list L′ with n active tasks, 

{ }niyxwhttL iiiiii ≤≤′==′ 1),,,,(;  

1. For i = 1 to n 

mi = W - ( yi + wi )  

2. Sort L with respect to mi in descending order, in L′. 

3. For i = 1 to n 

3.1 ti = L′(i) 

3.2 For j = 1 to i-1 

    tj = L′(j) 

   If (tj) in the direct east of (ti)  

      then  mi = min ( mi , yj  - ( yi + wi ) ) 

Next j 

3.3 Move ti to the right mi columns, i.e.  (y′i = yi + mi) 

Next i 

 

 

Figure 2: Blind compaction Algorithm. 

 

 

5. NEW COMPACTION ALGORITHMS 

 

In this section we introduce a two-dimensional 

compaction algorithm. Instead of compacting tasks in one 

direction towards the chip edge, the two-dimensional 

compaction algorithm moves tasks towards one chip corner. 

A task ti located at (xi , yi) could change its position after 

compaction to (xi′, yi′) where xi ≠ xi′ and yi ≠ yi′. The 

problem of choosing the tasks’ moving order arises. Section 

5.1 identifies how we arrange tasks to choose the moving 

order. Section 5.2 describes our two-dimensional 

compaction algorithm. In Section 5.3, we modify the 

algorithm in Section 5.2 to compact tasks towards the four 

corners of the chip. 

  

5.1 Task arrangement 

 

Since we are trying to move the active tasks towards a 

corner, we need to define the order of tasks to be moved. In 

the Blind compaction algorithm, we use the distance 

between the right side of each task and the right edge of the 

chip as the criteria to sort tasks. In two-dimensional 

environment assuming we are moving tasks to the bottom-

left corner, the distance from a task’s bottom-left corner to 

the bottom left corner of the chip, which can be calculated 

as 22

iii yxd +=  for a task ti, might not yield always a good 

choice. As shown in Figure 1, for tasks t1 and t2, although d2 

> d1, we need to move t2 before t1. 

 

Definition 2 For H×W reconfigurable area with n active 

tasks, a task tj = (hj, wj, xj, yj), 1≤  j ≤ n,  is in the south-west 

region of a task ti = (hi, wi, xi, yi), 1≤ i ≤ n, if  yj < yi + wi  

and xj < xi + hi,.                                                     ■                                

The above definition means that task tj is in the direct 

south west of task ti if the lower left corner of task tj is in the 

south-west region of task ti. For example, in Figure 1, t1, t2, 

and t3 are in the south-west region of t4. 

 

Definition 3 A task tj has relative distance, Xtj, less than the 

relative distance, Xti, of a task ti if: 

(1) tj is in the south-west region of ti  or  

(2) dj < di and (1) is not true.            ■ 

The above definition defines the criteria on which we will 

arrange the tasks to be moved in the two-dimensional 

compaction algorithm. For example, in Figure 1, Xt2 < Xt1 

because t2 is in the south-west region of t1. Also Xt2 < Xt3 

because d2 < d3 and t2 is not in the south-west region of t3. 

The algorithm in Figure 3 takes O(n
2
) where each task 

has to ask the other n tasks to identify its relative order in 

the sorted list SL. For example in Figure 1, since Xt2 < (Xt1, 

Xt3, Xt4), the first task is t2. The sorted list of tasks in Figure 

1 will be {t2, t1, t3, t4}.                                                          ■          

 

5.2 Two-dimensional compaction 

 

 In the two-dimensional compaction, we move tasks in 

both vertical and horizontal directions to one of the chip 

corners (south-west, south-east, north-east, or north-west). 

Without loss of generality, we use the bottom-left corner. 

The order of the tasks is taken as their relative order with 

respect to the selected corner as shown in the previous 

section. The compaction process is shown in Figure 4. 

 
Algorithm 2: Arrange (L,SL) 

Input: Set of active tasks L  = {ti, 1 ≤ i ≤ n} 

Output: Sorted list of active tasks with respect to  

the relative distance, SL  = {ti, 1 ≤ i ≤ n} 

1. Get first element from L and add in the empty list SL 

2. For j = 2 to n 

 2.1 tj = L(j) 

 2.2 For i = 1 to j-1 

        ti = SL(i) 

        If   Xtj < Xti  

           then   add (tj) before (ti) in SL , and go to step 3 

           Next i 

   2.3 Add (tj) at the end of SL 

3- Next j 

 

Figure 3: Arrange Algorithm. 



 

Algorithm 3: One-Corner-Compaction(L, L′) 
Input:   List of active tasks,  

L = { ti =(hi, wi, xi, yi)   ; 1 ≤ i ≤  n } 

Output: List of active tasks with new positions,  

L′= { ti =(hi, wi, xi′, yi′) ; 1 ≤ i ≤  n } 

 

1- Call Arrange (L, L`) 

2- For i = 1 to n 

2.1 ti = L′(i) 

2.2 Find new location (x, y) for ti  

2.3 If ((x < xi) and (y ≤ yi)) or ((x ≤ xi) and (y < yi))  

          then xi′ = x , yi′ = y 

Next i 

 

Figure 4: Two-dimensional compaction Algorithm. 

 

In Figure 4, Step 1 takes O(n
2
). In Step 2, finding new 

location for task ti takes O(n
2
). Thus, the total algorithm 

requires O(n
2
) to complete the compaction process. 

 

5.3 Modified two-dimensional compaction 

 

The new idea here is to use the four corners, not only one 

corner (bottom left corner), to compact tasks towards them. 

This algorithm highly improves area fragmentation and so 

highly improves the system performance. This algorithm 

has the same complexity of the corner compaction 

algorithm. The additional step is to divide the tasks with 

respect to corners, which requires only O(n). Thus, the total 

complexity of this algorithm is O(n
2
). The performance of 

this method is shown in the next section (this algorithm 

mentioned as 4-corner). 

In the 4-corner compaction algorithm, the tasks that are 

near to any corner are compacted towards that corner. A 

task is nearest to certain corner if distance between task’s 

center to that corner is shorter than other corners. The chip 

has four corners: north east corner, Cne, north west corner, 

Cnw, south east corner, Cse, and south west corner, Csw. All 

tasks are tested at first and divided to four groups, each 

group is compacted towards its nearest chip corner using the 

one-corner compaction algorithm. Relative distances are 

computed with respect to the selected corner. 

Figure 5 shows the effect of applying different 

compaction algorithms. Figure 5 (a) shows the initial 

placement of tasks before any compaction. Figure 5 (b) 

shows the result of the Blind compaction algorithm, while 

Figure 5 (c) and (d) show the task placement after applying 

the one-corner and the 4-corner compaction algorithms 

respectively. 

 

6. RESULTS 

 

Several experiments were done to compare the 

performance of the different compaction methods. For each 

experiment, sets of 10,000 tasks characterized by 4 

independently chosen uniformly distributed random 

variables were generated. Two random variables represent 

the two task side lengths (maximum of 32×32).  Two other 

random variables represent the inter-task arrival period 

(with maximum of 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 

200, and 300 time units) and the task service period 

(maximum 1000 time units). The tasks were queued in 

arrival order and placed in bottom left method to a 

simulated FPGA of size 64×64. The configuration delay per 

cell was fixed to 0.001 time units [3] (The effect of 

changing this value should be considered in a future work.) 

We assume that the compaction algorithms run on a host 

computer and are not taken into account in the task response 

time. 

We use the blind compaction as a reference to compare 

compaction methods. In Figure 6, we can reach an 

improvement over the blind compaction in allocation time 

of 15% with 4-corner compaction, while with 1-corner 

compaction, it is about 8% and with partial compaction it is 

only 5%. In Figure 7, we can reach an improvement in 

response time over the blind compaction up to 37% with 4-

corner compaction, while with 1-corner compaction, it is up 

to 21% and with partial compaction it is only up to 11%. In 

Figure 8, we can reach an improvement over the blind 

compaction in utilization near 16% with 4-corner 

compaction and between 8% and 9% with 1-corner 

compaction while with partial compaction it is about only 

4%. In Figure 9, we compare the average number of active 

(working) tasks on the FPGA chip in the operation time, we 

can see that the 4-corner compaction can manage place for 

10% active tasks at a time more than other compaction 

methods. This property improves the chip utilization and 

also reduces the total response time. 

 

          Figure 5:    (a) Initial tasks      (b) Blind Compaction 

                         (c) One corner       (d) Four corners 

 

 

7. CONCLUDING REMARKS  

 

In this paper, we introduced the blind compaction 

algorithm that we considered its performance a reference for 

all compaction algorithms. The blind compaction 

represented the basic improvement that can be achieved 

through compaction. Then we introduced new two-

dimensional compaction algorithms, one-corner compaction 

and 4-corner compaction, that improve the chip utilization 

and hence the system performance. We compared these new 

algorithms and the partial compaction algorithms [3], with 



the reference performance. The comparison showed an 

improvement in the system performance. For the utilization, 

the 4-corner compaction is 12% better than the partial 

compaction and 7% better than the one-corner compaction.  

We have several directions to extend this work. We plan 

to apply these algorithms in real time system and test the 

effect of compaction on the system miss ratio. Real time 

operating system is an important application of such 

systems. Extending the work to consider heterogeneous 

reconfigurable system is another direction. In addition to the 

placement of the tasks, it is necessary to consider the 

communication infrastructure. Therefore, the model can be 

extended by a formal description of the communication 

infrastructure.  
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Figure 6: Compaction algorithms effect on allocation time. 
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