
An FPGA Design Flow for Reconfigurable Network-Based Multi-Processor
Systems on Chip

Akash Kumar1, Andreas Hansson1, Jos Huisken2, and Henk Corporaal1
1Eindhoven University of Technology, Eindhoven, The Netherlands

2Silicon Hive, Eindhoven, The Netherlands
a.kumar@tue.nl

Abstract
Multi-Processor System on Chip (MPSoC) platforms are

becoming increasingly more heterogeneous and are shifting
towards a more communication-centric methodology. Net-
works on Chip (NoC) have emerged as the design paradigm
for scalable on-chip communication architectures. As the
system complexity grows, the problem emerges as how to
design and instantiate such a NoC-based MPSoC platform
in a systematic and automated way.

In this paper we present an integrated flow to automati-
cally generate a highly configurable NoC-based MPSoC for
FPGA instantiation. The system specification is done on a
high level of abstraction, relieving the designer of error-
prone and time consuming work. The flow uses the state-of-
the-art Æthereal NoC, and Silicon Hive processing cores,
both configurable at design- and run-time.

We use this flow to generate a range of sample de-
signs whose functionality has been verified on a Celoxica
RC300E development board. The board, equipped with a
Xilinx Virtex II 6000, also offers a huge number of periph-
erals, and we show how their insertion is automated in the
design for easy debugging and prototyping.

1. Introduction

Current developments in modern embedded devices for
media systems show a need for integrating a potentially
large number of applications or functions in a single de-
vice. An increasing number of processors are being inte-
grated into a single chip to build Multi-Processor Systems
on Chip (MPSoC). The continuously increasing number of
cores calls for a new communication architecture as tradi-
tional bus-based architectures are inherently non-scalable,
making communication a bottleneck [7, 22].

Networks on Chip (NoC) have emerged as the de-
sign paradigm for designing scalable on-chip communica-
tion architectures, providing better structure and modular-
ity [7,9,14,22]. Although NoCs solve the interconnect scal-
ability issues, their integration with the processing cores is
still a problem, posing a serious challenge for system archi-
tects and system integrators in particular [16].

Run-time reconfigurability is becoming increasingly
more important with the rising number of applications in

the system. For embedded devices, in particular, it is de-
sirable to use the same hardware, and reconfigure it for dif-
ferent applications at run-time. This also allows the system
to accept new applications after it is designed. Further, re-
configuration decreases the cost of the overall system, since
hardware is re-used, as compared to designing custom hard-
ware for each different application.

Automation is the key to reduce design and verifica-
tion time. It allows system-architects to traverse the design
space in a much shorter time. Further, with increasing het-
erogeneity in the system, automation of custom IP genera-
tion has become imperative in order to limit the effort and
time spent. Some work that focuses on generating process-
ing nodes automatically is presented in [8,12,19]. Automa-
tion of network fabric generation is presented in [5–7, 14].
However, to the best of our knowledge, there is no fully in-
tegrated tool-flow for generating network-based MPSoC.

In this paper we address the above problems and present
a fully integrated flow for a highly reconfigurable NoC-
based MPSoC that is verified on FPGA. This flow uses Sil-
icon Hive cores [3] and the Æthereal NoC [13]. On top
of that, this is the first flow which allows run-time recon-
figuration of both the network and the cores. A run-time
flow is also presented for easy debugging and reconfigura-
tion of the system. The design-flow is used to generate sev-
eral designs that have been tested on a Celoxica RC300E
board [2], equipped with a Xilinx Virtex II 6000 FPGA [4].
As a testament to the maturity of the flow, we present two
examples, one which has been used in a final-year masters
student course to study JPEG decoder partitioning.

The rest of the paper is organized as follows. We dis-
cuss the related work in Section 2. Section 3 discusses the
design flow of the components used in the integrated flow.
The integrated design flow to generate reconfigurable ar-
chitectures is presented in Section 4. The run-time flow for
reconfiguration is discussed in the same section. Section 5
presents two of the case studies that have been done with
the flow. Conclusions are presented in Section 6.

2. Related Work

Significant research has been done to generate and eval-
uate the designs for the network and the processors respec-

978-3-9810801-2-4/DATE07 © 2007 EDAA

tively. Some of the approaches also aim at validating de-
signs on FPGA. ESPAM, for example, allows MPSoC gen-
eration from high level descriptions, and also mapping to
FPGA [18]. However, the work uses fixed programmable
cores only, and not customized programmable cores. Fur-
thermore, only crossbar, shared bus or point-to-point inter-
connections are available, and the communication model
supports only local memories and no remote write opera-
tions. In our design flow, any network topology is supported
(not shared bus though), and fully customizable cores are
generated. Our flow also supports full reconfiguration of the
system; something which is not possible in ESPAM. A good
summary of MPSoCs that have been validated on FPGA is
provided in [21].

A design flow and methodology for generating
application-specific NoCs is presented in [6]. This flow al-
lows automated generation of a NoC,comparable to hand-
tuned solution , in just a few hours. A framework for NoC
emulation on FPGA has been presented in [11]. This al-
lows one to explore, evaluate, and compare a wide range
of NoC solutions. Two models for designing and imple-
menting NoC are proposed in [5], one written in VHDL for
synthesis, and another in SystemC for cycle-accurate simu-
lation. HERMES has also been implemented on the FPGA
and uses R8 processors to validate the interconnection net-
work [17]. Relevant NoC research on FPGA has been sum-
marized in [11, 21]. However, none of the works address
generation of processing cores together with the network
for the entire SoC.

On the other end of the spectrum, we have processor-
centric design approaches [12, 19]. The design methodolo-
gies proposed in [12, 19] rely on automatic processor gen-
eration, complete with efficient hardware designs and com-
prehensive software tools. Similarly, SoCrates [8] aims at
reducing time-to-market and verification time. Aforemen-
tioned methodologies focus on processor generation only,
while in our methodology, the entire NoC-based MPSoC
can be customized and generated in a single flow.

3. Architecture Components
3.1. Processing Cores

In our design flow, we use Silicon Hive [3] processing
cores. Silicon Hive has an entire tool chain for rapid de-
sign of custom cores, varying from RISC to VLIW proces-
sors. This is accompanied by a library of function units
for designers to choose from and retargetable software-
development tools. One of the main strengths of Sili-
con Hive cores lies in the ease with which the cores are gen-
erated with design-time configurability with a high-level de-
scription in minutes. The cores are generated from a flexible
architecture template that can vary the number of process-
ing units, function units, register files, interconnects, and
local memories. New instructions, function-units and regis-
ters are added with ease as well.

Figure 1 shows a flowchart of the Silicon Hive design

����������

	
��

��
�

	
��

���

���������
�

���
����
�

�
���

�������
�

��
����
�

	��
���

�����	

	
������

��������

	
��

 ��������	

	
������

	
��
����

�������

���
����
�

 ��!���
�"

�������
�

���������

�������#��

$�����

	
��

	
������

 ��!���
�

Figure 1. Silicon Hive design flow

flow. It starts with a TIM (The Incredible Machine) de-
scription file where one specifies all information relevant
for the generation, programming, and simulation of a pro-
cessor. This encompasses e.g. register file sizes and widths,
interconnect, issue slots, operation sets, custom operations,
memory and I/O subsystem of the processor. Thus, using
the TIM language the entire processor is described in rela-
tively few code lines. TIM also drives the development-tool
generator that creates a matching assembler, linker, C com-
piler, instruction-set simulator, and cycle-accurate simula-
tor. These generated tools are shown in gray in the figure.

Once a processor model is created, it is tested with repre-
sentative programs from the application domain. It provides
important feedback to the designer, such as the scheduling
of instructions to processor resources (i.e. register files, is-
sue slots, interconnect), which reflects resource utilization.
A complete synthesizable RTL hardware description of the
processors is also generated. Pre-written blocks of VHDL
or Verilog (stored in the component library depicted in the
flow) are invoked from the TIM description and the proces-
sor is generated.

3.2. Network on Chip

Æthereal offers a flexible design flow to dimension and
generate application-specific NoC instances and configura-
tions [14]. Figure 2 shows the design flow with all input
files at the top. The tools that comprise the flow are shown
by boxes and their respective functionality is explained fur-
ther below. The Æthereal design flow addresses two key
problems in NoC-based SoC design: the need for tools to
quickly and efficiently generate application-specific NoCs,
and the requirement for their performance validation.

The starting point of the NoC design flow is the de-

������������	

��

���������

�������
����

�������

��������

��������	���

���	���	���

���	��� ��!

����

��� ���������"

����	���	����

����������

��������

#$%&

��������

'����
�

'�
�����'�
�����

'����
�

����

#$%&

����

��
������

&�(����

#��� �

Figure 2. Æthereal design flow

scription of the application’s communication requirements
(communication.xml). The NoC hardware is run-time
(re)programmable to support different task graphs. There-
fore, an application consists of a number of task graphs, or
use cases with a number of tasks communicating using the
NoC. Figure 3 shows an example specification. A use case
is specified as a list of connections. A connection spec-
ifies a communication between a master port and a slave
port, the required (minimum) bandwidth, the (maximum)
allowed latency, and burst size for read and/or write data,
and the traffic class being best-effort (BE) or guaranteed
throughput (GT).

<communication>
<usecase id="host/cores/framebuffer">

<connection id="0" type="rw" qos="GT">
<ip id="core1" port="pi" type="Initiator" />
<ip id="memory" port="pt" type="Target" />
<read bw="16" burstsize="8" latency="1000" />
<write bw="8" burstsize="8" latency="1000" />

</connection>

Figure 3. Communication specification example (excerpt).

The second input file is the specification of the architec-
ture around the NoC. The architecture.xml file, an example
of which is shown in Figure 4, contains a list of all IPs con-
nected to the NoC and the IP ports. Each port has a number
of attributes, such as protocol (AXI, various DTL (Device
Transaction Level) [10] profiles), used to generate the right
protocol-conversion shells for network interfaces (NI) [20].

The user also provides the topology to be used e.g. a
mesh or a ring. The outcome is a design-time hardware de-
scription, topology.xml, containing the number of routers,
NIs, and their interconnections. The architecture entities are
mapped to the topology using the UMARS [15] tool which
also generates the configuration to program the network.
The configuration is generated as XML for simulation and
in C for embedded processors that program the NoC using
memory-mapped IO.

<architecture id="FPGA">
<ip id="core1" type="BasicMI">

<port id="pt" type="Target">
<portparam protocol="DTL_MMBD" width="32bit" />

</port>
<port id="pi" type="Initiator">

<portparam protocol="DTL_MMBD" width="32bit"
blocksize="32" />

</port>
</ip>

Figure 4. Architecture specification example (excerpt).

For the network itself, many parameters are specified
which can be either customized by hand or left to the tool.
Parameters are specified for the NoC (flit duration, number
of slots in TDMA table), for each router (arity, best-effort
buffer size), and for each NI instance (number of NI ports,
connections per port, buffer sizes per connection). To re-
duce NoC cost, all routers and NIs are dimensioned pre-
cisely for the application(s), giving many different router
and NI instances per NoC.

Once the entire NoC specification is ready, a SystemC
model and a synthesizable RTL VHDL description of the
NoC is produced, together with area and power estimates
of the NoC [20]. It is also possible to analytically compute
results for verification that guaranteed traffic meets the pre-
viously specified requirements.

4. System-Architecture and Flow

���� ������	

����
����

���

��� �����

���������������������

���������� ���!�����"����

#$%���

�&'

����

()

�*��� +�,����-+�

�&'���

������.

Figure 5. Architecture of the reconfigurable system

This section presents the system architecture and the cor-
responding design flow. An example architecture is shown
in Figure 5. The system level hardware description speci-
fies the top-level for the gray boxes shown in the figure i.e.
the network and the processing cores used in the design.
The figure also shows how the host communicates with the
development board. The host is connected to the develop-
ment board via the USB port, while the protocol used at the
system level is DTL. A small library module translates the
USB read/write commands to the corresponding DTL in-
structions. Further, a demultiplexer is used to split between
data and configuration ports of the network. This allows the
host to act as a DTL master, and to send DTL transactions
to configure the NoC and the cores.

Similar library modules allow interfacing with on-board
peripherals by converting the DTL commands to peripheral
specific API. The flow currently supports SRAM, video I/O,

Design-time Configurable
Per core Memory Size - Program and Data

and type of interfaces e.g. 2×DTL
of issue slots (ILP degree)
Custom operations
Register file size and width

Network Topology
Max buffer sizes for all use cases
Max # connections per port
Size of slot table

System-level Cores used and connection to NoC
Peripherals used e.g. video, ethernet
Communication Protocol (e.g. MMIO)

Run-time Reconfigurable
Per core Memory Contents - Program and Data

Mode of operation e.g. breakpoint
Base addresses

Network Configuration of available connections
Type and bandwidth of each connection
Address map for narrowcast interfaces

System-level Address map of the system

Table 1. Example of configurable properties

audio I/O, ethernet, and smart media card. These modules
are written in Handel-C since a Celoxica board has been
used, and this language provides API for using on-board
peripherals. Handel-C channels (implemented as FIFOs)
are used to implement clock-bridging to those peripherals
that are not in the NoC clock domain. This support is also
automated in the flow.

Table 1 shows some of the properties that are config-
urable at design-time and run-time. We have full freedom to
generate and use cores ranging from a RISC core to a VLIW
core in the same network allowing easy generation of het-
erogeneous systems. The flow also allows for full freedom
at the network level.

4.1. Communication Model

Silicon Hive cores use a memory-mapped architecture.
Addresses outside the memory range of the core are sent to
the external interface unit. Programmers can also explic-
itly choose to send the data via a particular interface of the
core. At the network level, multiple connections can be set
up through each interface. Resolution of these connections
is done via masking, where a programmable number of bits
are used to select which connection to be taken. The system
supports three kinds of memory transfers: MMIO (for sin-
gle word transfers), MMBD (for burst transfers), and PPSD
(for streaming data). Every core has its own 32-bit memory
map, which need not be aligned with other cores. A phys-
ical memory location may be readable by different cores
with different addresses.

�����

������	
���
���

������	
���
�����

������	
���

��
��

������	
���

���	����
�������	
���

���	����

���

�����
���

�����

��
��

���������

��
��������

�����
���

����������

���

����������

����

��
��

����������

����

��
� ���

���������

�������!��

������� �"#

����

�
��

����"�

Figure 6. Integrated flow for system development (design-
time)

4.2. Design Flow

Figure 6 shows the integrated design flow. A system
level description file (see Figure 9) is used to: 1) gener-
ate the VHDL at system level, and 2) instantiate the Sili-
con Hive cores used in the design and the interconnection
fabric. The implementation agnostic system level VHDL
“glues” the top-level description of the network and the
cores. Description of the latter two components is provided
separately as described in Section 3.1 and Section 3.2 re-
spectively. VHDL for the processing cores and the net-
work is generated, together with a simulation model for
each component. As one of the contributions of this work,
the entire HDL description is generated from a high-level
specification in a few minutes.

Moreover, a top-level hardware description file is pro-
duced from the high-level system specification. This file,
referred to as FPGA level HDL in Figure 6, provides access
to the peripherals on the board (including the USB interface
to host PC), as specified by the user. The automation of
this step is another important contribution of this work, al-
lowing a quick and effort-less insertion of the peripherals in
the design. An edif file is generated from this HDL file, di-
rectly from Handel-C, and is, together with the system level
edif file used during Place and Route (P&R) to obtain the
bit file (for FPGA configuration). ASIC design can also be
produced from the system-level HDL if desired.

4.3. Run-time (Re-)Configuration Flow

Figure 7 shows the flow for configuring the FPGA and
interacting with the design. The latter is done via the host
or via an embedded core in the system that uses a boot-
ROM. First, the bit file produced at the end of the flow in
Figure 6 is used to program the FPGA. This instantiates the
NoC, the Silicon Hive cores and the on-board I/O modules,

����������	

��
� �

������

��
�������

����

�������� ����������

��
�

�������

��
���	����

���������

����

���������

�����������

 ����
��������

�����!�����"

#�����$���

%�$��������

$���

%�$��������

���

&�
��$�

$���

%�$������������

'�����
�

�������(

%)*

'�����
����

����

�

$���

Figure 7. Run-time flow for (re-)configuration

where the latter also enables the FPGA to receive the USB
commands from the host. If the host is used for booting,
it acts as a DTL master, configuring the network using the
configuration code produced from the network description.
This sets up the connection from the host to all the process-
ing cores and allows the host to access the memories of the
cores. The compiled application code is then uploaded to
the respective memories, and the cores are started.

Increasing Control from host

Single-step

Mode

Host-boot

Mode

SoC

Mode

Only

Observe

Figure 8. Different system design options in the flow

Figure 8 shows how the flow allows one to generate de-
signs with varying degree of control from the host. While
on one hand, a complete standalone system is generated
(defined as “SoC Mode”, presented in Section 5.1), on the
other, the entire system is operated in a “Single-step Mode”
via the host. The second case-study presented in Section 5.2
uses the host to boot, run and reconfigure the system (de-
fined as “Host-boot Mode” in Fig. 8). It is also possible to
generate a design in which the host only observes the state
of the system for debugging purpose.

In “Host-boot Mode”, the host appears as two DTL mas-
ter ports from the network side (configuration and the data
port), and hence, all the memories in the system are easily
read and written from the host. The cores can be inspected
and reconfigured at run-time as desired. The same holds for
the network as well. This allows the user to change the ap-
plication running in the system. Since the status and control
registers of the core are also visible to the host, they can
be modified in order to start/stop the core. Network con-
nections can also be torn-down or set up at run-time. The
narrowcast address map may also be reconfigured at run-
time. This implies that the data meant for one slave port
can be easily redirected to another, without modifying the
application code. Similar behavior is achieved by changing
the base addresses in the cores. In “SoC Mode”, the above
functionalities are achieved through the embedded core for
(re-)configuration, instead of the host.

5. Case Studies
The design flow presented above has been used to gen-

erate many architectures. We present here two case studies
that demonstrate the ease of using the flow. In both cases the
design was synthesized for a Xilinx Virtex-II 6000-FF1152
and verified on a Celoxica board RC300E [2]. This FPGA
has 33,792 slices and 144 block RAMs of 18 kbits each.
The board itself has 4 SRAM memory banks of 8 MB each,
providing a total of 32 MB. It also has two ethernet ports,
two DVI I/Os, two S-Video I/Os, AC’97 compatible audio
I/O and an on-board LCD screen among others peripherals.

5.1. SoC Mode Design

This case study employs a simple design with three
cores, a single router and two NIs. The cores used in this
exercise were customized for 4 issue slots, 32-bit data path,
with one master and slave port for communication. The size
of memory for data and program was set to 16KB and 32KB
respectively. This design is an example of the left end of the
spectrum in Figure 8 (“SoC Mode”). and uses an embedded
core for booting and system configuration. Two other cores
are used for processing. For sake of simplicity, the same
type of core was used for both configuration and process-
ing. The network flit clock is set to 240 ns using a native flit
size of three words and 32-bit data width, delivering a raw
bandwidth of 50 MB/s.

A simple producer-consumer application was written on
each processing core to test for functional correctness. Con-
nections were therefore, set up from the master port of each
processing core to the slave port of the other one, resulting
in two connections. The bandwidth for each of these con-
nections is set to 2.5 MB/s and both have GT traffic.

This design uses 65% of entire FPGA area in terms of
slices. Each processor takes 20%, while the network uses
5%. A total of 77 block RAMs are used. The design is
optimized for area and tested at 12.5 MHz. The bandwidth
achieved is 2.5 MB/s per connection, as desired.

5.2. Host-boot Mode Design

The second example has an architecture similar to the
one shown in Figure 5, and is designed in “Host-boot
mode”. In this design there are three processing cores, a
shared memory of 24 MB (3 banks), an audio output, and a
video output (1 bank as frame buffer). The processing cores
used in the design are customized with 1 logic slot, 1 DSP
slot, 1 DTL master interface and 1 DTL slave interface. The
size of memory for data and program is set to 16KB and
32KB respectively. The screen on the board is accessed as
a 16-bit frame-buffer and uses one bank of SRAM on the
board. Each pixel is represented in RGB format using 5 bits
each for red and blue, and 6 bits for green. The audio output
port is configured for a sample rate of 48 KHz.

Figure 9 shows a snippet of the system specification file.
As seen, the specification step is very simple and fast. It
takes us only a few minutes to specify system-architecture.

System NoC_IOs
{
node core1 (noc.ni1.pi);
node core2 (noc.ni2.pi);
node core3 (noc.ni3.pi);
node extmem (noc.ni4_0.pi);
node video (noc.ni4_1.pi);
node audio (noc.ni4_2.pi);
node host;
network noc (host.cfg, host.dat, core1.pi, core2.pi,

core3.pi);
};

Figure 9. System specification example (excerpt).

Masters Slave Ports
Core 1 Core2 Core3 Memory Audio Video

Host BE BE BE BE BE BE

Core1 GT GT GT

Core2 GT GT

Core3 GT

Table 2. Network connections in “Host-boot mode” case
study

A number of different network topologies have been
evaluated for the design, ranging from a three router ring
network, a 2×2 mesh, to a single-router network with five
NIs. With all the on-board peripherals included (USB,
video, audio), only the latter fits in the FPGA resources.
The network runs with a flit clock of 120 ns, offering 100
MB/s of raw bandwidth. As mentioned in the run-time flow,
the configuration of the network and the cores in this design
is done via the host. Connections are set up as specified in
Table 2. In total there are 6 GT connections of 8 MB/s each
and 6 BE connections.

The design occupies almost 100% of the FPGA area
leaving only 2 slices unused. This is equivalent to about
6.59 million gates. The maximum frequency at which the
design runs is 25.29 MHz and it has been successfully tested
at 25 MHz. The floor-plan for this design is shown in Fig-
ure 10. The 3 cores and the network are easily seen. The
individual NIs and the Handel-C modules to convert DTL
to peripheral specific API are not easily visible since they
do not occupy significant area in the design.

This design is also used by final year masters students
in our department to study partitioning of a JPEG decoder.
Shared memory is used to store the input image, while the
screen was used to display the output of the decoder. The
decoder itself is mapped on the Silicon Hive cores used in
the design. More details on the course can be found at [1].

6. Conclusions
In this paper, we have presented a fully integrated tool-

flow for a completely reconfigurable NoC-based MPSoC.
The flow allows one to configure everything from the size
of register files in the cores to buffer sizes in the NIs to the
architecture and address map of the system - all in the same
flow, and generate a bit file that can be directly tested on
the FPGA. Furthermore, we present a run-time flow that al-
lows easy debugging and reconfiguration of the system via

Core 1

Core 2

Core 3

Network

Figure 10. Floor-plan of FPGA for the “Host-boot mode”
case study

a host. The designs produced have been verified on a Xil-
inx Virtex II 6000 FPGA development board, and two such
case studies are presented. The design complexity is, how-
ever, limited by the slices available in the FPGA. A bigger
FPGA allows us to explore more network topologies and
have more cores in the design.

References
[1] 5kk53 course webpage. Available from:

http://www.es.ele.tue.nl/education/5kk53, 2006.
[2] Celoxica. Available from: http://www.celoxica.com, 2006.
[3] Silicon hive. Available from: http://www.silicon-hive.com, 2006.
[4] Xilinx. Available from: http://www.xilinx.com, 2006.
[5] T. Bartic et al. Network-on-chip for reconfigurable systems: From high-level

design down to implementation. In Proc. FPL, 2004.
[6] L. Benini. Application specific NoC design. In Proc. DATE, 2006.
[7] L. Benini and G. de Micheli. Networks on chips: A new SoC paradigm. IEEE

Comp., 35(1), 2002.
[8] M. Collin et al. SoCrates - a Multiprocessor SoC in 40 days. In Proc. DATE,

2001.
[9] W. J. Dally and B. Towles. Route packets, not wires: on-chip interconnection

networks. In Proc. DAC, 2001.
[10] Device Transaction Level (DTL) protocol specification. version 2.2, 2002.
[11] N. Genko et al. A complete network-on-chip emulation framework. In Proc.

DATE, 2005.
[12] R. Gonzalez. Xtensa: a configurable and extensible processor. IEEE Micro,

20(2), 2000.
[13] K. Goossens et al. Æthereal network on chip: concepts, architectures, and

implementations. IEEE Design and Test of Computers, 22(5), 2005.
[14] K. Goossens et al. A design flow for application-specific networks on chip

with guaranteed performance to accelerate SOC design and verification. In
Proc. DATE, 2005.

[15] A. Hansson et al. A unified approach to constrained mapping and routing on
network-on-chip architectures. In Proc. CODES+ISSS, 2005.

[16] G. Martin. Overview of the MPSoC design challenge. In Proc. DAC, 2006.
[17] F. Moraes et al. HERMES: an infrastructure for low area overhead packet-

switching networks on chip. Integration VLSI J., 38(1), 2004.
[18] H. Nikolov et al. Efficient automated synthesis, programming, and imple-

mentation of multi-processor platforms on fpga chips. In Proc. FPL, 2006.
[19] C. Rowen and S. Leibson. Flexible architectures for engineering successful

SOCs. In Proc. DAC, 2004.
[20] A. Rădulescu et al. An efficient on-chip network interface offering guar-

anteed services, shared-memory abstraction, and flexible network program-
ming. IEEE Trans. on CAD of Int. Circ. and Syst., 24(1), 2005.

[21] E. Salminen et al. HIBI-based multiprocessor SoC on FPGA. In Proc. ISCAS,
2005.

[22] M. Sgroi et al. Addressing the system-on-a-chip interconnect woes through
communication-based design. In Proc. DAC, 2001.

	Main
	DATE07
	Front Matter
	Table of Contents
	Author Index

