
An Efficient Algorithm for Online Management of 2D Area of Partially
Reconfigurable FPGAs

Jin Cui, Qingxu Deng
Department of Computer Science

Northeastern University
Shenyang, China

Xiuqiang He, Zonghua Gu
Department of Computer Science and Engineering
Hong Kong University of Science and Technology

Hong Kong, China

Abstract

Partially Runtime-Reconfigurable (PRTR) FPGAs allow
hardware tasks to be placed and removed dynamically at run-
time. We present an efficient algorithm for finding the complete
set of maximal empty rectangles on a 2D PRTR FPGA, which
is useful for online placement and scheduling of HW tasks. The
algorithm is incremental and only updates the local region af-
fected by each task addition or removal event. We use simu-
lation experiments to evaluate its performance and compare to
related work.

1 Introduction

An important component of an operating system for PRTR
FPGAs is the HW task scheduler and placer, which must find
empty space to place a new task, and recycle the occupied area
when a task is finished1. When HW tasks arrive at runtime, the
operating system needs to find an empty space on the FPGA to
accommodate the newly-arrived task. There are mainly three
approaches for maintaining the empty space on a FPGA de-
vice: as a list of Non-Overlapping Rectangles, a list of Maxi-
mal Empty Rectangles (MER), or a list of vertices, each with
its pros and cons. A MER is defined as an empty rectangle that
can not be fully covered by any other rectangle. Managing the
empty space with MERs allows us to fit more tasks on a given
area than with non-overlapping rectangles, but it is often time-
consuming to maintain the complete set of MERs [1], and it is
important to reduce the runtime overhead in order to make the
technique suitable for online use. In this paper, we present an
efficient algorithm for finding the complete set of MERs for a
FPGA area.

This paper is structured as follows: we first provide some

1For simplicity, we assume that the entire FPGA area is uniformly reconfig-
urable without any pre-configured cells, and tasks can be flexibly placed any-
where on the 2D FPGA area as long as there is enough empty space. In practice
it is common to pre-configure some cells of the FPGA area for dedicated pur-
poses such as memory, and application tasks cannot be placed on these cells.
This situation can be easily handled in our algorithms by denoting these cells
as always in use.

basic definitions in Section 2. We introduce the Scan Line Al-
gorithm (SLA) in Section 3, and discuss related work in Sec-
tion 4. We present performance evaluation results in Section 5,
and finally conclude in Section 6.

2 Basic Definitions

The FPGA reconfigurable area contains W × H Config-
urable Logic Blocks (CLB), forming a rectangle of width W
and height H . We use the word cell to refer to CLB in this
paper. Each hardware task or MER occupies a rectangular area
denoted by the tuple (x, y, w, h), where (x, y) is the coordinates
of its lower left corner, and (w, h) is its width and height in
terms of number of cells. Figure 1(a) illustrates these concepts
with a 6 × 10 FPGA area. Two MERs (2,3,4,2) and (4,3,2,6)
are highlighted with bold borders. There are 8 MERs in total,
with the other 6 being (1,10,6,1), (5,1,1,10), (2,8,5,1), (3,7,3,2),
(1,4,6,1) and (5,1,2,2), which are not highlighted.

We use a 2D matrix M [W + 1][H] to represent the FPGA
area, defined as:

M [i][j] =

 M [i− 1][j] + 1 if M [i][j] is not occupied;
if M [i][j] is occupied

0 or i = 0 or i = W + 1.

where
1 ≤ i ≤ W + 1, 1 ≤ j ≤ H

Figure 1 shows the values assigned to each cell on the FPGA.
For convenience, we add one extra matrix column at horizontal
position W + 1 to the right edge of the FPGA area, and assign
value 0 to cells on that column. This column is not shown in
Figure 1. Intuitively, value of M [i][j] is the number of empty
cells to its left if cell (i, j) is empty, and is 0 otherwise.

Definition 1 (Key Element) M [i][j] where 1 ≤ i ≤ W and
M [i][j] 6= 0 ∧M [i + 1][j] = 0.

Definition 2 (Scan Line) the matrix column that contains one
or more Key Elements, e.g., if M [i][j] is a Key Element, then
the corresponding Scan Line is Column i.

978-3-9810801-2-4/DATE07 © 2007 EDAA 

 



(a) FPGA Area
configuration and
its matrix values.

(b) MKEs (circles), Key El-
ements that are not maximal
(lozenges) and Valley Points
(shaded cells) on Column 5.

Figure 1. Example FPGA configuration. Dark
area denotes occupied cells and white area de-
notes empty cells.

Intuitively, a Key Element is an empty cell with an occupied
cell as its righthand neighbor, or an empty cell on the right edge
of the FPGA area. A Scan Line contains one or more Key Ele-
ments, hence it has one or more occupied cells as its righthand
neighbors. We only need to look for MERs on the left-hand side
of each Scan Line, that is, the MERs whose righthand edge falls
on a Scan Line. We will prove that we can find all MERs this
way later in this paper.

Definition 3 (Valley Point) a point si,j on a Scan Line where
si,j < si,j+1, and ∃k, k < j, si,k ≥ . . . ≥ si,j .

Definition 4 (Segment and Maximum Key Element (MKE))
If we use an array {a1, a2, . . . , an} to record the vertical coor-
dinates of the valley points of a Scan Line, then the Scan Line is
divided into n + 1 segments [1, a1), [a1, a2), . . . , [an,H) from
bottom to top. The MKE is defined as the largest Key Element
in a given segment.

A MKE is not necessarily the “peak point” of a segment that
contains it. As shown in Figure 1(b), the point (5,7) is the MKE
of segment 2 instead of (5,8), because (5,8) does not have an
occupied cell as its righthand neighbor and hence is not a Key
Element. Note that there is another Scan Line at Column 6 with
MKEs at (6,2), (6,4), (6,8) and (6,10), which is not shown in
Figure 1(b) in order to avoid clutter.

3 The Scan Line Algorithm

In this section, we present SLA and prove its correctness and
completeness. We start with a basic version of the algorithm
in Section 3.1, and then present an enhanced version in Sec-
tion 3.2 that improves upon its efficiency. We finally present the

online version in Section 3.3 for incremental updating MERs
upon task addition or removal. The main purpose of presenting
the first two versions of SLA in Sections 3.1 and 3.2 is for illus-
trating the key concepts, but the online version in Section 3.3 is
the algorithm that should be used in the actual system.

3.1 Basic SLA

Algorithm 1 Basic SLA for finding MERs based on MKE at
(i, j).

Inputs: FPGA area matrix M and MKE at (i, j).
Outputs: Set of MERs generated by the MKE at (i, j).
Begin Basic SLA(i,j)
top⇐ j, bottom⇐ j;
for w = M [i][j] to 1 do

t⇐ top, b⇐ bottom;
/* Move top upwards until it gets “stuck”. */
while M [i][top + 1] ≥ w and top + 1 < H do

top⇐ top + 1;
end while
/* Move bottom downwards until it gets “stuck”. */
while M [i][bottom− 1] ≥ w and bottom− 1 > 1 do

bottom⇐ bottom− 1;
end while
/*If top or bottom changed, or within the first for loop iteration,
then a MER is found and recorded. */
if w = M [i][j] or top 6= t or bottom 6= b then

Record MER(i− w + 1, bottom, w, top− bottom + 1);
end if

end for
End Basic SLA;

For a MKE at position (i, j), we use a variable w to iterate
from M(i, j) to 1. Intuitively, for each w, we move a horizon-
tal line top with length w and initial position between vertices
(i − w + 1, j) and (i, j) upwards until it gets “stuck”, i.e., it
hits an occupied cell and cannot move any further. We then
move another horizontal line bottom with the same length and
initial position downwards until it gets “stuck”. The rectangle
between the final positions of top and bottom with width w is
recorded as a MER(i− w + 1, bottom, w, top− bottom + 1).
However, if top and bottom are moved to the same positions
when w is reduced by 1, then the generated rectangle is not a
MER and should not be recorded. We provide a formal proof
of the correctness of this algorithm in the next section. In this
paper, we use the term scanning the MKE at (i, j) to refer to
running Basic SLA with MKE at (i, j) as its input, and the
term scanning the Scan Line at Column i to refer to scanning
all MKEs on the Scan Line at Column i.

As an example, Figure 2 shows the process of scanning the
MKE at (5, 7), and Figure 3 shows the process of scanning the
MKE at (5, 3). For brevity, we only show the configurations
when both top and bottom are “stuck” and a new MER is gen-
erated and recorded, and omit any intermediate configurations.
The steps of scanning the MKE at (5, 7) are:



Figure 2. Scanning the MKE at (5,7).

Figure 3. Scanning the MKE at (5,3).

• Step 1: w = 3, top = 8, bottom = 7, record
MER(3, 7, 3, 2).

• Step 2: w = 2, top = 8, bottom = 3, record
MER(4, 3, 2, 6).

• Step 3: w = 1, top = 10, bottom = 1, record
MER(5, 1, 1, 10).

The steps of scanning the MKE at (5, 3) is similar. As we
can see, Steps 2 and 3 are identical in Figures 2 and 2. We
will propose Enhanced SLA in Section 3.2 to remove this re-
dundancy in the search process. Next, we prove two theorems
that guarantee the correctness and completeness of Basic SLA.
These theorems allow us to only search for all MERs whose
right edges fall on Scan Lines in order to find all the MERs. In
other words, running Basic SLA for all MKEs on all Scan Lines
will generate the complete set of MERs on the FPGA.

Theorem 1 The right edge of any MER must fall on a Scan
Line, and any Scan Line must have at least one MER whose
right edge falls on it.

Proof 1 Suppose the right edge of a MER falls on Column i
and is not a Scan Line. Based on the definition of Scan Lines,
there is no Key Element on Column i, therefore Column i must
not be the rightmost column of the FPGA area, and Column
(i+1) must not contain any occupied cells along the right edge
of the MER. So the MER can be expanded to its right to include
Column i + 1, which means that the MER is not maximal. This
is a contradiction. This proves the first part of the theorem.

Suppose Column i is a Scan Line, and no MER’s right edge
falls on it. Based on the definitions of Scan Lines and Key El-
ements, ∃k, M [i][k] 6= 0, and M [i + 1][k] = 0 , so cell (i, k)
can only be contained in a MER that lies to the left side of Col-
umn i. Since no MER’s right edge falls on Column i, cell (i, k)
must not be contained in any MERs. Based on the definition of
MER, cell (i, j) forms a MER by itself, and its right edge falls
on Column i. This is a contradiction. This proves the second
part of the theorem.

Theorem 2 The set of MERs found by scanning all the MKEs
on the Scan Line at Column i is the complete set of MERs whose
right edges fall on Column i.

Figure 4. A MER with width w, height h, and right
edge with vertices (i, j1) and (i, j2).

Proof 2 Suppose there exists a MER M1 whose right edge falls
on the Scan Line at Column i, and it is not found by scanning all
the MKEs on the Scan Line at Column i. Suppose M1 has width
w and height h, and (i, j1) and (i, j2) are the two vertices of its
right side edge, as shown in Figure 4. There must not exist any
MKE with value ≥ w on the line segment [(i, j1), (i, j2)]. Oth-
erwise, we can take the horizontal line of length w, and move its
top to j2 and bottom to j1, when they get “stuck”. Therefore,
M1 can be found using Basic SLA, causing a contradiction.

There must be occupied cells on the four edges of M1, oth-
erwise M1 can be extended in at lease one direction, causing a
contradiction to the fact that M1 is a MER. So ∃k, j1≤k≤j2
and M [i][k]6=0 ∧ M [i + 1][k] = 0, which means there are
Key Elements in [(i, j1), (i, j2)], and ∀j, j1≤j≤j2, M [i][j] >
M [i][j2 + 1] ∧ M [i][j] > M [i][j1 − 1]. Based on the defini-
tion of Valley Points, there must be one or more segments within
[(i, j1), (i, j2)]. Since there is at least one Key Element in this
interval, one or more of them must be MKEs. Suppose (i, t) is
the MKE, then M [i][t] ≥ w, j1≤t≤j2, which contradicts with
the assumption that there must not be a MKE with value ≥ w.

3.2 Enhanced SLA

Scanning multiple MKEs on one Scan Line using Basic SLA
can result in duplicate MERs being generated during the scan-
ning process. For example, scanning the MKE at (5, 3) in Fig-
ure 1(b) will generate three MERs (2, 3, 3, 2), (4, 3, 2, 6) and
(5, 1, 1, 10), and scanning the MKE at (5, 7) will generate an-
other three MERs (3, 7, 3, 2), (4, 3, 2, 6) and (5, 1, 1, 10). The
MERs (4, 3, 2, 6) and (5, 1, 1, 10) are duplicate MERs that are



generated twice. In order to improve algorithm efficiency, we
enhance Basic SLA to avoid generating duplicate MERs to get
Enhanced SLA shown in Algorithm 2. Instead of scanning each
MKE in sequence, i.e., moving top and bottom of each MKE
independently, we move them for all MKEs on a Scan Line si-
multaneously. If the tops and bottoms of multiple MKEs over-
lap with each other, then the subsequent steps of scanning these
MKEs will be identical, and we only need to continue the scan-
ning process for one of the MKEs. By avoiding any redundant
scanning process, we improve efficiency of the algorithm.

Algorithm 2 Enhanced SLA for finding MERs based on all
MKEs on Scan Line at Column i.

Inputs: FPGA area matrix M and a Scan Line at Column i.
Outputs: MERs generated by all MKEs on the Scan Line at Column
i.
Begin Enhanced SLA
Store all MKEs on the Scan Line into an array Keys[].
Kmax ⇐MAX(Keys[])
for w = Kmax to 1 do

Take MKE at (i, j) in Keys[] with value M [i][j] ≥ w;
Move its top and bottom with length w until “stuck”;
if top or bottom changed or w = M [i][j] then

Record MER;
end if
if tops and bottoms of two or more MKEs overlap then

Keep one of the MKEs in Keys[] and delete others;
end if

end for
End Enhanced SLA

Figure 5. Steps of Enhanced SLA with MKEs at
(5,3) and (5,7), and Scan Line at Column 5.

An example is shown in Figure 5, where MKEs at (5,3) and
(5,7), and M(5, 3) = 4, M(5, 7) = 3. So Kmax = max (4, 3) =
4. Figure 5 can be viewed as combination of Figures 2 and 3
after removing redundant steps that generate duplicate MERs.
The algorithm runs in the following steps:

• Step 1: w = 4, top = 4, bottom = 3 for MKE at (5,3),
record MER(2, 3, 4, 2).

• Step 2: w = 3, top = 8, bottom = 7 for MKE at (5,7),
record MER(3, 7, 3, 2).

• Step 3: w = 2, top = 8, bottom = 3 for both MKEs at
(5,3) and (5,7), record MER(4, 3, 2, 6). Since the tops of
MKE(5, 3) and MKE(5, 7) are both moved to Row 8, and
their bottoms are both moved to Row 3, one of the MKEs,
say (5,7), is deleted from Keys.

• Step 4: w = 1, top = 10, bottom = 1 for MKE at (5,3),
record MER(5, 1, 1, 10).

3.3 Online SLA

When a task is added to or removed from the FPGA at run-
time, it is likely, although not always true, that only parts of the
FPGA area are affected and need to be scanned again to up-
date the set of MERs. We take advantage of this observation
to design the Online Scanline Algorithm (Online SLA) that se-
lectively updates the local region affected by a task’s addition
or removal instead of the entire FPGA area. This optimization
improves algorithm efficiency significantly, as we will show in
the performance evaluation section.

The Update Interval is defined as the horizontal interval
[L, R] containing all Scan Lines that need to be re-scanned us-
ing Enhanced SLA in order to update the set of MERs upon task
addition or removal. Taking task addition as an example. When
a new task with position (x, y, w, h) is placed on the FPGA, two
new Scan Lines are added at Columns x−1 and x+w−1. Col-
umn x− 1 is the left edge of the Update Interval L, that is, we
do not need to check any Scan Lines lying on its left-hand side
in order to update the set of MERs. However, Column x+w−1
is not the right edge of the Update Interval, and we do need to
check Scan Lines lying to its right-hand side. Intuitively, R is
the rightmost Scan Line that can be “seen” by the newly added
task without getting blocked by other tasks in-between.

Figure 6. Example illustrating the concept of Up-
date Interval.

As an example, Figure 6 shows a 10× 6 FPGA with 4 tasks
running initially, i.e., A, B, C and D. There are five Scan Lines
at Columns 4, 5, 7, 9 and 10, indicated by the arrows. When a
new task E is added, a new Scan Line at Column 1 is added,
as indicated by the bold arrow. But we do not need to scan all
six Scan Lines at Columns 1, 4, 5, 7, 9 and 10. Instead, we
only need to scan those in the Update Interval, that is, those at
Columns 1, 4, 5 and 7. Intuitively, propagation of the impact of
the addition of task E is blocked by the three tasks A, B and



C, which completely eclipse task E on the vertical dimension,
so task E cannot “see” task D. Therefore, we do not need to
re-run Enhanced SLA to calculate MERs whose right edges fall
on Columns 9 and 10. Note that even though the task set (A,
B, D) also completely eclipse task E, the task set (A, B, C)
results in a smaller Update Interval, and we take the minimum
Update Interval as our result.

Algorithm 3 Online SLA for incremental updating the set of
MERs upon task addition or removal.

Inputs: FPGA area matrix M and location of the newly added or
removed task.
Outputs: MERs deleted or generated due to task addition or re-
moval.
Begin Online SLA
Update area matrix M ;
Get Update Interval [L, R];
for each Scan Line at Column i in [L, R] do

Delete MERs whose right edges fall on Column i;
Generate MERs using Enhanced SLA;

end for
End Online SLA

As shown in Algorithm 3, upon addition or removal of a task,
MERs whose right edges fall within the Update Interval are re-
moved from the MERs set, and Enhanced SLA is run for each
Scan Line in the Update Interval to update the set of MERs. We
use a hash table as the data structure to store the set of MERs,
using the horizontal positions of their right edges as the hash
keys, so that the MERs with the same right edge can be added
or deleted efficiently.

Next, we analyze the complexity of Online SLA. It takes time
O(H) to find all the MKEs of a Scan Line. When generating
MERs from each Scan Line, the total number of movements of
tops and bottoms does not exceed H , so the time complexity
of Enhanced SLA is O(H). If there are n scan lines, then the
time complexity of Online SLA is O(nH). Since the maximum
number of Scan Lines is W , the worst case time complexity
of Online SLA is O(WH). Simulation Experiments indicate
that the average performance is actually much better than the
worst case, mainly due to incremental update of local regions
in Online SLA.

4 Related Work

Handa et al [2] presented an efficient algorithm for finding
all MERs called the Staircase Algorithm, which works by first
finding all the maximal staircases i.e., those that contain at least
one MER, and then extracting the MERs from them. Even
though both algorithms have the same worst-case complexity,
simulation results in Section 5 indicate that Online SLA has
better average performance in terms of algorithm running time
than the Staircase Algorithm.

Bazargan et al. [1] presented an algorithm for managing the
free space on a FPGA area by keeping track of non-overlapping
rectangles, and using heuristics to reduce the number of rectan-

gles considered when updating the rectangle list. As discussed
in Section 1, this approach is inferior to the MER approach
since it sometimes rejects a task even though there is enough
empty space on the FPGA. Walder et al. [3] improved upon
Bazargan’s algorithm by delaying the decision about whether
to split a rectangle on the vertical or horizontal direction. They
also presented a data structure based on hash matrices for plac-
ing a task in constant time. Ahmadinia et al. [4] presented a
variant of Bazargan’s algorithm for managing the occupied area
instead of the free area, in order to reduce the number of rect-
angles that need to be stored.

5 Performance Evaluation

We conducted some simulation experiments to evaluate the
performance of Online SLA, Enhanced SLA and the Staircase
Algorithm [2]. It is not within the scope of this paper to eval-
uate an end-to-end online scheduling algorithm, which may in-
clude admission control, task queuing, priority assignment and
task placement. Instead, we are only concerned with a small
component of the overall online scheduling problem, i.e., find-
ing the complete set of MERs on a partially occupied FPGA.
Therefore, we aim for simplicity when designing the simula-
tion experiments. During each simulation run, tasks are queued
and processed in FIFO order, i.e., if a task T at the head of
the queue cannot be placed on the FPGA, all other tasks in the
queue must wait until T is placed when some running tasks fin-
ish execution and are removed from the FPGA2. We use First-
Fit as the strategy to choose a large-enough MER to place a
task, and place the task on the lower-left corner of the chosen
MER. The simulation setup is based on a 100×80 FPGA. Dur-
ing each simulation run, 10,000 tasks are generated, each with
width and height between 2 and 8 in terms of number of cells,
and execution time between 2 and 10 (time unit is not impor-
tant). All parameters are assigned by sampling a uniform ran-
dom distribution function in their respective validity intervals.
The set of MERs are updated each time a task is placed on or
removed from the FPGA. Even if multiple tasks may be added
to or removed from the FPGA at the same time, we still up-
date the set of MERs upon each task addition or removal event,
to make sure that the MER-update algorithm is called 20,000
times during each simulation run of 10,000 task additions and
10,000 task removals. The simulation experiments were run
on a SUN Solaris workstation with 400MHz CPU and 256MB
memory. We record the time needed to update the MERs af-
ter each task addition or removal using the gethrtime sys-
tem call on Solaris for obtaining high-resolution timestamps by
sampling a hardware register, the cycle counter. Each task’s ar-
rival time is a random value between 0 and an upper bound U .
We control the workload, and in turn the FPGA area utilization,
by using different upper bound U . A smaller U means that the

2In reality, tasks may form a dependency graph, and one or more tasks may
be triggered by the completion of its preceding tasks. This can be viewed as
a special task arrival pattern where one or more tasks’ arrival time happens to
coincide with other tasks’ completion time.



tasks arrivals are more frequent, and the FPGA area utilization
is higher. For example, Table 1 shows that if all tasks arrive in
the time interval [0,100], then the last task finishes execution at
time 176, and 79.1% of the FPGA area is occupied on average
during the simulation run.

Task Release Simulation Average FPGA
Time Interval Finish Time Area Utilization

[0, 100] 176 79.1%
[0, 500] 509 27.3%
[0, 2000] 2009 6.9%

Table 1. Metrics gathered for three simulation
runs of 10,000 tasks each.

Fig. 7 shows the simulation results expressed as probabil-
ity distribution of algorithm running times. For example, the
physical interpretation of the point (35, 0.24) in Fig. 7(a) is that
24% (4,800) of the 20,000 invocations of the Enhanced SLA
Algorithm have a running time t such that 35.0 ≤ t < 36.0.
As we can see, Online SLA has the best performance due to
its incremental update approach, but the difference among the
all algorithms are not dramatic. We can also observe that On-
line SLA performs better under heavy load (Fig. 7(a)) or light
load (Fig. 7(c)) than medium load (Fig. 7(b)). This can be ex-
plained as follows: under light load, the number of Scan Lines
is smaller; under heavy load, the distance traversed by the top
and bottom lines in Algorithm 2 and the Update Interval in
Algorithm 3 are both smaller. All of these factors contribute to
the reduced running time of Online SLA.

6 Conclusions

In this paper, we have presented an efficient algorithm for
finding the complete set of MERs in a given FPGA area, which
is useful for online placement and scheduling of HW tasks. This
is only one step in the overall process of online task scheduling
for FPGAs. As part of our future work, we plan to investigate
other placement algorithms and their interaction with allocation
and scheduling, and implement these algorithms in an actual OS
for a combined CPU/FPGA device.

References

[1] K. Bazargan, R. Kastner, and M. Sarrafzadeh, “Fast Tem-
plate Placement for Reconfigurable Computing Systems.”
IEEE Design & Test of Computers, vol. 17, no. 1, pp. 68–
83, 2000.

[2] M. Handa and R. Vemuri, “An efficient algorithm for find-
ing empty space for online FPGA placement.” in DAC,
2004, pp. 960–965.

[3] H. Walder, C. Steiger, and M. Platzner, “Fast Online Task
Placement on FPGAs: Free Space Partitioning and 2D-
Hashing.” in IPDPS, 2003, p. 178.

(a)

(b)

(c)

Figure 7. MER-update algorithm running time for
different workloads.

[4] A. Ahmadinia, C. Bobda, M. Bednara, and J. Teich, “A
New Approach for On-line Placement on Reconfigurable
Devices.” in IPDPS, 2004, pp. 134–140.


	Main
	DATE07
	Front Matter
	Table of Contents
	Author Index




