
Hard Real-Time Reconfiguration Port Scheduling

Florian Dittmann and Stefan Frank

Heinz Nixdorf Institute, University of Paderborn

Fuerstenallee 11, 33102 Paderborn, Germany

{roichen, sfrank}@upb.de

Abstract

When modern partially and dynamically reconfigurable

FPGAs are to be used as resources in hard real-time sys-

tems, the two dimensions area and time have to be consid-

ered in the focus of availability and deadlines. In partic-

ular, area requirements must be guaranteed for the tasks’

duration. While execution environments that abstract the

space demand of tasks exist and methods for occupancy

of resources over time are discussed in the literature, few

works focus on another fundamental bottleneck, the recon-

figuration port. As all resource requests are served by this

mutually exclusive device, profound concepts for schedul-

ing the port access are vital requirements for FPGA real-

time scheduling. Nevertheless, as the port must be ac-

cessed sequentially, we can inherit and apply monoproces-

sor scheduling concepts that are well researched. In this

paper, we introduce monoprocessor scheduling algorithms

for the reconfiguration port of FPGAs.

1 Introduction

Requirements of embedded systems are manifold.

Among them we find dependability, efficiency, flexibility,

and real-time constraints. They are reactive systems and

thus continuously interact with the environment and execute

at a pace determined by that environment. In order to guar-

antee real-time constraints thereby, system response has to

be explained without statistical arguments.

Nowadays, embedded systems comprise increasingly

programmable logic, especially FPGAs. FPGAs combine

performance and flexibility and offer the freedom to com-

pute in space and time. Despite resource re-use, or in field

upgrades that come with reconfiguration, area and time both

together pose additional problems such as fragmentation or

communication requirements. Furthermore, the reconfigu-

ration process itself demands resources and consumes time.

In order to use partially reconfigurable FPGAs within real-

time systems, all these aspects must be considered.

FPGA

Execution Environment

Real-Time Scheduling

Task Sets

LUTs, etc.

Slots

Reconfiguration Port

OS
Applications

Figure 1. Layers for FPGA realtime systems.

We base our approach on execution environments that

abstract from resource requests, handle fragmentation, and

thus enable reconfiguration managers or operating systems

to efficiently use FPGA resources. Within such execu-

tion environments, tasks run in parallel and most often oc-

cupy fixed sized slots, which can be reconfigured. The re-

sults of [5]—unrealizable schedules if linear task placement

is ignored—supports the usage of such execution environ-

ments. As displayed in Figure 1, the real-time scheduling

proposed in this work is built upon an abstracting execution

environment. We process task sets (optionally dispatched

by an operating system) and schedule them according to our

scheduling algorithm. Based on the workload, task sets are

accepted or rejected.

In contrast to others, we propose to schedule the recon-

figuration port access. The motivation for this unusual ap-

proach is based on several aspects. First, the reconfigura-

tion of even partial areas consumes a significant amount of

time that must be respected. Being in the range of millisec-

onds, the reconfiguration can be even longer than the com-

putation time. Furthermore, the single reconfiguration port

of FPGAs demands exclusive sequential activation. Both,

the reasonable time demand and the sequentiality moti-

vated us not only to see the reconfiguration as integral part,

but also to investigate the reconfiguration in the focus of

monodevice scheduling. Thus, in this work we discuss the

assets and drawbacks of applying scheduling algorithms of

the monoprocessor domain to the reconfiguration port ac-

cess, including concepts for real-time guarantee.

The rest of the paper is organized as follows. First, we

summarize related work, before we discuss fundamental

considerations. Then, we explain the reconfiguration port

978-3-9810801-2-4/DATE07 © 2007 EDAA 

 



scheduling in more detail relying on aperiodic task sets. In

the main Section 5, we discuss periodic task scheduling and

how to guarantee feasibility for this most common scenario

of real-time scheduling. Before a final conclusion, we re-

port on experiments conducted in the context of this work.

2 Related Work

Scheduling tasks on partially reconfigurable FPGAs is

targeted differently in the literature. Some works schedule

area and time together [12], while others focus on the area

only [21], or schedule tasks by a specific manager [15].

An approach in the realm of our work [2] optimizes the

area occupied, respecting the task time constraints. Tasks

are not allowed to be preempted. Similarly, the authors of

[19] and [9] analyze the effect of overall response time and

guarantee-base scheduling when tasks comprise different

shapes. When task preemption is allowed [1, 20], the task

acceptance rate is improved. However, hardware task pre-

emption results in additional costs due to still non-efficient

techniques and methods available. All concepts are based

on partially reconfigurable devices such as Xilinx FPGAs.

However, we seldom find concepts that respect the reconfig-

uration time or even the sequential reconfiguration. Usually,

both are neglected due to the assumption that the execution

time is much higher than the reconfiguration time [20].

Real-time scheduling on partially reconfigurable FPGAs

is considered in [10]. Different to our approach the schedul-

ing is solved by referring to algorithms of the parallel

scheduling domain. Furthermore, we focus on the recon-

figuration phase as main scheduling problem. First funda-

mental consideration have been published by us in [11].

Finally, the theory behind our approach can be compared

to the parallel machine problems with a single server [7],

having the slots as parallel machines and the reconfiguration

port as server. However, we use preemption, which is not

allowed in these works.

3 Fundamental Considerations

Our real-time scheduling layer accepts task sets and dis-

patches them on an execution environment. Such an execu-

tion environment must comprise a number (m) of equally-

sized slots, and accept tasks that fit into one of these (ho-

mogeneous) slots. Thus, we avoid external fragmentation

by accepting internal fragmentation. Furthermore, the en-

vironments should abstract communication by offering a

suitable communication structure, e. g. such as in the Er-

langer Slot Machine approach [6]. In general, the commu-

nication with peripherals is either realized via a shared bus

large enough to not impose the bottleneck of the system, or

distinct communication channels exist. In addition, there is

Slot A

Slot B

F
P

G
A

Single recon-

figuration port

Set of n partial bitstreams
Slot C

Slot D

Figure 2. Execution Environment.

a reconfiguration controller for the dispatching. This con-

troller, which can also be located externally, provides the

access of our real-time scheduling requests to the execution

slots. To summarize, the environment allows us the efficient

use of reconfigurable area (ref. to [18, 21]).

We are currently developing a prototyping environment

on a Xilinx Virtex 4 FPGA as displayed in Figure 2. We

apply the Xilinx EarlyAccess design flow [14]. Concerning

the communication, we implement one bus that runs on the

highest possible frequency and allows each slot to demand

the bus only a fraction of the highest speed (time sharing).

As tasks on FPGAs are generally clocked relatively low, this

bus is meant to not represent the bottleneck of the system.

Further details are out of the scope of this work.

The task sets accepted by our real-time scheduling layer

must follow standard requirements of real-time scheduling

theory [8]. We schedule a set Γ of n independent tasks τi

on m slots, with m < n. The tasks τi have different exe-

cution times tEX,i and can have periods Ti. All tasks have

relative deadlines Di. Furthermore, every task has a recon-

figuration time tRT,i, which is in our case constant for all

tasks due to the execution environment that harmonizes area

requirements. The run-time reconfiguration results in exe-

cution (EX) and reconfiguration (RT) phases, with an RT

before each EX phase.

As we schedule the reconfiguration port and therefore

are interested in when the RT phase must have finished, we

introduce an additional deadline D∗. This deadline is com-

puted by D∗ = Di − tEX,i. In order to schedule the recon-

figuration phases, we rely on this deadline D∗

i (relative), or

d∗i (absolute) resp. If we can guarantee the finishing of RTi

before its absolute deadline d∗i , we also guarantee the com-

pletion of EXi before di.

Furthermore, we do not allow the preemption of EX

phases. Depending on the implementation, a preemption of

EX results in the need to reconfigure the whole area twice.

Even worse, if we have to save states, the preemption of EX

could result in a need to perform a readback of the slot, thus

doubling the additional time in the worst case. However, we

allow a preemption of the RT phase. Also technically com-

plex to realize, the preemption of RT does not substantially

increase the whole reconfiguration time. In Figure 3, we

display an example where such a preemption is of benefit.

Furthermore, as the reconfiguration of current FPGAs

does not offer to interrupt the reconfiguration phase at any

2



RT1 EX1R

EX2

12

2

1 2

1

RT2

Slot 1

Slot 2

release time

d*

d

T1

EX2

12

2

1 2

1

RT2

d*

d

EX1

Figure 3. Scheduling according to d (a) and d∗

(b) using preemption.

instance of time, but only after frames, we respect this min-

imum reconfiguration unit RTmin = ∆ within our calcu-

lations below. ∆ also is the smallest time-step for arriving

tasks, etc., of our system.

By applying d∗ on a set of aperiodic tasks in the next

section, we detail the reconfiguration port scheduling.

4 Aperiodic Task Scheduling

In the case of aperiodic tasks that have no dependen-

cies, we distinguish the two cases of synchronous and asyn-

chronous task arrival. The former allows us to perform a

schedulability analysis before executing the tasks, while the

latter requires dynamic adaptation of the schedule.

4.1 Synchronous Arrival

Considering synchronous arrival, we schedule the tasks

according to JACKSON’s rule (earliest due date EDD) refer-

ring to d∗i as deadlines. The algorithm executes the tasks

in order of non-decreasing deadlines and is optimal w. r. t.

minimizing the max. lateness. However, we suffer an ab-

normality. Due to the avoidance of EX phase preemption,

all slots can be occupied (from here on called full load of

slots: fls). Figure 4 a depicts an example, where the start or

RT4 must be delayed.

This problem can be improved by noting that the poten-

tial fls can be reduced in one single case. If for two subse-

quent tasks τi and τi+1: tEX,i > tEX,i+1, tEX,i ≥ tRT ,

and tEX,i < tRT + tEX,i+1, we can swap τi and τi+1.

Thus, the starting times of the next two RT phases will be

improved. This holds for m ≥ 2.

For the schedulability analysis already presented in [11],

we construct the schedule referring to a vector that displays

the current slot occupancy. Despite the a priori knowledge

of the tasks, we have to dynamically react on the fls phases.

These phases can be compared to dynamic arriving jobs,

which however are ordered according to JACKSON’s rule

and do not cause preemption, only additional delay.

4.2 Asynchronous Arrival

In order to schedule asynchronously arriving jobs, pre-

emption is required if NP-completness shall be avoided.

RT1

RT2 RT4

RT3

EX

EX

EX

RT5

EX

1

2

3

RT1 EX1

R

EX2RT3 EX3

T

2
RT4

RT2

EX4

1 2 3 4 release time

a) b)

slot

Figure 4. a) Delay due to full load of slots, and
b) killing due to full reconfiguration capacity.

The monoprocessor domain proposes to use EDF (earliest

deadline first), which dispatches at any instance the task

with the earliest absolute deadline.

When we apply EDF to our scenario relying on d∗, in

addition to the fls abnormality, which occurs here as well,

we experience the full reconfiguration capacity (frc) abnor-

mality (ref. to Figure 4 b). Here, at least one slot is in RT

phase, while all slots are occupied (by either RT or EX). We

have two possibilities when a new high priority job arrives.

We either can delay the job similar to the fls abnormality,

or we can force a preemption of one of the slots currently

in RT mode. Such a preemption will result in the killing of

the preempted job, as all already reconfigured parts of this

task are abandoned in favor of the high priority task. The

monoprocessor EDF does not include such an abnormality.

4.3 Experimental Results

We have conducted several test sets in order to rate the

performance of EDD and EDF in our scenario. We have

set up a reconfiguration port simulator that allows us to ran-

domly generate task sets, schedule them according to vari-

ous algorithms, respecting different priorities, and displays

the schedules for visual control. Our test rows have been on

each 1000 randomly generated task sets, with tEX

tRT
≈ l, and

l = .25, .5, 1, 2, 3, 4. The number of slots has been in the

range of 3 to 5, while the number of tasks is significantly

higher, so that tasks have to share slots. We have scheduled

both EDD and EDF with d∗ and d as deadlines.

Concerning the schedulability of EDD, we find a schedu-

lability of approx. 90 % for d∗ and 70 % for d among the

schedulable task sets. However, the schedulability concern-

ing d∗ significantly increases with l ≪ 1, and decreases

with l ≫ 1, while d behaves oppositional. Obviously, this

is due to a dominance of the EX phase. The schedulable

task sets not found are due to the fls abnormality. When

EDF is applied, both abnormalities can occur. Thus, the

performance is slightly worse, again with d∗ outperforming

d. Finally, for both EDD and EDF the approach performs

best if tEX ≤ tRT · (m − 1).

5 Fixed Priority Periodic Task Scheduling

Periodic activities (sensory data acquisition, control

loops, etc.) often represent the major computational de-

3



RT3

RT2

RT1 EX3

EX2

slot 1

slot 2

slot 3

E

EX4

EX1

RT1 EX1 RT2 EX2

1, 2, 4, 5 period3 1 2

RT5

RT4

Figure 5. Fixed priority example.

mand of embedded systems. In real-time scheduling theory

priorities are principally applied to such jobs. Contention

for resources is resolved in favor of the job with the higher

priority that is ready to run.

Our tasks have the relative deadlines Di equal to their

periods Ti. However, as we schedule the RT phases, we

derive the priorities of our jobs by referring to the relative

deadline D∗

i . The task with the shortest D∗

i gets the highest

priority. We thus have to schedule a set of periodic tasks

with deadlines less than periods. A similar monoprocessor

scheduling algorithm is denoted deadline monotonic (DM)

[13]. It is an extension of the more common rate monotonic

scheduling scheme. According to the DM algorithm, each

task is assigned a priority inversely proportional to its rela-

tive deadline. Thus, at any instant, the task with the shortest

relative deadline is executed. Figure 5 shows an example.

5.1 Schedulability Analysis

The sufficient and necessary schedulability test of a DM

algorithm can be done by the response time analysis [3, 4],

with the longest response time Ri computed at the critical

instance as the sum of its computation time and the inter-

ference due to preemption by higher-priority tasks: Ri =
tRT,i + Ii, where Ii =

∑i−1

j=1
⌈Ri

Tj
⌉tRT,j . If Ri < D∗

i for all

tasks, the set is schedulable. We can derive step-wise solu-

tions for this problem. The critical instance occurs when all

tasks are released simultaneously.

When scheduling the reconfiguration port, however, we

face several circumstances where the response time analy-

sis would not produce the correct result. Both abnormalities

presented above, the fls and the frc scenarios demand spe-

cial care, as they both can impose additional delays to the

scheduling of the jobs, i. e., the increase of Ii. The abnor-

malities can hardly be calculated in advance. Thus, we pro-

pose alternative strategies to guarantee the schedulability.

One possibility is to schedule the hyper-period of a task

set. The hyper-period equals the least common multiplier of

all periods. Schedulability of one hyper-period guarantees

that subsequent hyper-periods can also be scheduled, i. e.,

the whole task set is schedulable. Thereby, we can solve the

question of schedulability, as the fls and frc abnormalities

will occur similarly in all hyper-periods. However, there

might exist cases, were no hyper period exists, or it is too

large to be constructed in advance.

As second solution, we handle the abnormalities by

RT3

RT2

RT1

EX3

EX2

RT4

period

server active

slot 1

slot 2

slot 3

capacity

RT5 E

EX4

EX1

Figure 6. Server for fls: Worst Case.

known and appropriate techniques of real-time scheduling

that harmonize with the standard DM response time analy-

sis. We derive the two suitable techniques in the following.

5.2 A Server for Full Load of Slots Sections

During the fls abnormality, all slots are in EX phase while

a new instance of a task τi should be scheduled. τi, inde-

pendent of its priority, demands for the reconfiguration port.

Despite the availability of the port, but due to the occupancy

of the slots, we cannot schedule this task. It is delayed.

In order to respect such a delay, we rely on the notions of

aperiodic job scheduling. We assume an aperiodic job τa ar-

riving at the same time as the new instance of job τi arrives.

τa stands for the delay of τi and has the corresponding com-

putation demand. For scheduling τa, we use a server, which

must have both enough capacity to serve τa completely and

a higher priority than τi to be active immediately. Such a

server can handle aperiodic tasks with hard deadlines. Here,

the aperiodic tasks are executed virtually only.

As the server must always execute in favor of any other

job (forced by fls), we assign the highest priority to the

server, i. e., the server will have the maximum relative dead-

line DS,max = min(D∗

i ) − ∆. As the server does not

have an EX phase, its deadline is equal to its period and

D∗

S = DS . In order to calculate the exact deadline of the

server, we have to know the capacity.

In Fig. 6, we display the worst case fls scenario. It occurs

when all slots have started with the EX phases as close as

possible. This nearly simultaneous activation occurs when

the RT phases of m tasks end nearly synchronously. Then,

the server must have enough capacity CS to schedule an

aperiodic job that has the computation requirement of the

m-th longest tEX , thus CS =m-th max(tEX). We can im-

prove the server capacity, if we have a large ∆ compared to

the EX phases. If the largest tEX is smaller than (m−1)∆,

the server capacity becomes 0. This holds for the k-th

largest tEX and tEX,k < (m − k)∆, while k < m.

As the capacity must always be available, we require a

server that preserves its capacity. Furthermore, as two fls

abnormalities could occur successively only separated by

one RT phase, the capacity of the server must always be

replenished as soon as possible. The Sporadic Server (SS)

[17] solves our requirements. The SS algorithm creates a

high-priority task for servicing aperiodic requests and pre-

4



RT5

RT4

RT3

RT2

EX5

EX4

EX3

EX2

blocking time

handled by server

RT1 EX1

Figure 7. Blocking Time for frc: Worst Case.

serves the server capacity at its high-priority level until an

aperiodic request occurs. SS replenishes its capacity only

after it has been consumed by aperiodic task execution.

Finally, the period (= relative deadline) of the server is

the minimum of the above introduced DS,max, and the ca-

pacity + RT phase, i. e., CS + tRT . Thus, the server will

have the highest priority among all other tasks. Further-

more, the feature of the SS allows us to have always enough

capacity available, as even partially consumed capacity is

replenished after the server’s period. This is always early

enough, as between two consecutive occurrences of fls ab-

normalities always a complete RT phase will be scheduled.

5.3 Resource Access Protocol for Full Reconfigura-

tion Capacity Sections

When the frc abnormality occurs, all slots are occupied

and at least one slot is in RT phase. If the newly arriving

instance of a task τi has lower priority than the just recon-

figuring task τj , nothing will happen and τi will be sorted

into the list of ready tasks. However, if the priority is higher,

τi could either be scheduled and τj would be killed, or de-

layed until the reconfiguration port is free again.

For our schedulability analysis, we disallow killing as

it harms the assumptions of DM and would complicate the

computation of the interference time Ij . Thus, we delay τi,

i. e., higher priority tasks will suffer a blocking due to lower

priority tasks, as the reconfiguration port is occupied. This

is similar to a critical section of resource sharing. In order to

avoid (unbounded) priority inversion, a resource access pro-

tocol is necessary. As we only face direct blocking and will

not suffer chained blocking or deadlocks [8], we can apply

the Priority Inheritance Protocol PIP [16]. The protocol

modifies the priorities of those tasks that cause blocking. In

our case, τj would temporarily inherit the priority of τi.

The schedulability analysis of the PIP is based on the

response time analysis. Therefore, the blocking time Bi

is added to the recurrent equation: Ri = tRT,i + Bi +
∑i−1

j=1
⌈Ri

Tj
⌉tRT,j . Note that this test becomes only suffi-

cient, as tasks could actually never experience blocking. In

order to calculate the blocking time Bi, we rely on the worst

case blocking time as displayed in Figure 7. The worst case

occurs when a high priority task suffers a blocking due to m

lower priority tasks in their RT phase. Thus, the blocking

Algorithm 1 Blocking Time

1: L ⇐ Γ, L̄ ⇐ ∅, p ⇐ m

2: while L 6= ∅ do

3: τi ⇐remove lowest priority task(L)

4: Bi ⇐ (tRT − ∆)(m − p)
5: if p > 0 then p ⇐ p − 1
6: for (k ⇐ 1; k < (m− 1)∧ k < number of τj in L̄;

k ⇐ k + 1) do

7: Btmp ⇐ k-th longest tEX,j + k(tRT − ∆)
8: if Btmp < Bi then Bi ⇐ Btmp

9: end for

10: L̄ ⇐ L̄ ∩ τi

11: end while

time will not be longer than Bmax = (tRT − ∆)(m − p),
while p = m for the lowest priority task and decreases by 1
with every priority increase until p = 0.

We notice that the blocking time will be large for a

large m. However, Bi will never be longer than the largest

tEX,j +tRT −∆ among all tasks with lower priority than τi.

In fact, the k-th longest EX phase among the tasks τj added

to a non-avoidable fraction of k(tRT − ∆) will denote Bi,

if it is smaller than Bmax. We calculate Bi by Algorithm 1.

5.4 DM + SS + PIP Schedulability Test

For the schedulability test, we thus have to combine the

response time analysis for DM with the PIP and the server.

From a scheduling point of view, SS can be replaced by

a periodic task having the same utilization factor. As our

server will never come active during a frc abnormality, the

server does not have a blocking time (BS = 0). Thus, we

have to solve the recurrent equations Ri = tRT + Bi +∑i−1

j=1
⌈Ri

Tj
⌉tRT for the task set Γ′ := Γ ∩ τS .

6 Experiment

We have randomly generated periodic task sets and

tested their schedulability using our simulator. Fig. 8 shows

an example. Our approach using PIP access protocol and

the SS server on one hand correctly guarantees the schedu-

lability of the task sets. On the other hand, however, the ap-

proach is pessimistic, as neither the server capacity, nor the

blocking time are consumed completely among the majority

of our task sets. Thus, we have also scheduled task sets that

are not feasible according to our test, but according to the

standard DM response time analysis. Such schedules are

often still feasible within the reconfiguration port scenario.

The same empirical results form the aperiodic task sets

hold: our approach performs best if tEX ≤ tRT · (m − 1).
Furthermore, there exist few cases, where killing of tasks

can increase the performance of the schedule (reducing the

max. lateness) or even result in feasibility.

5



Figure 8. Simulator.

7 Conclusion

In this paper, we introduced a real-time scheduling layer

for partially and dynamically reconfigurable FPGAs. The

layer accepts task sets and schedules the reconfiguration

port of execution environments. Due to the mutual exclu-

siveness and the sequentiality of the port, we can apply

scheduling algorithms from the monoprocessor domain. We

discussed assets and drawbacks of this approach on the ba-

sis of aperiodic task sets. With this background, we derived

a scheduling algorithm for periodic tasks. The algorithm

bases on the deadline monotonic scheduling concept and is

extended by a server to handle full load of slots abnormali-

ties, and a resource access protocol to handle full reconfig-

uration capacity abnormalities. By theses extensions, we

are able to perform a schedulability test on the basis of the

tasks’ parameters without calculating a whole hyper-period.

In our experiments, we could find that our schedulability

test helps to derive feasible schedules with a reasonable per-

formance. As the feasibility test still is pessimistic, we are

currently looking for an improvement of the test. Further-

more, we plan to investigate dynamic priority task sets.

References

[1] A. Ahmadinia, C. Bobda, D. Koch, M. Majer, and J. Teich.

Task scheduling for heterogeneous reconfig. computers. In

SBCCI ’04, pp. 22–27, Pernambuco, Brazil, 2004. ACM.

[2] A. Ahmadinia, C. Bobda, and J. Teich. A Dynamic Schedul-

ing and Placement Algorithm for Reconfigurable Hardware.

In ARCS, pp. 125–139, Augsburg, Germany, 2004.

[3] A. N. Audsley, A. Burns, M. Richardson, K. Tindell, and

A. J. Wellings. Applying new scheduling theory to static pri-

ority pre-emptive scheduling. Software Engineering Jour-

nal, 8:284–292, 1993.

[4] N. C. Audsley, A. Burns, M. F. Richardson, and A. J.

Wellings. Hard Real-Time Scheduling: The Deadline

Monotonic Approach. In Proc. 8th IEEE Workshop on Real-

Time Operating Systems and Software, Atlanta, 1991.

[5] S. Banerjee, E. Bozorgzadeh, and N. Dutt. Physically-aware

HW-SW partitioning for reconfigurable architectures with

partial dynamic reconfiguration. In Proc. DAC ’05, pp. 335–

340, San Diego, California, USA, 2005. ACM Press.
[6] C. Bobda, M. Majer, A. Ahmadinia, T. Haller, A. Linarth,

J. Teich, and J. van der Veen. The Erlangen Slot Machine:

A Highly Flexible FPGA-Based Reconfigurable Platform.

In Proc. 13th IEEE FCCM, pp. 319–320, 2005.
[7] P. Brucker, C. Dhaenens-Flipo, S. Knust, S. A. Kravchenko,

and F. Werner. Complexity results for parallel machine prob-

lems with a single server. J. of Scheduling, 5:429–457, 2002.
[8] G. C. Buttazzo. Hard Real Time Computing Systems: Pre-

dictable Scheduling Algorithms and Appl. Springer, 2004.
[9] H. Walder, C. Steiger and M. Platzner. Operating systems

for reconf. embedded platforms: Online scheduling of real-

time tasks. IEEE Trans. Comput., 53(11):1393–1407, 2004.
[10] K. Danne and M. Platzner. Executing hardware tasks on

dynamically reconfigurable devices under real–time condi-

tions. In Proceedings of the FPL06, Madrid, Spain, 2006.
[11] F. Dittmann and M. Götz. Applying Single Processor Al-

gorithms to Schedule Tasks on Reconfigurable Devices Re-

specting Reconfiguration Times. In 13th RAW, Rhodes Is-

land, Greece, 2006. IEEE.
[12] S. P. Fekete, E. Köhler, and J. Teich. Optimal FPGA Module

Placement with Temporal Precedence Constraints. In Proc.

DATE 2001, Design, Automation and Test in Europe, pages

658–665, Munich, Germany, 2001. IEEE.
[13] J. Leung and J. W. Whitehead. On the complexity of fixed

priority scheduling of periodic real-time tasks. Performance

Evaluation, pp. 237–250, 2(4), 1982.
[14] P. Lysaght, B. Blodget, J. Mason, J. Young, and B. Bridge-

ford. Enhanced architectures, design methodologies and

CAD tools for dynamic reconfiguration on XILINX FPGAS.

In Proceedings of the FPL 2006, Madrid, Spain, 2006.
[15] J. Resano, D. Mozos, D. Verkest, and F. Catthoor. A re-

configuration manager for dynamically reconfig. hardware.

IEEE Design and Test of Computers, 22(5):452–460, 2005.
[16] L. Sha, R. Rajkumar, and J. Lehoczky. Priority inheritance

protocols: An approach to real-time synchronization. IEEE

Transactions on Computers, 39(9):1175–1185, 1990.
[17] B. Sprunt, L. Sha, and J. Lehoczky. Aperiodic task schedul-

ing for hard-real-time systems. Journal of Real-Time Sys-

tems, 1(1):27-60, June 1989.
[18] M. Ullmann, M. Hübner, B. Grimm, and J. Becker. On-

Demand FPGA Run-Time System for Dynamical Reconfig-

uration with Adaptive Priorities. In Proceedings of the FPL,

pp. 454–463, Antwerp, Belgium, 2004. Springer.
[19] H. Walder and M. Platzner. Non-preemptive Multitasking

on FPGAs: Task Placement and Footprint Transform. In

International Conference on Engineering of Reconfigurable

Systems and Algorithms (ERSA), pp. 24–30, June 2002.
[20] H. Walder and M. Platzner. Online Scheduling for Block-

partitioned Reconfigurable Devices. In Proceedings of the

International Conference on Design, Automation and Test

in Europe (DATE), pp. 290–295. IEEE Computer Society,

March 2003.
[21] H. Walder and M. Platzner. A Runtime Environment for

Reconfigurable Hardware Operating Systems. In Proceed-

ings of the 14th International Conference on Field Pro-

grammable Logic and Application (FPL’04), pp. 831–835.

Springer, August 2004.

6


	Main
	DATE07
	Front Matter
	Table of Contents
	Author Index




